JPS5940237B2 - Strip radial cell plating method - Google Patents

Strip radial cell plating method

Info

Publication number
JPS5940237B2
JPS5940237B2 JP4404780A JP4404780A JPS5940237B2 JP S5940237 B2 JPS5940237 B2 JP S5940237B2 JP 4404780 A JP4404780 A JP 4404780A JP 4404780 A JP4404780 A JP 4404780A JP S5940237 B2 JPS5940237 B2 JP S5940237B2
Authority
JP
Japan
Prior art keywords
strip
plating
energizing
pass
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4404780A
Other languages
Japanese (ja)
Other versions
JPS56142893A (en
Inventor
明 松田
靖博 広岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4404780A priority Critical patent/JPS5940237B2/en
Publication of JPS56142893A publication Critical patent/JPS56142893A/en
Publication of JPS5940237B2 publication Critical patent/JPS5940237B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、ストリップのラジアルセル通板めつき法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radial cell plating method for strip.

通電用回転ドラムの外周に接しその回転と同期的に走行
するストリップに、該ストリップと半径方向の通電ギャ
ップを隔てこの通電ギャップにめっき液を導入したアノ
ードとの間で該メッキ液を介し通電する、いわゆるラジ
アルセルによるストリップのめつき法は、ストリップの
片面のみの処理を高速通板の下で行うのに有利であり、
その効果的な実施を行う手段があまた提案されている。
A strip that is in contact with the outer periphery of the energizing rotating drum and runs synchronously with its rotation is energized between the strip and an anode, which is separated by a radial energizing gap and into which a plating solution is introduced, through the plating solution. The strip plating method using so-called radial cells is advantageous in processing only one side of the strip under high-speed threading.
A number of methods have been proposed for its effective implementation.

一般にこの種めつき法の適用においては、通電用回転ド
ラムを低速回転させてめつき被膜の肥厚化、つまり厚め
つきをしようとするとき、許容電流密度が下がる傾向が
強く、その許容限界をこえて高すぎる電流密度で操業し
ようとすると、やけ、すなわちめつき金属の結晶粗大化
を来すため、必要なめつき付着量を確保するためにはそ
れに応じた電解時間が必要になるので、電解セルの設置
数を増さなければならない。こゝに電気亜鉛めつきの例
では、硫酸亜鉛を主体にした硫酸浴もしくは塩化亜鉛を
主体とした塩化物浴をめつき液とする各場合とも6Of
l/m2以上のときには、複数の電解セルを用いない限
り、低電流密度で微速の操業条件が余儀なくされ、大電
流密度で高速通板を行う場合の高能率操業と比べて、能
率面での不利が著しい。
Generally, when applying this type of plating method, when attempting to thicken the plating film by rotating the current-carrying rotating drum at low speed, the allowable current density tends to decrease and may exceed its allowable limit. If an electrolytic cell is operated at too high a current density, it will cause burns, or coarsening of the crystals of the plated metal. We must increase the number of installations. In the example of electrogalvanizing, 6Of
l/m2 or more, unless multiple electrolytic cells are used, low current density and slow operation conditions are forced, which is less efficient in terms of efficiency than high efficiency operation when high current density and high speed threading is performed. The disadvantage is significant.

そこでこの発明は、ラジアルセルによる通板めつきの際
に、その低速操業下での許容電流密度を上昇させること
を目的として開発した研究成果を提案するものである。
Therefore, this invention proposes the results of research developed for the purpose of increasing the allowable current density under low-speed operation during sheet plating using a radial cell.

