JPS5940278A - Radar apparatus - Google Patents

Radar apparatus

Info

Publication number
JPS5940278A
JPS5940278A JP57151486A JP15148682A JPS5940278A JP S5940278 A JPS5940278 A JP S5940278A JP 57151486 A JP57151486 A JP 57151486A JP 15148682 A JP15148682 A JP 15148682A JP S5940278 A JPS5940278 A JP S5940278A
Authority
JP
Japan
Prior art keywords
radar
phase
antenna
altitude
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57151486A
Other languages
Japanese (ja)
Other versions
JPH032269B2 (en
Inventor
Yoshimasa Ohashi
大橋 由昌
Takahiko Fujisaka
貴彦 藤坂
Tomomasa Kondo
近藤 倫正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57151486A priority Critical patent/JPS5940278A/en
Publication of JPS5940278A publication Critical patent/JPS5940278A/en
Publication of JPH032269B2 publication Critical patent/JPH032269B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates

Abstract

PURPOSE:To prevent the narrowing of the angle measuring range of an angle of elevation even when a radar has an altitude, by mounting a phase shifter for applying predetermined phase shift to each antenna of an array open sampling system radar. CONSTITUTION:The outputs of antennas of a radar having an array open sampling system arranged at equal intervals (d) are subjected to phase-shifting only by a phase (2pi dHi)/(lambdaR) (wherein Hi is the altitude of the radar, lambda is a transmission wavelength, R is the distance of an object and the radar and i is an antenna number) by a phase shifter 14. By this phase-shifting, a radar beam directed direction is brought to a direction for making the object and an object image due to reflection at a sea level or the like symmetric with respect to said radar directed direction and the radar altitude comes to substantially zero. Therefore, even when the radar has the antenna altitude, the angle measuring range of an angle elevation does not become narrow.

Description

【発明の詳細な説明】 この発明は低仰角に位置する目標を追尾するレーダ装置
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a radar device that tracks targets located at low elevation angles.

まず従来の追尾レーダ装置を図面により説明する。第1
図は従来の追尾レーダ装置の構成図で図において、 +
11は安定化局部発振器(STALO:5Table 
Local 0sillator )、 +21はコヒ
ーレント発振器、(3)は位相検波器、(4)はゲート
回路、(5)はパルス変調器、(6)は分配器、(7)
は増幅器、(8)はサーキュレータ、(9)はミキサ、
α1は中間周波数(工nlermecliate Fr
equency; 工F)増幅器(以下NIP増幅器と
いう。)、■は90°移相器、 nzはアンテナ、01
は計算機である。
First, a conventional tracking radar device will be explained with reference to the drawings. 1st
The figure shows the configuration of a conventional tracking radar device.
11 is a stabilized local oscillator (STALO: 5Table
+21 is a coherent oscillator, (3) is a phase detector, (4) is a gate circuit, (5) is a pulse modulator, (6) is a distributor, (7)
is an amplifier, (8) is a circulator, (9) is a mixer,
α1 is the intermediate frequency (Fr
Equency; Engineering F) Amplifier (hereinafter referred to as NIP amplifier), ■ is a 90° phase shifter, nz is an antenna, 01
is a calculator.

さてコヒーレント発振器(OOHO: 0OHeren
tOsillator)(2)より出力された工Fの連
続波は安定化局部発振器(11より出力されたR F 
(Racli。
Now, coherent oscillator (OOHO: 0OHeren)
The continuous wave of RF output from the stabilized local oscillator (11)
(Racli.

Frequency)の連続波とミキサ(9)で混合さ
れる。
It is mixed with a continuous wave (Frequency) by a mixer (9).

このミキサ(9)の出力はパルス変調器(5)でパルス
変調され1分配器(6)に到達する。このとき分配器(
6)によりN分配されるものとする。この分配器(6)
の出力はそれぞれ増幅器(7)で増幅され、サーキュレ
ータ(8)を経てアンテナ02より電波となって放射さ
れる。放射された電波は目標で反射され、アンテナ口z
に到達する。このとき低仰角高度に目標が存在するもの
とすれば第2図に示すように目標Tからの反射波は直接
、アンテナα2に到達する直接波W1のほかにイメージ
T′による反射波即ち海面又は地面により反射された反
射波W2から成り、いわゆるマルチパス効果が生じる。
The output of this mixer (9) is pulse-modulated by a pulse modulator (5) and reaches a 1-distributor (6). At this time, the distributor (
6), it is assumed that N distributions are performed. This distributor (6)
The outputs of each are amplified by an amplifier (7), passed through a circulator (8), and are radiated as radio waves from the antenna 02. The radiated radio waves are reflected by the target, and the antenna port z
reach. At this time, if the target exists at a low elevation angle altitude, as shown in Figure 2, the reflected wave from the target T will be the direct wave W1 that reaches the antenna α2, as well as the reflected wave from the image T', that is, the sea surface or It consists of a reflected wave W2 reflected by the ground, and a so-called multipath effect occurs.

