JPS5940093B2 - Thermoplastic resin coated metal tube - Google Patents
Thermoplastic resin coated metal tubeInfo
- Publication number
- JPS5940093B2 JPS5940093B2 JP17237479A JP17237479A JPS5940093B2 JP S5940093 B2 JPS5940093 B2 JP S5940093B2 JP 17237479 A JP17237479 A JP 17237479A JP 17237479 A JP17237479 A JP 17237479A JP S5940093 B2 JPS5940093 B2 JP S5940093B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- coated
- metal tube
- adhesion
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】
本発明は金属管の外表面に熱町塑性樹脂を被覆した金属
管に係わり、特に被膜の残留歪の少ない被覆金属関に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal tube whose outer surface is coated with a thermoplastic resin, and particularly to a coated metal tube whose coating has little residual strain.
従来の熱町塑性樹脂被覆金属管は、第1図の工程説明図
および第2図の熱町塑’匪樹脂被覆金属管の一部断面図
に示すごとく、金属管(以下鋼管という)1を予熱装置
2で予熱し、接続治具を用いて鋼管1を相互に連結し、
粘着剤塗布装置3においてアスファルト、合成ゴム、樹
脂等からなる粘着剤10を塗布し、押出機4によりポリ
プロピレン、低密度ポリエチレン、高密度エチレン等特
に耐環境応力腐食割れ姓に優れた熱町塑’比樹脂を押し
出しダイにより被覆して第1層目の防食層11を形成し
、冷却装置5で空冷または水冷する。The conventional Atsumachi plastic resin-coated metal tube is made by forming a metal tube (hereinafter referred to as a steel tube) 1 as shown in the process explanatory diagram in Figure 1 and the partial cross-sectional view of the Atsumachi plastic resin-coated metal tube in Figure 2. The steel pipes 1 are preheated by a preheating device 2, and connected to each other using a connecting jig.
An adhesive 10 made of asphalt, synthetic rubber, resin, etc. is applied in an adhesive coating device 3, and an extruder 4 is used to apply a adhesive 10 made of asphalt, synthetic rubber, resin, etc. to polypropylene, low-density polyethylene, high-density ethylene, etc. A first anti-corrosion layer 11 is formed by covering the resin with an extrusion die, and is air-cooled or water-cooled with a cooling device 5.
続いて鋼管1は密着防止剤塗布装置6により防食層11
と次に被覆する保護層との密着を防止するためのポリブ
デンやシリコーン等の密着防止剤12を塗布し、押出機
7によりポリプロピレン、低密度ポリエチレン、高密度
ポリエチレン等の機械的強度に優れた熱町塑性樹脂を押
出しダイより押出して保護層13被覆を行ない、冷却装
置8で空冷又は水冷により常温に冷却され、走間切断機
9によつて当初の鋼管長に切断されて製造される。とこ
ろがこの従来工程で製造される熱可塑性樹脂被覆鋼管は
、高温(通常150℃〜300’C)で熱町塑住樹脂(
以下プラスチックという)を被覆するため、常温までの
温度降下による体積の収縮、あるいは被覆時の分子配向
等により、被膜に3〜5%の残留歪が生じ、この残留歪
のため製品化後の被膜収縮により端部鋼管素地の露出、
あるいは耐ESC(Environmental、St
ress、Crock)の悪化等の問題が生じる。この
ような残留歪を少くしたプラスチック被覆鋼管としては
、保護層被覆後、必要最少限の温度に冷却して所定寸法
に切断後、常温まで冷却して被膜を収縮ざせ被膜の残留
歪を減少せしめる方法によつて製造されたものも提案さ
れているが、管端まで被膜を必要とする被覆鋼管におい
ては、被膜収縮長さを考慮した鋼管接続治具を必要とし
製造コスト上昇の一因となる。本発明は上述の現況に鑑
み、常法の製造工程によつて製造することが可能であつ
て被膜の残留歪を極力少なくすることを見出すことを目
的とし、幾多の実験研究を重ねた結果、防食層外表面に
塗布する密着防止剤に、高温時には低剪断密着力であり
、常温時には高剪断密着力を発揮するという特’比を備
えた密着防止剤を用いることによつで、熱収縮により発
生する被膜の残留歪を大巾に減少。Next, the steel pipe 1 is coated with an anti-corrosion layer 11 by an anti-adhesion agent coating device 6.
