JPS5939720A - Solid compound - Google Patents
Solid compoundInfo
- Publication number
- JPS5939720A JPS5939720A JP14922882A JP14922882A JPS5939720A JP S5939720 A JPS5939720 A JP S5939720A JP 14922882 A JP14922882 A JP 14922882A JP 14922882 A JP14922882 A JP 14922882A JP S5939720 A JPS5939720 A JP S5939720A
- Authority
- JP
- Japan
- Prior art keywords
- fluoride
- compound
- solid compound
- test example
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conductive Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、アルカリ金属と二価金属のぶつ化物である固
体化合物に関するもので、特にアルカリイオン導電体に
好適なアルカリ金属と二価金属のふり化物より成る固体
化合物に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid compound that is a fluoride of an alkali metal and a divalent metal, and particularly to a solid compound that is a fluoride of an alkali metal and a divalent metal and is suitable for an alkali ion conductor. It is something.
全固体エレクトロクロミック表示素子のような固体イオ
ン素子を作製するには、室温におけるリチウムイオン導
電率が1x1o S/m以上の値を持ち、大気中で安
定であり、かつ厚さ0.1〜10ミクロンの薄膜を形成
できる必要がある。この目的に合致する物質として、従
来、LlxNal−xベータアルミナ、L i s N
などが検討された。しかし、前者は薄膜形成困難、後者
は大気中で不安定、などの欠点があった。In order to produce a solid-state ion device such as an all-solid-state electrochromic display device, a lithium ion device must have a lithium ion conductivity of 1×10 S/m or more at room temperature, be stable in the atmosphere, and have a thickness of 0.1 to 100 S/m or more. It is necessary to be able to form micron thin films. Conventionally, materials that meet this purpose include LlxNal-x beta alumina, LisN
etc. were considered. However, the former had drawbacks such as difficulty in forming a thin film, and the latter was unstable in the atmosphere.
本発明の目的は、アルカリイオン導電率の大きい薄膜を
形成できる固体化合物を提供することにある。An object of the present invention is to provide a solid compound capable of forming a thin film with high alkali ion conductivity.
本発明者の一人は、先に、a’Lix/Na1−x/F
−b′AIF3(ただし、a′は0.45から0.7
の範囲の数値、b′は0.6から0.55の範囲の数値
、Xは0.1≦X り1. Oの範囲の数値)に相当す
る組成の非晶質化合物が優れたリチウムイオン導電体で
あることを見出した。またさらに、一般式、a′′M1
F−b″MuIF3
(ここに、MはLiおよびNaより成る群中より選ばれ
た少なくとも一種の元素を表わし、 MIHはSc、T
i、V、CrS Fe、 Rh1 、In、 Ga
、yJより成る群中より選ばれた少なくとも一種の元素
を表わし;a“ば、0.6とaく0.7または0.8り
a” p 0.95である数値;b“は、b“=1−a
“である数値)で表わされる組成物が優れたアルカリイ
オン導電体であることを見出した。これらの知見に基づ
き、同様の導電率を実現し得るような、二種類以上の金
属イオンを含むふっ素化合物を、アルカリ金属イオンと
二価金属イオンとの組み合わせについて実験的検討を行
った結果、本発明に到達したものである。One of the inventors previously proposed a'Lix/Na1-x/F
-b'AIF3 (where a' is 0.45 to 0.7
b' is a numerical value in the range of 0.6 to 0.55, X is 0.1≦X 1. It has been found that an amorphous compound having a composition corresponding to a value in the range of O) is an excellent lithium ion conductor. Furthermore, the general formula, a''M1
F-b''MuIF3 (here, M represents at least one element selected from the group consisting of Li and Na, MIH represents Sc, T
i, V, CrS Fe, Rh1, In, Ga
, yJ represents at least one element selected from the group consisting of; "=1-a
We have found that a composition represented by "a numerical value) is an excellent alkali ion conductor. Based on these findings, we have found that a fluorine composition containing two or more types of metal ions that can achieve similar conductivity. The present invention was achieved as a result of experimental studies on combinations of alkali metal ions and divalent metal ions.