この発明は、通電用回転ドラムの外周に接しその回転と
同期的に走行するストリップに、該ストリップと半径方
向の通電ギャップを隔てこの通電ギャップにめつき液を
導入したアノードとの間でめつき処理を施す際、該スト
リップの各通電ギャップに、それぞれ個別に独立しため
つき液の循環経路の一部として該通電ギャップを含む給
液系統をもつてめつき液の更新流動を導くことからなる
ストリップのラジアルセル通板めつき法であり、この両
更新流動をストリップの走行に対して逆向きとすること
によつて、とくに著しい許容電流密度の上昇をもたらす
ことができる〇この発明は、電気亜鉛めつきの例で60
f1/M2以上のように厚いめつき被膜を必要とする場
合のような、ほマ25m/―程度以下に低いライン速度
でラジアルセル通板めつきを行うとき、その許容電流密
度を大幅に蓄増させて、多数セルの使用を、めつき条件
の悪化なしに不用ならしめてめつき処理能率の飛躍改善
を遂げることができるが、そのほか25m【nをこえる
ライン速度の下でも許容電流密度をさらに増加させ得る
ので、その能率改善の成果は、低ライン速度条件のみな
らず、一般的な高いライン速度条件の場合にも及ぶ。
This invention provides plating between a strip that is in contact with the outer periphery of a rotating energizing drum and runs synchronously with its rotation, and an anode that is separated by a radial energizing gap and into which a plating liquid is introduced. During the treatment, each current-carrying gap of the strip is provided with a fluid supply system that includes the current-carrying gap as part of a separate and independent plating liquid circulation path to direct a renewal flow of plating liquid. This is a radial cell plating method for strips, and by making both renewal flows in the opposite direction to the running of the strip, it is possible to bring about a particularly remarkable increase in allowable current density. 60 in galvanized example
When performing radial cell plating at a line speed as low as 25 m/- or less, such as when a thick plating film of f1/M2 or more is required, the allowable current density can be greatly accumulated. By increasing the number of cells, it is possible to eliminate the use of multiple cells without deteriorating the plating conditions and dramatically improve the plating processing efficiency. The efficiency gains extend not only to low line speed conditions, but also to general high line speed conditions.

さて第1図にこの発明を適用するのに好適な、ラジアル
セルの一例を示し、図中1は通電用回転ドラム、2はそ
のほマ半周にわたつて巻き付け、矢印に沿つて走行する
ストリツプ、3はラインタンク、そして4はラインタン
クの底に取付けたア/−ドで、このアノード4は、通電
用回転ドラム1と同心の弓形片から主としてなり、スト
リツプ2との間に半径方向の通電ギヤツプ9を形成する
。この通電ギヤツプ9は、ストリツプ2の入側ダウンノ
マスPdと、出側アツプパスPuにつき前後に仕切り壁
wにより隔絶区分して、両パスの各通電ギヤツプ9,9
′に、それぞれ個別に独立しためつき液の循環経路の一
部として該通電ギヤツプ9または9′を含む一対の給液
系統たとえぱ循環タンクT,T′からポンプにより、め
つき液の更新流動を導く。こ\に仕切り壁wはめつき液
に侵されない塩化ビニル、硬質ゴムなどでつくり、スト
リツプ3との間にわずかなすき間をあけて、不所望な接
触を避けることができるようにする。
Now, FIG. 1 shows an example of a radial cell suitable for applying the present invention, in which 1 is a rotating drum for energizing, 2 is a strip that is wound around half the circumference of the drum and runs along the arrow; 3 is a line tank, and 4 is an anode attached to the bottom of the line tank. A gap 9 is formed. This current-carrying gap 9 is separated by a partition wall w at the front and rear of the inlet side down path Pd and the outlet side up path Pu, and each current-carrying gap 9, 9 of both paths is separated from each other by a partition wall w.
', a pair of liquid supply systems each including the energized gap 9 or 9' as part of a separate and independent circulation path for the plating liquid, for example by means of a pump from the circulation tanks T, T'. guide. The partition wall w is made of vinyl chloride, hard rubber, etc. that is not affected by the plating solution, and a slight gap is left between it and the strip 3 to avoid undesired contact.