An anti-adhesion agent 12 such as polybutene or silicone is applied to prevent adhesion with the next protective layer, and an extruder 7 is used to heat a material with excellent mechanical strength such as polypropylene, low-density polyethylene, or high-density polyethylene. The plastic resin is extruded from an extrusion die to cover the protective layer 13, cooled to room temperature by air cooling or water cooling in the cooling device 8, and cut into the original length of the steel pipe by the running cutter 9 to manufacture the pipe. However, thermoplastic resin-coated steel pipes manufactured using this conventional process are exposed to Netsucho plastic resin (Natsumachi plastic resin) at high temperatures (usually 150 to 300'C)
(hereinafter referred to as plastic), a residual strain of 3 to 5% occurs in the coating due to volume contraction due to temperature drop to room temperature or molecular orientation during coating, and due to this residual strain, the coating after commercialization Exposure of the steel pipe material at the end due to shrinkage,
Or ESC (Environmental, St.
Problems such as deterioration of Clock and Clock occur. Plastic-coated steel pipes with reduced residual strain are produced by coating with a protective layer, cooling to the minimum necessary temperature, cutting to specified dimensions, and cooling to room temperature to shrink the coating and reduce residual strain in the coating. Coated steel pipes manufactured by this method have been proposed, but for coated steel pipes that require coating up to the pipe ends, a steel pipe connection jig that takes into account the shrinkage length of the coating is required, which causes an increase in manufacturing costs. . In view of the above-mentioned current situation, the present invention aims to find a film that can be manufactured by a conventional manufacturing process and has as little residual strain as possible, and as a result of numerous experimental studies, By using an anti-adhesion agent applied to the outer surface of the anti-corrosion layer, which has a special ratio of low shear adhesion at high temperatures and high shear adhesion at room temperature, heat shrinkage is prevented. Significantly reduces the residual strain of the film caused by
し得られることを見出した。すなわら本発明のプラスチ
ック被覆鋼管は、常法によつて鋼管表面に施した防食層
表面に、高温時には低剪断密着力であり、常温時には高
剪断密着力を発揮する特性を備えた密着防止剤を介して
プラスチツクを被覆して保護層を形成したことを特徴と
するものである。以下添付する図面を参照して本発明を
さらに詳細に説明する。本発明の被覆鋼管は第1図に示
す常法の製造工程において鋼管1表面に第1層のプラス
チツク被覆を施した防食層11表面に密着防止剤塗布装
置6により塗布する密着防止剤12を、例えば高融点ワ
ツクス、脂肪族系炭化水素の混合物、あるいはこれらに
ポリエチレンとポリプロピレンの共重合物を混合したも
の等の高温時には低剪断密着力であり、常温時には高剪
断密着力を発揮するという特件を備えたものを用いる。I found out that it can be done. In other words, the plastic-coated steel pipe of the present invention has an anti-adhesion layer on the surface of the anti-corrosion layer applied to the surface of the steel pipe by a conventional method, which exhibits low shear adhesion at high temperatures and high shear adhesion at room temperature. It is characterized in that a protective layer is formed by coating the plastic with an agent. The present invention will be described in further detail below with reference to the accompanying drawings. In the coated steel pipe of the present invention, in the conventional manufacturing process shown in FIG. For example, high melting point waxes, mixtures of aliphatic hydrocarbons, or mixtures of these with copolymers of polyethylene and polypropylene have the special property of exhibiting low shear adhesion at high temperatures and high shear adhesion at room temperature. Use one with
