JPH0136077B2 - - Google Patents

Info

Publication number
JPH0136077B2
JPH0136077B2 JP2720781A JP2720781A JPH0136077B2 JP H0136077 B2 JPH0136077 B2 JP H0136077B2 JP 2720781 A JP2720781 A JP 2720781A JP 2720781 A JP2720781 A JP 2720781A JP H0136077 B2 JPH0136077 B2 JP H0136077B2
Authority
JP
Japan
Prior art keywords
target
elevation angle
antenna
frequency
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2720781A
Other languages
Japanese (ja)
Other versions
JPS5764183A (en
Inventor
Yoshimasa Oohashi
Tetsuo Kirimoto
Tomomasa Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2720781A priority Critical patent/JPS5764183A/en
Publication of JPS5764183A publication Critical patent/JPS5764183A/en
Publication of JPH0136077B2 publication Critical patent/JPH0136077B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/68Radar-tracking systems; Analogous systems for angle tracking only

Description

【発明の詳細な説明】 この発明は低仰角に位置する目標を追尾するレ
ーダ装置の性能改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the performance of a radar device that tracks targets located at low elevation angles.

まず従来の追尾レーダ装置を図面により説明す
る。第1図は従来の追尾レーダ装置の構成図で第
1図において1は安定化局部発振器(STALO:
STAble Local Oscillator)、2はコヒーレント
発振器、3は位相検出器、4はゲート回路、5は
パルス変調器、6は分配器、7は増幅器、8はサ
ーキユレータ、9はミキサ、10は中間周波数
(Intermediate Frequency:IF)増幅器(以下IF
増幅器という。)、11は90゜移相器、12はアン
テナ、13は計算機である。
First, a conventional tracking radar device will be explained with reference to the drawings. Figure 1 is a configuration diagram of a conventional tracking radar device. In Figure 1, 1 is a stabilized local oscillator (STALO).
2 is a coherent oscillator, 3 is a phase detector, 4 is a gate circuit, 5 is a pulse modulator, 6 is a distributor, 7 is an amplifier, 8 is a circulator, 9 is a mixer, 10 is an intermediate frequency (Intermediate frequency) Frequency: IF) amplifier (hereinafter referred to as IF)
It's called an amplifier. ), 11 is a 90° phase shifter, 12 is an antenna, and 13 is a computer.