そして、再びサーキュレータ(8)を経由して、ミキサ
(9)に入力される。ところでミキサ(9)では受信4
号と安定化局部発掘器(11からの信号が混合され、x
pに変換された後、工F増幅器a0に入力される。工p
増幅器顛の出力は2個の位相検波器(3)に分配され、
一方の位相検波器ではコヒーレント発振器(2)からの
@接の出力と混合されその出力はゲート回路(4)を経
た後目標からの受信4号の振幅1位相成分が取り出され
て9複素信号V1の実部工1が得られる。他方の位相検
波器ではコヒーレント発振器(2)の出力は90°移相
器aυを経由して工1゛増幅器(I[1の出力と混合さ
れ、その出力はゲート回路(4)を経て目標からの受信
4号の振幅9位相成分が取り出され複素信号■1の虚部
Q1が得られる。同様にしてす(N−1)Oアンテナα
2では複素信号v9.の実部工H−1t 虚部QH−1
e すNのアンテナα2では複素信号VNの実部工8.
虚部Qyがそれぞれ得られる。このような複素信号■1
.v2.・・・、■、を計算機α器に入力する。計算機
0ではこれらの複素信号を用いてマルチパス効果を受け
たアンテナIIIへの到来波の中から直接波W1の到来
方向を推定するだめの演算を行い、目標の仰角推定値A
を出力する。
The signal is then input to the mixer (9) via the circulator (8) again. By the way, mixer (9) receives 4
The signals from No. 1 and the stabilizing local excavator (11 are mixed, x
After being converted to p, the signal is input to the amplifier a0. engineering p
The output of the amplifier section is distributed to two phase detectors (3),
In one phase detector, the output is mixed with the output from the coherent oscillator (2), and after passing through the gate circuit (4), the amplitude 1 phase component of the received signal No. 4 from the target is extracted, resulting in a 9 complex signal V1. The actual part work 1 is obtained. In the other phase detector, the output of the coherent oscillator (2) is mixed with the output of the amplifier (I[1) via a 90° phase shifter aυ, and its output is sent from the target via the gate circuit (4). The amplitude 9 phase components of the received signal 4 are extracted and the imaginary part Q1 of the complex signal ■1 is obtained.Similarly, the (N-1)O antenna α
2, the complex signal v9. Real part H-1t Imaginary part QH-1
e At the antenna α2 of N, the real part of the complex signal VN8.
The imaginary part Qy is obtained respectively. Such a complex signal ■1
.. v2. . . , ■ are input into the calculator alpha device. Computer 0 uses these complex signals to perform calculations to estimate the direction of arrival of direct wave W1 from among the waves arriving at antenna III that have undergone multipath effects, and calculates the estimated elevation angle value A of the target.
Output.

ところでこの演算では電波のアンテナ12への到来方向
数nが既知であることを前提にして、上記の複素信号7
1.V、・・・、 v+iと、n個の電波の到来方向を
仮想的に選んだ場合に得られるアンテナのy索出カフ1
# 、 72/ 、 、、−1、7N/  との差を最
小にするような電波の到来方向を求める。これらの到来
方向のうち最も大きくなる仰角方向を直接波の到来方向
と推定するものである。
By the way, in this calculation, it is assumed that the number n of arrival directions of radio waves to the antenna 12 is known, and the above-mentioned complex signal 7 is
1. V, ..., v+i, and the antenna's y-index cuff 1 obtained when n radio waves arrive at directions virtually
Find the arrival direction of the radio waves that minimizes the difference between #, 72/, , -1, and 7N/. Among these directions of arrival, the direction with the largest elevation angle is estimated to be the direction of arrival of the direct wave.

説明の便宜上、n=2とし、目標と、海面又は地面に対
する目標のイメージがそれぞれ1個存在するものとし、
アンテナ02より見た目標とイメージの仰角をそれぞれ
α1.α2とすれば目標の仰角α1が角度のアンビギュ
イテイ無く推定されるためにはα1およびα2は λ            λ 一7石〈α1.α2く11      ・・・(1)を
満足しなければならない。ここにλは送信波長。
For convenience of explanation, it is assumed that n = 2 and that there is one image of the target and one image of the target relative to the sea surface or the ground,
The elevation angles of the target and image seen from antenna 02 are α1. If α2 is used, then α1 and α2 must be λ λ 17 stones <α1. α2×11... (1) must be satisfied. Here λ is the transmission wavelength.