この密着防止剤12は、高融点ワツクス33〜50%、
脂肪族系炭化水素33〜500!)、ポリエチレンとポ
リプロピレンの共重合物0〜20%の混合物が所期の目
的を達成する上から好ましい。上記の密着防止剤12は
通常の塗布装置、例えば第3図に例示するように、中心
部に金属管の通過する透孔を有し該透孔内周を開放面と
しかつ通過する鋼管周面との間隙をシールする町撓性の
シール板6dを両側面部に備えたリング状の函状体6a
に形成した密着防止剤塗布装置6内に、上面部に設けた
供給管6bより密着防止剤を供給し、前記透孔内を通過
する鋼管1が装置6内に貯溜される密着防止剤12″内
に浸漬した状態で通過するようにして防食層11表面に
塗布され、装置6内の密着防止剤12′は排出管6cを
経て還流される。This anti-adhesion agent 12 has a high melting point wax of 33 to 50%,
Aliphatic hydrocarbons 33-500! ), a mixture of 0 to 20% copolymer of polyethylene and polypropylene is preferred from the viewpoint of achieving the intended purpose. The above-mentioned anti-adhesion agent 12 is applied using a conventional applicator, for example, as shown in FIG. A ring-shaped box-like body 6a equipped with flexible sealing plates 6d on both sides to seal the gap between the
An anti-adhesion agent 12'' is supplied from a supply pipe 6b provided on the upper surface into an anti-adhesion agent coating device 6 formed in the above, and the steel pipe 1 passing through the through hole is stored in the device 6. The anti-adhesion agent 12' inside the device 6 is refluxed through the discharge pipe 6c.
このようにして密着防止剤12を塗布した金属管1は次
工程の押出機7においてプラスチツク被覆を行なつて第
2層の保護層13が形成され、以下第1図の工程を経て
プラスチツク被覆鋼管が製造される。上記製造工程にお
いて、本発明に用いる密着防止剤12のもたらす作用に
ついて第4,5図に基づいて説明する。The metal tube 1 coated with the anti-adhesion agent 12 in this way is coated with plastic in the extruder 7 in the next step to form the second protective layer 13, and then the plastic-coated steel tube is formed through the steps shown in FIG. is manufactured. In the above manufacturing process, the effect of the adhesion preventing agent 12 used in the present invention will be explained based on FIGS. 4 and 5.
第4,5図は何れも保護層被覆時の被膜の動態を模式的
に示し、第4図は従来、第5図は本発明である。第4図
の従来では押出ダイ14より押出される溶融円筒状態の
ポリエチレン13′により密着防止剤を塗布した鋼管外
面に保護層を被覆するが、この場合ポリエチレン13′
の押出速度vよりも鋼管1の走行速度Vpを大きくし、
溶融円筒状体の被膜を引張ることにより内径および肉厚
を小さくし、即ら図示の如くt1くT3くT2なる動態
で被覆される。ところが第4図に示すような動態で被覆
され、その密度防止剤の特・囲が、本発明に用いるもの
のような特姓を有しない密着防止剤を用いる従来のもの
では、冷却開止位置付近において13長さで被覆された
被膜は、鋼管1の走行につれて引張られると共にその冷
却過程において収縮するが、被膜自体はパイプ走行方向
に移動することがないので、その収縮は厚さ方向の収縮
のみとなり、冷却終了点では冷却開始位置付近の長さ1
3と同一長さの11のままで冷却されて体積収縮するこ
ととなる。したがつて、鋼管の軸方向には、ポリエチレ
ンの線膨張係数をα、押出温度をT1冷却後謳度をtと
すれば、(T−t)×αの熱歪が残留した被膜が被覆さ
れたこととなる。これに対し第5図では、押出しダイ1
4より押出される溶融円筒状態のポリエチレン13′は
第4図の場合同様に鋼管1外面に被覆されるが、本発明
の場合、防食層表面に塗布した密着防止剤12″が、高
温時には低剪断密着力をもつものであるから、鋼管1の
走行につれて引張られ被覆当初における膜厚vはT2と
なり、冷却開始位置付近において12長さでかつS2断
面積の被膜は、その冷却過程において鋼管の軸方向(図
の太線矢印方向)に移動収縮して冷却終了点ではその長
さを11に減じると同時に厚さをt1に増し、冷却開始
位置付近の断面積S2とほぼ同一の断面積S1となり、
熱収縮により発生する歪を延伸による所謂分子配向歪に
転化せしめる。したがつて鋼管の軸方向には残留歪の少
ない被膜が被覆されたことになるなお一般に分子配向歪
は引落し率又は延伸倍率が大きくなると大となり、反対
に小さくなると小さくなることが知られており、この分
子配向歪の値は熱収縮による歪の値より極めて小さなも