各循環経路は、循環タンクT,T7に接続した配管P1
−P2jP3−P4を)各通電ギヤツプ99f!2の両
端に接続して形成することができ、こ\に通電ギヤツプ
9,9′に対して、ストリツプ2の幅方向にわたり一様
な流れを生じるようにスプレイノズル、スリツタ状ノズ
ルを 分岐マニホルドに配設し、あるいは横軸羽根車な
どが用い得る。
Each circulation route is connected to a pipe P1 connected to the circulation tanks T and T7.
-P2jP3-P4) Each energizing gap 99f! A spray nozzle or a slit-like nozzle can be connected to both ends of the strip 2 to form a branch manifold, and a spray nozzle or a slit-like nozzle can be connected to the energized gears 9 and 9' to produce a uniform flow across the width of the strip 2. Alternatively, a horizontal impeller or the like may be used.

めつき液として、ZnC222OO9/1,NH4Cj
3009/lの組成になり、PH3.5液温55℃に調
整した塩化物浴を用い、アノード4には亜鉛を主成分と
する可溶性電極を用い、各通電ギヤツプ9,g2におけ
る循環めつき液の更新つ 流速を0.5m/Secに設
定し、これを熱線流速計による計測結果に従つて一定に
維持し、ダウンパスPdとアツプパスPuにおけるゆつ
き液の循環流動の向きが、許容電流密度に及ぼす影響を
調べた。ライン速度を25w『nとしたときの結果の一
例5は次の表1のとおりであつた〇上表においてダウン
パスPd:アツプパスPuとも向流すなわちストリツプ
2の走行と逆の向きに更新流動を導くことにより、著大
な許容電流密度の上昇がみられるので、この場合さらに
ライン速度を種々に代えて同様な条件の試験を行つて第
2図に示す成績が得られた。
As plating liquid, ZnC222OO9/1, NH4Cj
A chloride bath with a composition of 3009/l and a pH of 3.5 and a liquid temperature of 55°C was used, a soluble electrode containing zinc as the main component was used as the anode 4, and the circulating plating solution in each energizing gap 9, g2 was used. The flow velocity was set to 0.5 m/Sec, and this was maintained constant according to the measurement result by the hot wire anemometer, and the direction of the circulating flow of the simmering liquid in the down path Pd and up path Pu was determined to be the allowable current density. We investigated the effect on Example 5 of the results when the line speed is 25w'n is as shown in the following Table 1. In the above table, the down path Pd and the up path Pu are countercurrent, that is, the renewal flow is in the opposite direction to the running of strip 2. Since a significant increase in allowable current density was observed in this case, tests were conducted under similar conditions with various line speeds and the results shown in FIG. 2 were obtained.

こ\に上記可溶性アノード4を、めつき浴中で単純に浸
漬保持して、ストリツプ2の走行に帯同する自然循環を
許したラジアルセルによる場合におけるライン速度と許
容電流密度との関係を第2図に点線で比較のために掲げ
たとおり、両者がほぱ比較的であるのに、これを、とく
にストリツプ2の走行と逆向きの強制循環を、ダウンパ
スPd、アツプパスPuの双方に適用して、従来の限界
ライン速度とされた25in以下においても充分に高い
許容電流密度をとることができ、こ\に609/M2以
上の厚めつきを、ラジアルセルの増設なしにしかも高い
操業能率を保持し得る高電流密度下に実施することがで
きたのである。
Here, the relationship between the line speed and the allowable current density in the case of using a radial cell in which the above-mentioned soluble anode 4 is simply immersed and held in a plating bath to allow natural circulation accompanying the running of the strip 2 is shown in the second section. As shown by the dotted line in the figure for comparison, both are relatively comparable, but this is especially true when forced circulation in the opposite direction to the running of strip 2 is applied to both the down path Pd and the up path Pu. Therefore, it is possible to obtain a sufficiently high allowable current density even at 25 inches or less, which was the conventional limit line speed, and maintain high operating efficiency with a thickness of 609/M2 or more without adding a radial cell. It was possible to carry out the experiment at high current densities.