上記による本発明の固体化合物は、一般式、T
n
a M 、F−bM F2 (コこに、Mは、Liおよ
びNaから成る群中から選ばれた少なくとも一種の元素
を表わし、 Mllは、Cr、 Fe、 Co、 Ni
、 Cu、Znからなる群中から選ばれた少なくとも
一種の元素を表わし;aは、0.6とa<0.999の
範囲の数値であり;bは、b= 1− aで表わされる
数値)で表わされるものであることを特徴とする、一般
に非晶質構造を持つ固体化合物である。The solid compounds of the invention according to the above have the general formula, T
n a M , F-bM F2 (here, M represents at least one element selected from the group consisting of Li and Na, Mll represents Cr, Fe, Co, Ni
represents at least one element selected from the group consisting of , Cu, and Zn; a is a numerical value in the range of 0.6 and a<0.999; b is a numerical value expressed by b=1-a ) is a solid compound that generally has an amorphous structure.
本発明の固体化合物は、内在する結晶構造の観点から、
下記の三種類に分類して考えることがで(i) 、 M
F構造。MF2を強制固溶する。1個のMuが2個の
Mを置換することによって生ずる空孔がM1イオンの拡
散係数、すなわちM1イオン導電率を増大する。From the viewpoint of the inherent crystal structure, the solid compound of the present invention has the following characteristics:
It can be classified into the following three types (i), M
F structure. MF2 is forcibly dissolved in solid solution. The vacancies created by replacing two M by one Mu increase the diffusion coefficient of M1 ions, that is, the M1 ion conductivity.
(2)M12MIIF4構造。この化合物は、M1イオ
ン半径によりスピネル構造(イオン半径小なるM’ =
Liの場合、たとえばL12NIF4)またはK 2
N r F4構造(イオン半径大なるM =K、R
b、Csの場合に限られ、M =Naについては該当す
る化合物は存在せず、ペロブスカイト構造K N +
F3とKFの層状構造とみなせる)のいずれかの構造を
とり、いずれの場合も2次元イオン導電体になり得る。(2) M12MIIF4 structure. This compound has a spinel structure (small ionic radius M' =
For Li, for example L12NIF4) or K2
N r F4 structure (large ionic radius M = K, R
b, limited to the case of Cs, no corresponding compound exists for M = Na, and the perovskite structure K N +
(which can be regarded as a layered structure of F3 and KF), and in either case, it can become a two-dimensional ionic conductor.
(3)MMF、り構造。この化合物は、ペロブスカイト
構造(たとえば、Na Fe F3、NaN1F3、N
a Z n F3、イオン半径の小さいM =Liに
ついては該当する化合物は存在せず)をとり、6次元イ
オン導電体になり得る。(3) MMF, structure. This compound has a perovskite structure (e.g., NaFeF3, NaN1F3, N
a Z n F3, no corresponding compound exists for M = Li with a small ionic radius), and can become a six-dimensional ionic conductor.
このように、MlFとMIIF2とのモル比によって内
在する結晶構造は変化するものの、いずれもM1イオン
導電性が大きくなることが期待される。As described above, although the inherent crystal structure changes depending on the molar ratio of MIF and MIIF2, it is expected that the M1 ion conductivity will increase in either case.
以下、試験例によシ、本発明を具体的にさらに詳細に説
明する。Hereinafter, the present invention will be specifically explained in further detail using test examples.
なお、以下の試験例中、試験例1.2においては、本発
明の実施例と共に、対照のだめの、本発明によるもので
ない比較例を併せ記載し、試験例6.4.5、乙におい
ては、本発明による実施例のみを記載した。In addition, in the following test examples, in test example 1.2, a comparative example that is not according to the present invention is described together with an example of the present invention, and in test example 6.4.5, , only examples according to the invention have been described.