のであるから無視しうるものである。4 and 5 schematically show the dynamics of the coating when the protective layer is applied, FIG. 4 being the conventional one and FIG. 5 being the present invention. In the conventional method shown in FIG. 4, a protective layer is coated on the outer surface of the steel pipe coated with an anti-adhesion agent using molten cylindrical polyethylene 13' extruded from an extrusion die 14. In this case, polyethylene 13'
The running speed Vp of the steel pipe 1 is made larger than the extrusion speed v of
By pulling the coating on the molten cylindrical body, the inner diameter and wall thickness are reduced, that is, the coating is performed with the dynamics of t1, T3, and T2 as shown in the figure. However, in the conventional method using an anti-adhesion agent that does not have the characteristics of the density-inhibiting agent, which is coated with the behavior shown in FIG. The coating coated with length 13 is stretched as the steel pipe 1 runs and contracts during the cooling process, but since the coating itself does not move in the pipe running direction, the contraction is only in the thickness direction. Therefore, at the cooling end point, the length near the cooling start position is 1
11, which has the same length as 3, is cooled and shrinks in volume. Therefore, in the axial direction of the steel pipe, if α is the linear expansion coefficient of polyethylene, T is the extrusion temperature, and t is the elasticity after cooling, a film with residual thermal strain of (T-t) × α is coated. That's what happened. On the other hand, in FIG. 5, the extrusion die 1
The molten cylindrical polyethylene 13' extruded from 4 is coated on the outer surface of the steel pipe 1 as in the case of FIG. Since it has a shear adhesion force, it is stretched as the steel pipe 1 runs, and the film thickness v at the beginning of the coating becomes T2, and the film has a length of 12 and a cross-sectional area of S2 near the cooling start position. It moves and contracts in the axial direction (in the direction of the thick arrow in the figure), and at the cooling end point its length is reduced to 11 and at the same time its thickness is increased to t1, resulting in a cross-sectional area S1 that is almost the same as the cross-sectional area S2 near the cooling start position. ,
Strain caused by thermal contraction is converted into so-called molecular orientation strain due to stretching. Therefore, the axial direction of the steel pipe is coated with a film with little residual strain.It is generally known that molecular orientation strain increases as the drawdown ratio or stretching ratio increases, and conversely decreases as it decreases. The value of this molecular orientation strain is extremely smaller than the value of strain due to thermal contraction, so it can be ignored.
また本発明による場合の被膜が鋼管の軸方向に収縮した
時発生する歪は、ポリエチレンの線膨張係数、押出温度
、冷却後温度を前記同様にそれぞれα、T,t″とすれ
ば(T−t)Xaμ[=りと考えうるから、従来に比し
被膜の残留歪が大巾に減少せしめうることがこのことか
らも解る。つぎに本発明の実施例について説明する。Furthermore, in the case of the present invention, the strain that occurs when the coating contracts in the axial direction of the steel pipe is calculated as (T- t)
第2図に示す構造をもつ50A,80A2重層のポリエ
チレン被覆鋼管の保護層13被覆に、第1表の混合にな
る密着防止剤を用いて被覆を行なつた。The protective layer 13 of a 50A, 80A dual-layer polyethylene-coated steel pipe having the structure shown in FIG. 2 was coated with the anti-adhesion agent mixed in Table 1.