さてコヒーレント発振器(COHO;COHerent
Osillator)2より出力されたIF(Intermediate
Frequency)の連続波は安定化局部発振器
(STALO:STAble Local Osillator)1より出
力されたRF(Radio Frequency)の連続波とミ
キサ9で混合される。このミキサ9の出力はパル
ス変調器5でパルス変調され、分配器6に到達す
る。このとき分配器6によりN分配されるものと
する。この分配器6の出力はそれぞれ増幅器7で
増幅され、サーキユレータ8を経てアンテナ12
より電波となつて放射される。放射された電波は
目標で反射されアンテナ12に到達する。このと
き低仰角高度に目標が存在するものとすれば目標
Tからの反射波は第2図、第3図に示すように直
接、アンテナ12に到達する成分以外に、海面又
は地面で更に反射されてアンテナ12に到達する
ような成分が加わりいわゆるマルチパス効果が生
じる。そして、再びサーキユレータ8を経由して
ミキサ9に入力される。ところで、ミキサ9では
受信々号と安定化局部発振器1からの信号が混合
され、IFに変換された後、IF増幅器10に入力
される。IF増幅器10の出力は2個の位相検出
器3に分配され、一方の位相検波器ではコヒーレ
ント発振器2からの直接の出力と混合されその出
力はゲート回路4を経た後目標からの受信々号の
振幅、位相成分が取り出されて、複素信号V1
実部I1が得られる。他方の位相検波器ではコヒー
レント発振器2の出力は90゜移相器11を経由し
てIF増幅器10の出力と混合され、その出力は
ゲート回路4を経て目標からの受信々号の振幅、
位相成分が取り出され複素信号V1の虚部Q1が得
られる。同様にして、#(N−1)のアンテナ1
2では複素信号VN1の実部IN1、虚部QN1
#Nのアンテナ12では複素信号VNの実部IN
虚部QNがそれぞれ得られる。
Now, a coherent oscillator (COHO; COHerent)
IF (Intermediate) output from Osillator) 2
The continuous wave of RF (Radio Frequency) is mixed by a mixer 9 with the continuous wave of RF (Radio Frequency) output from a stabilized local oscillator (STALO) 1. The output of this mixer 9 is pulse-modulated by a pulse modulator 5 and reaches a distributor 6. At this time, it is assumed that the distributor 6 distributes N signals. The outputs of the distributors 6 are each amplified by an amplifier 7, and then passed through a circulator 8 to an antenna 12.
It is radiated as radio waves. The radiated radio waves are reflected by the target and reach the antenna 12. At this time, assuming that the target exists at a low elevation angle altitude, the reflected wave from the target T, in addition to the component that directly reaches the antenna 12, is further reflected from the sea surface or the ground as shown in Figures 2 and 3. Components that reach the antenna 12 are added, resulting in a so-called multipath effect. The signal is then input to the mixer 9 via the circulator 8 again. Incidentally, in the mixer 9, the received signal and the signal from the stabilizing local oscillator 1 are mixed, converted into IF, and then input to the IF amplifier 10. The output of the IF amplifier 10 is distributed to two phase detectors 3, one of which is mixed with the direct output from the coherent oscillator 2, and the output is mixed with the direct output from the coherent oscillator 2. After passing through the gate circuit 4, the output is divided into two phase detectors 3. The amplitude and phase components are extracted to obtain the real part I 1 of the complex signal V 1 . In the other phase detector, the output of the coherent oscillator 2 is mixed with the output of the IF amplifier 10 via a 90° phase shifter 11, and the output is mixed with the output of the IF amplifier 10 via the gate circuit 4, which outputs the amplitude of the received signal from the target,
The phase component is extracted and the imaginary part Q 1 of the complex signal V 1 is obtained. Similarly, #(N-1) antenna 1
2, the real part I N -1 , imaginary part Q N -1 of the complex signal V N -1 ,
#N antenna 12 has the real part I N of the complex signal V N ,
The imaginary part Q N is obtained respectively.

このような複素信号V1,V2…、VNを計算機1
3に入力する。計算機13では、これらの複素信
号を用いてマルチパス効果を受けたアンテナ12
への到来波の中から直接波W1の到来方向を推定
するための演算を行なう。
These complex signals V 1 , V 2 . . . , V N are processed by the computer 1.
Enter 3. The computer 13 uses these complex signals to calculate the antenna 12 which has undergone multipath effects.
Calculation is performed to estimate the direction of arrival of the direct wave W 1 from among the waves arriving at the wave W 1 .

ところで、この演算では電波のアンテナ12へ
の到来方向数nが既知であることを前提にして、
上記の複素信号V1,V2、…VNと、n個の電波の
到来方向を仮想的に任意に選んだ場合に得られる
アンテナの複素出力V1′,V2′、…VN′との差を最
小にするような電波の到来方向を求める。これら
の到来方向のうち最も大きくなる仰角方向を直接
波の到来方向としていた。
By the way, in this calculation, it is assumed that the number n of directions of arrival of radio waves to the antenna 12 is known.
The above complex signals V 1 , V 2 , ...V N and the complex outputs of the antenna obtained when the arrival directions of n radio waves are virtually arbitrarily selected V 1 ', V 2 ', ... V N ' Find the direction of arrival of the radio waves that minimizes the difference between Among these directions of arrival, the direction with the largest elevation angle was taken as the direction of arrival of the direct wave.

上記方法によれば、第2図で示すように海面O
又は地面がほとんど平面に近い場合には反射波は
鏡面反射W2となり電波の到来方向数が直接波W1
と併せて2個となることが明らかなため低高度の
目標に対してきわめて正確に角度を推定すること
ができた。
According to the above method, the sea level O
Or, if the ground is almost flat, the reflected wave will be a specular reflection W 2 and the number of directions of arrival of the radio wave will be a direct wave W 1
Since it is clear that there will be two pieces in combination with this, it was possible to estimate the angle extremely accurately for a low-altitude target.