αはアンテナO3を等間隔に配列したときのアンテナ間
の間隔を表わす。もしアンテナa’aが海面又は地面に
対し高度Hに存在するならば、アンテナQ2から目標ま
でのグランド距離をRとするときα2は −12■ α2 ””  tan  (u % tanα1〕  
・・・(2)で与えられる。
α represents the interval between the antennas when the antennas O3 are arranged at equal intervals. If antenna a'a is located at an altitude H relative to the sea surface or the ground, α2 is -12■ α2 ”” tan (u % tanα1), where R is the ground distance from antenna Q2 to the target.
... is given by (2).

従って(2)式より Iα2しα1 となり、測定し得る目標の仰角α1の範囲は式(1)よ
りα2のみで決定される。このためH==Qのときに比
べα1の測角範囲は狭くなる。
Therefore, from equation (2), Iα2 becomes α1, and the range of the measurable elevation angle α1 of the target is determined only by α2 from equation (1). Therefore, the angle measurement range of α1 becomes narrower than when H==Q.

この発明はこの欠点を改善するため各アンテナと送受信
機間に移相器を挿入したもので以下図面について詳細に
説明する。第3図はこの発明の一実施例を示すレーダ装
置の構成図で、第2図と異なる点は分配器(6)と増幅
器(7)の間に移相器α]を挿入したことである。信号
の流れは第1図に示した従来の場合とほぼ同じであるが
移相器naにより受信時に各アンテナ02の出力の位相
を変えることができるものとする。
In order to improve this drawback, the present invention inserts a phase shifter between each antenna and the transmitter/receiver, and will be described in detail below with reference to the drawings. FIG. 3 is a configuration diagram of a radar device showing an embodiment of the present invention. The difference from FIG. 2 is that a phase shifter α] is inserted between the distributor (6) and the amplifier (7). . The signal flow is almost the same as in the conventional case shown in FIG. 1, but it is assumed that the phase of the output of each antenna 02 can be changed during reception by a phase shifter na.

例えば各アンテナが等間隔に配列されているときのアン
テナ間の間隔なd9送信波長をλ、海面又は地面からの
レーダ高度をH,レーダから目標までの距離なRとし、
移相器Iに与える位相は+1のアンテナ口zを規準とす
るとき、+−2のアンテナ口zにつながる移相器の位相
を2πd、 H/λR1+3のアンテナQX5につなが
る移相器の位相を4πd、 H/λR9+Nのアンテナ
(12につながる移相器の位相を2π(N−1)dH/
λRとすれば、第4図の一点錯綜で示す方向にビームを
向けたことと等価になる。
For example, when the antennas are arranged at equal intervals, λ is the spacing d9 transmission wavelength between the antennas, H is the radar altitude from the sea surface or ground, and R is the distance from the radar to the target.
The phase given to phase shifter I is based on +1 antenna port z, the phase of the phase shifter connected to +-2 antenna port z is 2πd, and the phase of the phase shifter connected to H/λR1+3 antenna QX5 is 2πd. 4πd, H/λR9+N antenna (the phase of the phase shifter connected to 12 is set to 2π(N-1)dH/
If λR is used, it is equivalent to directing the beam in the direction shown by the single point confusion in FIG.

従ってこの一点鎖線を中心にして目標とイメージは対称
の位置に存在することになり、このビームの軸に対しα
1とα2の絶対値は等しくなる。故にレーダ高度Hがあ
る値をとる場合でもn=Qのときと同じ測角範囲を得る
ことができる。
Therefore, the target and image are located at symmetrical positions with respect to this dot-dashed line, and α
The absolute values of 1 and α2 are equal. Therefore, even if the radar altitude H takes a certain value, the same angle measurement range as when n=Q can be obtained.

以上のようにこの発明に係るレーダ装置では移相姦を用
いることによってレーダの高度がある値を持つ場合でも
測角範囲を狭くすることなく一定に保つことができる。
As described above, in the radar device according to the present invention, by using the shift phase, even when the altitude of the radar has a certain value, the angle measurement range can be kept constant without narrowing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレーダ装置のブロック図、第2図はレー
ダと目標およびイメージの関係を表わす図、第3図はこ
の発明によるレーダ装置のブロック図、第4図はアンテ
ナのビーム方向が傾くことを表わす図である。 図中、(1)は女定化局部発揚器、(2)はコヒーレン
ト発振器、(3)は位相検波器、(41はゲート回路、
(5)はパルス変調器、(61U分配器、(7)は増幅
器、(8)はザーキュレータ、(9)はミキサ、 Q(
Iは中間周波増幅器、卸は90°移相器、O3はアンテ
ナ、αゴは計算機。 G4は移相器、Tは目標、T′はイメージ、Wlは直接
波、w2は海面からの反射波、Aは測角推定値である。 なお9図中同一あるいは相当部分には同一符号を付して
示しである。 代理人 葛 野 侶 − 第1図 ’z W2   Z#−/ Qu−r IN(bt第2
図 第3図
Fig. 1 is a block diagram of a conventional radar device, Fig. 2 is a diagram showing the relationship between the radar, a target, and an image, Fig. 3 is a block diagram of a radar device according to the present invention, and Fig. 4 is a diagram in which the antenna beam direction is tilted. This is a diagram showing this. In the figure, (1) is a female local oscillator, (2) is a coherent oscillator, (3) is a phase detector, (41 is a gate circuit,
(5) is a pulse modulator, (61U distributor, (7) is an amplifier, (8) is a circulator, (9) is a mixer, Q (
I is an intermediate frequency amplifier, wholesale is a 90° phase shifter, O3 is an antenna, and α is a computer. G4 is a phase shifter, T is a target, T' is an image, Wl is a direct wave, w2 is a reflected wave from the sea surface, and A is an estimated angle measurement value. Note that the same or corresponding parts in FIG. 9 are designated by the same reference numerals. Agent Tsutomu Kuzuno - Figure 1'z W2 Z#-/ Qu-r IN (bt 2nd
Figure 3