この場合の各温度領域における密着防止剤12の剪断密
着力は第2表のとおりであつた。第1表に示した各密着
防止剤の剪断密着力と保護層被覆時における被膜の管軸
方向移動長さとの関係を第3表に、また保護層被覆時に
おける被膜の管軸方向移動長さと製品被膜の残留歪及び
製品の被膜収縮長さとの関係を第4表に示す。上記第3
表、第4表より明らかな如く、本発明の被覆鋼管は、常
法の作業工程のままでも、高温時における保護層被膜が
管軸方向へ大きく移動し、第1図に示す冷却装置9によ
る冷却開始から常温までの冷却過程において、第1表に
示す何れの密着防止剤ても保護層被膜の管軸方向移動長
さが70TILTL以上となり、被膜収縮長さを10m
m以下にすることができ、保護層の熱収縮による残留歪
を2.5%以下にすることができる。In this case, the shear adhesion strength of the anti-adhesion agent 12 in each temperature range was as shown in Table 2. Table 3 shows the relationship between the shear adhesion force of each anti-adhesion agent shown in Table 1 and the length of movement of the coating in the tube axis direction when the protective layer is applied. Table 4 shows the relationship between the residual strain of the product coating and the shrinkage length of the product coating. 3rd above
As is clear from Tables 4 and 4, the coated steel pipe of the present invention shows that the protective layer coating at high temperatures moves significantly in the pipe axial direction even if the work process is carried out using the usual method. During the cooling process from the start of cooling to room temperature, with any of the anti-adhesion agents shown in Table 1, the length of movement of the protective layer film in the tube axis direction was 70 TILTL or more, and the shrinkage length of the film was 10 m.
m or less, and the residual strain due to thermal contraction of the protective layer can be reduced to 2.5% or less.
以上に詳細説明したごとく、本発明は常法によるポリエ
チレン被覆鋼管の製造工程において、高温時には低剪断
密着力であつて、常温では高密着剪断力を発揮する特団
を備えた密着防止剤を用いるという簡単な方法によつて
保護層被膜の残留歪を大巾に減少せしめた被覆鋼管が得
られ、製品での被膜収縮を最少限にし、被膜耐ESC性
の向上を図るなど信頼性の高いポリエチレン被覆鋼管を
安価容易に提供することができる。As explained in detail above, the present invention uses an anti-adhesion agent with a special agent that exhibits a low shear adhesion force at high temperatures and a high adhesion shear force at room temperature in the manufacturing process of polyethylene-coated steel pipes by a conventional method. Through this simple method, coated steel pipes with significantly reduced residual strain in the protective layer coating can be obtained, minimizing coating shrinkage in products, and improving the ESC resistance of the coating, making it a highly reliable polyethylene product. Coated steel pipes can be provided easily and at low cost.
第1図は常法におけるポリエチレン被覆鋼管の製造工程
を示す模式図、第2図はポリエチレン被覆鋼管の一部断
面図、第3図は密着防止剤塗布装置の一例を示す説明図
、第4図は従来の保護層被覆時における被膜の動態を示
す説明図、第5図は本発明における同上図である。
図中、1:鋼管、2:予熱装置、3:粘着剤塗布装置、
4,7:押出機、5,8:冷却装置、6:密着防止剤塗
布装置、9:走間切断機、10:粘着剤層、11:防食
層、12:密着防止斎帰、13:保護層、13″:ポリ
エチレン、14:ダイ。Fig. 1 is a schematic diagram showing the manufacturing process of polyethylene-coated steel pipe using a conventional method, Fig. 2 is a partial cross-sectional view of polyethylene-coated steel pipe, Fig. 3 is an explanatory diagram showing an example of an anti-adhesion agent application device, and Fig. 4 FIG. 5 is an explanatory diagram showing the dynamics of a film during coating with a conventional protective layer, and FIG. 5 is the same diagram according to the present invention. In the figure, 1: steel pipe, 2: preheating device, 3: adhesive coating device,
4, 7: Extruder, 5, 8: Cooling device, 6: Anti-adhesion agent coating device, 9: Intercutting machine, 10: Adhesive layer, 11: Anti-corrosion layer, 12: Anti-adhesion return, 13: Protection Layer, 13″: polyethylene, 14: die.