また第3図には、さらに循環めつき液の更新流速を増減
した場合に、許容電流密度へ及ぼす影響を示したように
、更新流速を1.0m/Secに達するまで上昇させれ
ば、一層許容電流密度を高め得ることが明らかである。
なお上記したところのほか、ダウンパスPdおよびアツ
プパスPuのうち少くとも一方を順流とする各場合にも
、許容電流密度は矢張り上昇する傾向があることは上掲
表1に明らかであり、これをたとえば、種々なめつき条
件の下でとくにガス抜きが必要な場合にPu;順流、P
d;向流または順流とする適合の下で組合わせ得るのは
明らかであり、従つて各循環経路に、流動の向きを反転
し得る切替え弁を含む配管を施して、種々な使用条件に
適合させることができる。
Furthermore, as shown in Fig. 3, which shows the effect on the allowable current density when the renewal flow rate of the circulating plating solution is increased or decreased, if the renewal flow rate is increased to 1.0 m/Sec, It is clear that the allowable current density can be increased.
In addition to the above, it is clear from Table 1 above that the allowable current density tends to increase sharply in each case where at least one of the down path Pd and up path Pu is a forward flow. For example, Pu; forward flow, P
d; It is obvious that they can be combined in a counter-flow or forward-flow adaptation, and therefore each circulation path is equipped with piping that includes a switching valve that can reverse the direction of flow to adapt to various usage conditions. can be done.

上に塩化物浴による亜鉛めつき処理の場合を例にとつて
説明をしたが、この発明は、錫、クロム、マンガンある
いはニツケルなどのラジアルセル通板めつきにも応用す
ることができる。
Although the above description has been made by taking as an example the case of galvanizing treatment using a chloride bath, the present invention can also be applied to radial cell sheet plating of tin, chromium, manganese, nickel, or the like.

かくしてこの発明は、ラジアルセルによる通板めつきの
ライン速度の応範領域においてとくに、従来その限界と
された25m/111.n程度以下の低ライン速度での
厚めつき条件の下でも電流密度を高めることができて、
その能率的な操業に有利である。
In this way, the present invention is particularly effective in the range of line speeds for sheet plating using radial cells, particularly at 25 m/111. The current density can be increased even under thick coating conditions at low line speeds of about n or less,
It is advantageous for its efficient operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に従うラジアルセル通板めつき処理要
領を示した説明図、第2図はライン速度と許容電流密度
との関係につきこの発明の効果を従来法と比較したグラ
フ、第3図は、循環更新流速と許容電流密度との関係を
示すグラフである。 1・・・・・・通電用回転ドラム、2・・・・・・スト
リツプ、3・・・・・・ラインタンク、4・・・・・・
アノード、Pd・・・・・・ダウンパス、Pu・・・・
・・アツプパス、9・・・・・・通電ギヤツプ、P1〜
P4・・・・・・配管、w・・・・・・仕切り。
Fig. 1 is an explanatory diagram showing the radial cell plating procedure according to the present invention, Fig. 2 is a graph comparing the effect of this invention with the conventional method regarding the relationship between line speed and allowable current density, and Fig. 3 is a graph showing the relationship between cyclic update flow rate and allowable current density. 1... Rotating drum for energizing, 2... Strip, 3... Line tank, 4...
Anode, Pd... Down pass, Pu...
... Up pass, 9... Energizing gap, P1 ~
P4...Piping, w...Partition.

Claims (1)

【特許請求の範囲】 1 通電用回転ドラムの外周に接しその回転と同期的に
走行するストリップに、該ストリップと半径方向の通電
ギャップを隔てこの通電ギャップにめつき液を導入した
アノードとの間で該めつき液を介し通電するラジアルセ
ルによつてめつき処理を施す際、該ストリップの入側ダ
ウンパスと出側アップパスにつき上記通電ギャップを前
、後に隔絶区分して両パスの各通電ギャップに、それぞ
れ個別に独立しためつき液の循環経路の一部として該通
電ギャップを含む給液系統をもつてめつき液の更新流動
を導くことからなるストリップのラジアルセル通板めつ
き法。 2 ストリップの入側ダウンパスおよび出側アップパス
の両通電ギャップにおける更新流動が、ストリップの走
行に対して逆向きである特許請求の範囲1記載の通板め
つき法。
[Scope of Claims] 1. A strip that is in contact with the outer periphery of a rotating energizing drum and runs synchronously with its rotation, and an anode that is separated by a radial energizing gap and into which plating liquid is introduced. When plating is performed using a radial cell that conducts electricity through the plating liquid, the energization gap is isolated from the front and back for the inlet down pass and the outlet up pass of the strip, and each pass is energized. A method of radial cell plate-through plating of strips, which comprises introducing a renewal flow of plating liquid into the gaps by having a liquid supply system including the energized gaps as part of each individual and independent plating liquid circulation path. 2. The strip plating method according to claim 1, wherein the renewal flow in both the energizing gaps of the inlet down pass and the outlet up pass of the strip is in the opposite direction to the running of the strip.
JP4404780A 1980-04-05 1980-04-05 Strip radial cell plating method Expired JPS5940237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4404780A JPS5940237B2 (en) 1980-04-05 1980-04-05 Strip radial cell plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4404780A JPS5940237B2 (en) 1980-04-05 1980-04-05 Strip radial cell plating method