Claims (1)

【特許請求の範囲】 目標の角度を求めるアレー開ロサンプリング方式を用い
たレーダ装置において、配列されたN個のアンテナそれ
ぞれと送受信機の間に移相器を具備し、目標とレーダと
の距離をR,レーダの高度を■、上記アンテナを等間隔
に配列したときのアンテナ間の間隔をd、送信波長なλ
とするとき。 上記N個の移相器それぞれに対し位相2π(lH1/λ
R(1=1.2.・・・、N)を与えるように構成した
ことを特徴とするレーダ装置。
[Claims] A radar device using an array open sampling method for determining the angle of a target, which includes a phase shifter between each of the arrayed N antennas and a transmitter/receiver to determine the distance between the target and the radar. is R, the altitude of the radar is ■, the distance between the antennas when the above antennas are arranged at equal intervals is d, and the transmission wavelength is λ.
When. For each of the above N phase shifters, the phase is 2π(lH1/λ
A radar device characterized in that it is configured to give R (1=1.2...,N).
JP57151486A 1982-08-31 1982-08-31 Radar apparatus Granted JPS5940278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57151486A JPS5940278A (en) 1982-08-31 1982-08-31 Radar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57151486A JPS5940278A (en) 1982-08-31 1982-08-31 Radar apparatus

Publications (2)

Publication Number Publication Date
JPS5940278A true JPS5940278A (en) 1984-03-05
JPH032269B2 JPH032269B2 (en) 1991-01-14

Family

ID=15519549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57151486A Granted JPS5940278A (en) 1982-08-31 1982-08-31 Radar apparatus

Country Status (1)

Country Link
JP (1) JPS5940278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080120A1 (en) * 2005-01-28 2006-08-03 Matsushita Electric Industrial Co., Ltd. Tracking system and self-traveling body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080120A1 (en) * 2005-01-28 2006-08-03 Matsushita Electric Industrial Co., Ltd. Tracking system and self-traveling body
US7363125B2 (en) 2005-01-28 2008-04-22 Matsushita Electric Industrial Co., Ltd. Tracking system and autonomous mobile unit

Also Published As

Publication number Publication date
JPH032269B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
JP2651054B2 (en) Polystatic correlation radar
EP0713581B1 (en) Monopulse azimuth radar system for automotive vehicle tracking
US4532515A (en) Angle of arrival measurements for two unresolved sources
EP1828803B1 (en) System and technique for calibrating radar arrays
US4106015A (en) Radar system with circular polarized transmission and adaptive rain depolarization compensation
US11156709B2 (en) Phase measurement in a radar system
US8659470B2 (en) Apparatus for estimating the height at which a target flies over a reflective surface
US4084160A (en) Arrangement for correcting deviations from the true bearing caused by reflecting surfaces in target tracking radar installations
US20210263139A1 (en) Distributed Monopulse Radar Antenna Array for Collision Avoidance
US4472718A (en) Tracking radar system
US20220107408A1 (en) Radar device
US3942177A (en) Interferometer radar elevation angle measurement apparatus
JPS5940278A (en) Radar apparatus
US5371503A (en) Radar system and method of operating same
US3025517A (en) Simultaneous lobe comparison for radar direction finding
US3224002A (en) Radar systems
JPH05150037A (en) Radar signal processor
JPH0136077B2 (en)
JPH04147079A (en) Method and apparatus for processing radar signal
US3618008A (en) Antiglint radio direction finder
JP6989663B1 (en) Radar device
Hausz et al. Phase-amplitude monopulse system
JPS6269179A (en) Semi-active radar guidance controlling system
JPH11281729A (en) Beam switched radar apparatus
RU2683578C1 (en) Method for measuring ground speed