Claims (1)
した防食層の表面に、高温時には低剪断密着力であり、
常温時には高剪断密着力を発揮する特性を備えた密着防
止剤を介して熱可塑性樹脂を被覆して保護層を形成して
なることを特徴とする熱可塑性樹脂被覆金属管。1 A thermoplastic resin-coated metal tube, which has a low shear adhesion force at high temperatures on the surface of the anticorrosion layer applied to the metal tube surface,
A thermoplastic resin-coated metal tube characterized by forming a protective layer by coating a thermoplastic resin with an anti-adhesion agent that exhibits high shear adhesion at room temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17237479A JPS5940093B2 (en) | 1979-12-27 | 1979-12-27 | Thermoplastic resin coated metal tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17237479A JPS5940093B2 (en) | 1979-12-27 | 1979-12-27 | Thermoplastic resin coated metal tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5691872A JPS5691872A (en) | 1981-07-25 |
JPS5940093B2 true JPS5940093B2 (en) | 1984-09-28 |
Family
ID=15940716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17237479A Expired JPS5940093B2 (en) | 1979-12-27 | 1979-12-27 | Thermoplastic resin coated metal tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5940093B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6264491U (en) * | 1985-10-11 | 1987-04-21 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58202073A (en) * | 1982-05-20 | 1983-11-25 | Dai Ichi High Frequency Co Ltd | Formation of laminar coating layer inhibiting corrosion and apparatus therefor |
-
1979
- 1979-12-27 JP JP17237479A patent/JPS5940093B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6264491U (en) * | 1985-10-11 | 1987-04-21 |
Also Published As
Publication number | Publication date |
---|---|
JPS5691872A (en) | 1981-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3899807A (en) | Heat recoverable articles and method of making same | |
US3957382A (en) | Method of processing fusible inserts | |
IE48960B1 (en) | Method of coating pipe | |
US3843438A (en) | Article labeling method | |
US4156710A (en) | Fabrication of a flange adapter for plastic pipe | |
JPS5940093B2 (en) | Thermoplastic resin coated metal tube | |
EP0873485B1 (en) | Multi-lumen plastics tubing | |
US4523970A (en) | Process for manufacturing sealant coated articles | |
JPH03175019A (en) | Thermally contractive protecting sheet and its manufacture | |
JPH068030B2 (en) | Method for manufacturing sealant coated article | |
CA1066469A (en) | Covering method and assembly | |
JPS6227134A (en) | Thermorestoring tube for covering inside of pipe | |
JPH0431364B2 (en) | ||
KR102095121B1 (en) | Heat-shrinkable tube and method for producing same | |
JP2004130669A (en) | Method of producing multiple layer-coated curved metal pipe | |
Yamasaki et al. | Dual wall heat-shrinkable tubing with hot-melt inner layer | |
KR830001126B1 (en) | Pipe Covering Method | |
JPS59215833A (en) | Manufacture of super-high molecule weight polyethylene porous film | |
JPWO2019135295A1 (en) | Thermoplastic fluororesin tube | |
JPS6334121A (en) | Method of lining of inner peripheral surface of hollow tubular body | |
JPS5852485B2 (en) | Method for continuous production of thermoplastic coatings | |
JPH0493378A (en) | Novel tape coating | |
JPH01278329A (en) | Manufacture of vinyl chloride resin lined steel tube | |
JPS6334120A (en) | Method for lining ultra-high-molecular-weight polyethylene | |
JPH0565342B2 (en) |