しかし、第3図で示すように、海面O又は地面
が送信波長に比べ凹凸が大きい場合では、目標T
およびイメージT′それぞれからの直接波W1およ
び鏡面反射波W2の他に乱反射成分W3が加わり、
これらの乱反射によりイメージT′の数が増加し
たことに相当する。従つて、一般に、乱反射によ
るイメージT′の数は未知であるため、目標の推
定仰角に大きな誤差が生じた。
However, as shown in Figure 3, when the sea surface O or the ground is uneven compared to the transmission wavelength, the target T
In addition to the direct wave W 1 and specular reflection wave W 2 from each image T′, a diffuse reflection component W 3 is added,
This corresponds to an increase in the number of images T' due to these diffused reflections. Therefore, since the number of images T' due to diffuse reflection is generally unknown, a large error occurs in the estimated elevation angle of the target.

これらの現象を計算機シミユレーシヨンにより
求め、目標の真の仰角に対する角度誤差(=|目
標の推定仰角−目標の真の仰角|)を求めたのが
第4図、第5図である。
These phenomena were determined by computer simulation, and the angular error (=|estimated elevation angle of the target - true elevation angle of the target|) with respect to the true elevation angle of the target was determined as shown in FIGS. 4 and 5.

第4図は第2図に相当する場合、第5図は第3
図に相当する場合の計算機シミユレーシヨン結果
の例を表わす。第4図、第5図共に、配列された
アンテナの個数を5とし、信号(目標からの直接
波)対受信機雑音比は30dBである。これらの図か
らわかるように海面又は地面が平面に近い場合に
はきわめて正確に目標の追尾を行なうことができ
るが乱反射が存在する場合では著しく角度誤差が
大きくなり正確な追尾を行なうことができなかつ
た。ただし、第4図および第5図における縦軸と
横軸はN個のアンテナ12が同相で励振されたと
き形成されるであろうアンテナビームの3dB幅で
規格化されている。
If Figure 4 corresponds to Figure 2, Figure 5 corresponds to Figure 3.
An example of computer simulation results in a case corresponding to the figure is shown. In both FIGS. 4 and 5, the number of arrayed antennas is 5, and the signal (direct wave from the target) to receiver noise ratio is 30 dB . As can be seen from these figures, when the sea surface or the ground is close to a flat surface, it is possible to track the target very accurately, but when there is diffuse reflection, the angular error increases significantly, making accurate tracking impossible. Ta. However, the vertical and horizontal axes in FIGS. 4 and 5 are normalized by the 3dB width of the antenna beam that would be formed when N antennas 12 are excited in the same phase.

この発明はこれらの欠点を解決するため送信パ
ルス毎に周波数を切換えてレーダで受信される反
射成分を無相関化して乱反射の影響を除去するも
ので以下図面についてこの発明を詳細に説明す
る。
In order to solve these drawbacks, the present invention removes the influence of diffuse reflection by switching the frequency for each transmitted pulse and uncorrelating the reflected components received by the radar.The present invention will be described in detail with reference to the drawings below.

第6図はこの発明の一実施例を示す追尾レーダ
装置の構成図であつて、第1図の安定化局部発振
器1の代わりに、送信パルス毎に又は有限時間毎
に送信周波数が変化する周波数可変の発振器14
が用いられていることと、平均化回路15が新た
に加わつたことである。さて、発振器14は一例
として周波数f1′,f2′、…fM′で連続波をそれぞれ
発振するM個の発振器16から構成されるものと
し、M個の発振器16の出力がスイツチにより切
り換えられて発振器14よりt=t1でf1′,t=t2
でf2′…t=tMでfM′の周波数が出力されるものと
する。そして発振器14の周波数にコヒーレント
発振器2の一定周波数がミキサ9により加えられ
周波数f1′,f2′、…fM′の周波数を持つた電波がア
ンテナ12より放射されるものとする。送信パル
ス毎又は有限時間毎に目標の仰角を推定するとこ
ろまでは第1図で説明した場合と同じである。
FIG. 6 is a configuration diagram of a tracking radar device showing an embodiment of the present invention, in which the transmitting frequency changes for each transmitted pulse or every finite time instead of the stabilizing local oscillator 1 of FIG. variable oscillator 14
is used, and an averaging circuit 15 is newly added. As an example, it is assumed that the oscillator 14 is composed of M oscillators 16 that each oscillate continuous waves at frequencies f 1 ′, f 2 ′, ...f M ′, and the outputs of the M oscillators 16 are switched by a switch. and from the oscillator 14, f 1 ' at t=t 1 , t=t 2
Assume that f 2 ′...t=t M and the frequency of f M ′ is output. It is assumed that the constant frequency of the coherent oscillator 2 is added to the frequency of the oscillator 14 by the mixer 9, and radio waves having frequencies f 1 ', f 2 ', . . . f M ' are radiated from the antenna 12. The process up to estimating the elevation angle of the target for each transmitted pulse or for each finite time is the same as that described in FIG. 1.