Publications (2)

Publication Number Publication Date
JPS56142893A JPS56142893A (en) 1981-11-07
JPS5940237B2 true JPS5940237B2 (en) 1984-09-28

Family

ID=12680691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4404780A Expired JPS5940237B2 (en) 1980-04-05 1980-04-05 Strip radial cell plating method

Country Status (1)

Country Link
JP (1) JPS5940237B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126793A (en) * 1983-01-07 1984-07-21 Kawasaki Steel Corp Radial cell type plating device
NL8300946A (en) * 1983-03-16 1984-10-16 Hoogovens Groep Bv DEVICE FOR TWO-SIDED ELECTROLYTIC COATING OF METAL BELT.
JPS6052595A (en) * 1983-09-02 1985-03-25 Fuji Photo Film Co Ltd Method and apparatus for electrolytic treatment
JPS6082700A (en) * 1983-10-07 1985-05-10 Kawasaki Steel Corp Counter flow device for radial cell type plating tank
US6183607B1 (en) * 1999-06-22 2001-02-06 Ga-Tek Inc. Anode structure for manufacture of metallic foil

Also Published As

Publication number Publication date
JPS56142893A (en) 1981-11-07

Similar Documents

Publication Publication Date Title
CN113249770A (en) Water electroplating equipment for electroplating processing of surface of flexible film substrate
US2538317A (en) Treatment of aluminum sheets
US4500400A (en) Counter flow device for electroplating apparatus
JPS5940237B2 (en) Strip radial cell plating method
CN214991962U (en) Water electroplating equipment for electroplating processing of surface of flexible film substrate
JPS59177390A (en) Single side electroplating method and apparatus of moving metal strip
JPS5893893A (en) Continuous plating device
JP2564552B2 (en) Pickling equipment for strip steel
PL150904B1 (en) Device for continuous electrolythic working procces of metals
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
SE7611456L (en) METHOD FOR ONE-SIDED GALVANIZATION OF METAL SHEET
JP2804722B2 (en) Tin plating method on the inner surface of copper or copper alloy tube
JP2926669B2 (en) Ultra-thin metal foil plating equipment
SE459341B (en) DEVICE FOR ELECTROLYTIC TREATMENT OF METAL BANDS
JPS58161792A (en) Horizontal electroplating method with alloy
JPS60224791A (en) Installation for producing double-layered galvanized steel sheet
JPS6055598B2 (en) Edge bar coat prevention device in radial cell type plating tank
JPH0714367Y2 (en) Device for preventing adhesion of plated metal on conductor rolls for electroplating
JPH02228498A (en) Horizontal type electroplating device
JP2578441B2 (en) Method for producing Zn-Ni alloy plated steel with excellent adhesion
EP0403491A1 (en) Method of eliminating a fern-like pattern during electroplating of metal strip.
JPS5980789A (en) Production of steel sheet electroplated with ni-zn alloy
JPS6112894A (en) Electrolytic cell for electroplating
JPH01219200A (en) Method and apparatus for producing single surface plated steel strip
JPH03150400A (en) Method for replenishing iron ion and zink ion into iron-zinc alloy electroplating solution