ただし目標の仰角を推定する方法として例えば
次に示す最尤推定法を考えることができる。(I.
Kupiec、“Experimental Verification of the
Performance of the Aperture Sampling
Technique”、Tech Note 1975−45、Lincoln
Lab.、MIT、15.Sept.1975に詳述) 各アンテナの出力は VoK 〓 〓k=1 f(αk)・Ak・exp(jφk)・exp〔j2π/λ・(
n−1)d・sinαk〕+Fo(A−1) で表される。ただし、n−1、2、3、…、Nで
ある。
However, as a method for estimating the elevation angle of the target, for example, the following maximum likelihood estimation method can be considered. (I.
Kupiec, “Experimental Verification of the
Performance of the Aperture Sampling
Technique”, Tech Note 1975−45, Lincoln
Lab., MIT, 15.Sept.1975) The output of each antenna is Vo = K 〓 〓 k=1 f(α k )・A k・exp(jφ k )・exp[j2π/λ・(
n-1) d・sinα k ]+F o (A-1). However, n-1, 2, 3,...,N.

ここにKは目標および地面などからの反射源の
数、αkは上記のk番目の反射源により反射された
電波の到来角(仰角)、f(αk)は各アンテナのαk
における放射強度、Akkはそれぞれ上記k番
目の反射源による反射波のアンテナに到来する振
幅および位相、λは本追尾レーダ装置の送信波
長、dは各アンテナ間の間隔、Foは受信機雑音
である。式(A−1)を行列表記すれば次式とな
る。
Here, K is the number of reflection sources from the target and the ground, α k is the arrival angle (elevation angle) of the radio wave reflected by the k-th reflection source, and f (α k ) is α k of each antenna.
, A k and k are the amplitude and phase of the reflected wave from the above k-th reflection source arriving at the antenna, respectively, λ is the transmission wavelength of this tracking radar device, d is the distance between each antenna, and F o is the reception It's machine noise. If formula (A-1) is expressed as a matrix, the following formula is obtained.

(A−2) ここに Aok=exp〔j2π/λ(n−1)dsinαk〕 (A−5) Bk=f(αk)Akexp(jφk) (A−7) である。このとき尤度関数は で与えられる。ここにδは受信機雑音F1,F2…,
FNの標準偏度、*は行列の共役転置を表わす。
V = AB + E (A-2) here A ok = exp [j2π/λ(n-1)dsinα k ] (A-5) B k =f(α k )A k exp(jφ k ) (A-7) It is. In this case, the likelihood function is is given by Here δ is receiver noise F 1 , F 2 ...,
The standard deviation of F N , * represents the conjugate transpose of the matrix.

更に である。式(A−9)で表される尤度関数Zを最
大にするV′を求めて各入射波を推定するが今必
要な情報は各入射波の到来角であつて振幅、位相
は特に必要ではない。このような条件のもとでは
各入射波の到来角を簡単に求めることができる。
Furthermore It is. Each incident wave is estimated by finding V' that maximizes the likelihood function Z expressed by equation (A-9), but the information needed now is the arrival angle of each incident wave, and the amplitude and phase are especially necessary. isn't it. Under such conditions, the arrival angle of each incident wave can be easily determined.

即ち、 を最大にすることのできる各入射波の到来角を求
めることに帰着する。は与えられているので、
結局式(A−4)、(A−5)で表されるのαk
値を種々変化させてqが最大になるときのα1,α2
…αkが各入射波を求める角度となる。
That is, The result is to find the angle of arrival of each incident wave that can maximize the angle of arrival of each incident wave. Since V is given,
After all, α 1 , α 2 when q becomes maximum by variously changing the value of α k of A expressed by formulas (A-4) and (A-5)
...α k is the angle at which each incident wave is found.

これらの角度のうち最大のものが目標の求める
推定角度θ1となる。第3図で示したように、海面
0又は地面が送信波長に比べて凹凸が大きいため
に乱反射が生じるような場合では、t=t1で周波
数f1の電波をアンテナ12より送信すれば乱反射
の影響により見かけの信号対雑音比が低下し目標
の推定仰角θ1が目標の真の仰角θTよりもずれた値
となつて得られる。次に、t=t2で周波数f2の電
波を送信し、受信されたレーダエコーに含まれる
乱反射成分は上記f1で送信した場合において受信
されたレーダエコーの乱反射成分とはf1とf2の差
が充分大きければ無相関に近くなることが知られ
ている。f2をこのような値に設定して得られた目
標仰角の推定値θ2は真の仰角θTからのずれがθ1
は異なつた値となつている。
The largest of these angles becomes the estimated angle θ 1 sought by the target. As shown in Figure 3, in cases where diffuse reflection occurs because the surface of the sea or the ground is uneven compared to the transmission wavelength, if a radio wave with frequency f 1 is transmitted from antenna 12 at t = t 1 , diffuse reflection will occur. The apparent signal-to-noise ratio decreases due to the influence of , and the estimated elevation angle θ 1 of the target is obtained as a value that deviates from the true elevation angle θ T of the target. Next, a radio wave of frequency f 2 is transmitted at t = t 2 , and the diffuse reflection component included in the received radar echo is f 1 and f It is known that if the difference between 2 is large enough, the correlation will be close to non-correlation. The estimated value θ 2 of the target elevation angle obtained by setting f 2 to such a value has a deviation from the true elevation angle θ T that is different from θ 1 .

以下、順次t=t3において周波数f3の電波、t
=t4でf4…tMでfMの電波を送信して目標の仰角推
定値θ1,θ2,…、θMを得た時これらの真の仰角θT
からのずれはランダムに近いものである。このと
きの時間の変化に対する目標の仰角推定値の変化
の様子を第5図に時系列的に示す。これらのM個
の仰角推定値から平均化回路15により θ1+θ2+…+θM/M ……(1) を求めれば式(1)で与えられる値の分散は、θ1,θ2
…θMを標本値とする確率変数θの分散の1/Mに
近いものとなり、且つ、式(1)で与えられる値の平
均値は真の目標仰角となる。従つて従来行なつて
いたような方式に比べ目標の推定仰角の精度が向
上する。上記の精度向上を確認するため計算機シ
ミユレーシヨンにより、目標の真の仰角に対する
角度誤差(=|目標の推定仰角−目標の真の仰角
|)を求めたのが第8図である。ただし、第8図
は送信周波数を変化させる以外は第5図において
求めた場合と同じ条件のもとで計算機シミユレー
シヨンを行なつた結果の例であり、式(1)における
Mを100として求めた。第8図を第5図と比べれ
ば明らかなように乱反射が存在する場合でもこの
発明により角度誤差を小さくすることができ、目
標の仰角の推定精度を向上させることができ正確
な追尾を行なうことができる。ただし、第8図に
おける縦軸と横軸は、N個のアンテナ12が同相
で励振されたとき形成されるであろうアンテナビ
ームの3dB幅で規格化されている。
Below, at t=t 3 , radio waves of frequency f 3 , t
= f 4 at t 4 ...When f M radio waves are transmitted at t M and the estimated elevation angles of the target θ 1 , θ 2 , ..., θ M are obtained, these true elevation angles θ T
The deviation from this is almost random. FIG. 5 shows how the estimated elevation angle of the target changes over time at this time. If the averaging circuit 15 calculates θ 12 +...+θ M /M (1) from these M elevation angle estimation values, the variance of the values given by equation (1) is θ 1 , θ 2
... is close to 1/M of the variance of the random variable θ with θ M as the sample value, and the average value of the values given by equation (1) becomes the true target elevation angle. Therefore, the accuracy of the estimated elevation angle of the target is improved compared to the conventional method. In order to confirm the above-described improvement in accuracy, the angular error (=|estimated elevation angle of the target - true elevation angle of the target|) with respect to the true elevation angle of the target was determined by computer simulation, as shown in FIG. However, Figure 8 is an example of the results obtained by computer simulation under the same conditions as those obtained in Figure 5, except for changing the transmission frequency, and M in equation (1) was calculated as 100. . As is clear from comparing FIG. 8 with FIG. 5, even when diffuse reflection exists, the present invention can reduce the angular error, improve the accuracy of estimating the elevation angle of the target, and perform accurate tracking. I can do it. However, the vertical and horizontal axes in FIG. 8 are normalized by the 3dB width of the antenna beam that would be formed when N antennas 12 are excited in the same phase.

以上のようにこの発明に係る低仰角追尾レーダ
装置では、送信パルス毎に送信周波数を変えて本
装置で受信される乱反射成分を無相関化し、且
つ、送信パルス毎に得られた目標の仰角の推定値
を平均化することによつて推定値の分散を小さく
し、目標の仰角の推定精度を向上させることによ
り正確な追尾を行なうことができる。
As described above, in the low elevation angle tracking radar device according to the present invention, the transmission frequency is changed for each transmission pulse to decorrelate the diffuse reflection component received by the device, and the elevation angle of the target obtained for each transmission pulse is By averaging the estimated values, the variance of the estimated values is reduced, and the accuracy of estimating the elevation angle of the target is improved, thereby allowing accurate tracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の低仰角追尾装置の構成図、第2
図は海面または地面がほとんど平面に近い場合の
目標からの直接波とイメージによる鏡面反射波お
よびレーダ装置の関係を表わす図、第3図は海面
または地面ではなくレーダの送信波長に比較して
凹凸が大きい場合で第2図の場合に更に乱反射に
よる成分が加わつた場合を表わす図、第4図は第
2図で示した場合における従来のアレイ開口サン
プリング方式による角度誤差の例を示す図、第5
図は第3図で示した場合における従来のアレイ開
口サンプリング方式による角度誤差の例を示す
図、第6図はこの発明による一実施例の構成図、
第7図は第3図において示すような乱反射が存在
する場合、送信パルス毎に送信周波数を変化させ
てそれに対応させて目標の推定仰角値を時系列的
に示した図、第8図は第3図の場合におけるこの
発明による角度誤差の例を示す図であり、12は
アンテナ、13は計算機、14,16は周波数可
変の発振器、15は平均化回路である。なお図中
同一あるいは相当部分には同一符号を付して示し
てある。
Figure 1 is a configuration diagram of a conventional low elevation angle tracking device, Figure 2
The figure shows the relationship between the direct wave from the target, the specular reflection wave from the image, and the radar device when the sea surface or ground is almost flat. Figure 3 shows the unevenness of the sea surface or ground compared to the radar transmission wavelength. Fig. 4 is a diagram showing an example of the angle error due to the conventional array aperture sampling method in the case shown in Fig. 2. 5
The figure shows an example of angular error due to the conventional array aperture sampling method in the case shown in FIG. 3, and FIG. 6 is a configuration diagram of an embodiment according to the present invention.
Figure 7 is a diagram showing the estimated elevation angle value of the target in chronological order by changing the transmission frequency for each transmission pulse and correspondingly when there is diffuse reflection as shown in Figure 3. 3 is a diagram showing an example of the angle error according to the present invention in the case of FIG. 3, in which 12 is an antenna, 13 is a calculator, 14 and 16 are variable frequency oscillators, and 15 is an averaging circuit. Note that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 低仰角に位置する目標を追尾する追尾レーダ
装置において、送信周波数が送信パルス毎に又は
有限時間毎に変化し得る送信機と、仰角方向に複
数個配列され、上記送信機からの送信周波数の電
波を目標方向へ放射するとともに目標からの反射
波を受信するアンテナと、上記複数個のアンテナ
によりそれぞれ得られる複素信号を用いて目標の
仰角を推定する推定手段と、上記推定手段により
得られる送信周波数に対応する目標の仰角情報を
平均化する手段とを具備したことを特徴とする追
尾レーダ装置。
1. A tracking radar device that tracks a target located at a low elevation angle includes a transmitter whose transmission frequency can change for each transmission pulse or every finite time, and a plurality of transmitters arranged in the elevation direction to change the transmission frequency from the transmitter. an antenna that emits radio waves toward a target and receives reflected waves from the target; an estimating means that estimates the elevation angle of the target using complex signals obtained by each of the plurality of antennas; and a transmission obtained by the estimating means. 1. A tracking radar device comprising means for averaging elevation angle information of a target corresponding to frequency.
JP2720781A 1981-02-26 1981-02-26 Tracking padar device Granted JPS5764183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2720781A JPS5764183A (en) 1981-02-26 1981-02-26 Tracking padar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2720781A JPS5764183A (en) 1981-02-26 1981-02-26 Tracking padar device

Publications (2)

Publication Number Publication Date
JPS5764183A JPS5764183A (en) 1982-04-19
JPH0136077B2 true JPH0136077B2 (en) 1989-07-28

Family

ID=12214648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2720781A Granted JPS5764183A (en) 1981-02-26 1981-02-26 Tracking padar device

Country Status (1)

Country Link
JP (1) JPS5764183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049680A1 (en) * 2017-09-05 2019-03-14 株式会社村田製作所 Radar device and automobile provided with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100561555B1 (en) * 2003-11-17 2006-03-16 국방과학연구소 A method for analyzing a radar pulse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049680A1 (en) * 2017-09-05 2019-03-14 株式会社村田製作所 Radar device and automobile provided with same
JPWO2019049680A1 (en) * 2017-09-05 2020-09-17 株式会社村田製作所 Radar device and automobile equipped with it
US11231483B2 (en) 2017-09-05 2022-01-25 Murata Manufacturing Co., Ltd. Radar apparatus and automobile including the same

Also Published As

Publication number Publication date
JPS5764183A (en) 1982-04-19

Similar Documents

Publication Publication Date Title
JP2651054B2 (en) Polystatic correlation radar
US7295154B2 (en) Vehicle obstacle warning radar
US7250902B2 (en) Method of generating accurate estimates of azimuth and elevation angles of a target for a phased—phased array rotating radar
US4316191A (en) Low angle radar processing means
US5359329A (en) Jammer reference target measurement system
US4106015A (en) Radar system with circular polarized transmission and adaptive rain depolarization compensation
US4005421A (en) Monopulse radar system and method for improved low elevation tracking
US6801156B1 (en) Frequency-agile monopulse technique for resolving closely spaced targets
EP0110260B1 (en) Pulse radar apparatus
US8659470B2 (en) Apparatus for estimating the height at which a target flies over a reflective surface
JPH05196725A (en) Apparatus and method for judging height of low-elevation target
US4472718A (en) Tracking radar system
US20210263139A1 (en) Distributed Monopulse Radar Antenna Array for Collision Avoidance
Feng et al. Target localization using MIMO-monopulse: Application on 79 GHz FMCW automotive radar
US4060807A (en) Low angle radar
GB1605305A (en) Radar arrangements
CN111693979B (en) Digital array monopulse angle measurement method based on Taylor expansion
Kurganov Antenna array complex channel gain estimation using phase modulators
CA1159934A (en) Cancellation of group delay error by dual speed of rotation
US5371503A (en) Radar system and method of operating same
Feger et al. Sparse antenna array design and combined range and angle estimation for FMCW radar sensors
JPH0136077B2 (en)
Bickmore Adaptive antenna arrays
Ahmed et al. Doppler signature analysis of mixed O/X-mode signals in over-the-horizon radar
US3991418A (en) Electromagnetic wave direction finding using Doppler techniques