試験例 1
Cr、Fe、 Co、 Ni 、 Cu、 Zn の
無水二ふっ化物、およびぶつ化リチウムの中から、処方
に従って、それぞれ秤量、混合、圧粉、焼結(750℃
)、破砕した後、クヌードセンセル型蒸発容器(タンタ
ル製、ただしNiF またはCu F2を含む混合物の
蒸発に際しては白金製とすることが望ましい)に装入し
、おおよそ900℃に加熱して、約500μPaの真空
度において真空蒸着した。このとき、基板としては、下
部電極であるアルミニウム蒸着膜被覆を施したスライド
ガラスを用い、基板温度は室温に保った。Test Example 1 Weighed, mixed, pressed, and sintered (750°C
), then crushed, placed in a Knudsensel type evaporation vessel (made of tantalum, but preferably made of platinum when evaporating a mixture containing NiF or CuF2), heated to approximately 900 ° C. Vacuum deposition was performed at a vacuum degree of about 500 μPa. At this time, the substrate used was a slide glass coated with an aluminum evaporated film serving as the lower electrode, and the substrate temperature was kept at room temperature.
こうして形成した厚さ0.5ミクロンの蒸着膜は無色透
明であり、表面平滑で微細組織を持たず、割れや剥れな
どの欠陥は無かった。The vapor-deposited film thus formed with a thickness of 0.5 microns was colorless and transparent, had a smooth surface, had no fine structure, and had no defects such as cracks or peeling.
これらの薄膜を化学分析したところ、表1の化合物の欄
に示すような組成を持つことが判った。Chemical analysis of these thin films revealed that they had the compositions shown in the compound column of Table 1.
また、これらの薄膜のX線回折の結果は、いずれも非晶
質であった。Moreover, the results of X-ray diffraction of these thin films showed that they were all amorphous.
なお、表1において、化合物の欄の組成をかっこで囲ん
だものは本発明によらぬ比較例のものであり、それ以外
のものは本発明の実施例のものである。In Table 1, the compositions in parentheses in the compound column are those of comparative examples not according to the present invention, and the other compositions are those of examples of the present invention.
次いで、これらの薄膜上に、リチウムとアルミニウムを
逐次蒸着して重ね膜とし、上部電極として用いた。Next, lithium and aluminum were sequentially deposited on these thin films to form a layered film, which was used as an upper electrode.
これらの下部電極と上部電極との間に±2V以内の直流
電圧を印加したところ、正電荷を持つリチウムイオンが
移動するとみなされる時のみ大電流が流れ、その時の導
電率は、それぞれ表1の導電率の欄に示すように求めら
れた。他方、リチウ表 1
ムイオンの移動が起り得ない条件(たとえば、リチウム
イオンがすべて上部電極直下にあり、かつ、上部電極が
負、下部電極が正となるような電界が印加された時)に
おいては、電流は著しく小さく、その時の導電率は作製
した化合物の種類によらず、はぼ、10−10S/m
であった。この導電率は電子伝導によると思われる。When a DC voltage within ±2 V was applied between these lower and upper electrodes, a large current flowed only when positively charged lithium ions were considered to be moving, and the conductivities at that time were as shown in Table 1. It was determined as shown in the electrical conductivity column. On the other hand, under conditions where lithium ions cannot move (for example, when all lithium ions are directly under the upper electrode and an electric field is applied such that the upper electrode is negative and the lower electrode is positive), , the current is extremely small, and the conductivity at that time is approximately 10-10 S/m, regardless of the type of compound prepared.
Met. This electrical conductivity is believed to be due to electronic conduction.
一方、表1に記載した導電率のうち大きい導電率の値は
リチウムイオン伝導によると考えられる。したがって、
これらのうち、Ll:Mnカ99.9:0.1カラ60
=70ノ範囲にある組成を持つ非晶質固体化合物薄膜は
優れたリチウムイオン導電体であると考えられる。On the other hand, among the conductivities listed in Table 1, the large conductivity values are considered to be due to lithium ion conduction. therefore,
Among these, Ll:Mn 99.9: 0.1 60
An amorphous solid compound thin film having a composition in the range of =70 is considered to be an excellent lithium ion conductor.
なお、表1においては、化合物の組成をモル部で表示し
た。In Table 1, the composition of the compounds is expressed in molar parts.
試験例 2
クロム、鉄、コバルト、ニッケル、銅、亜鉛の二ふつ化
物、およびぶつ化ナトリウムの中から、処方に従って、
それぞれ秤量、混合、圧粉、焼結、破砕し、試験例1と
同様の方法で約0.5ミクロン厚の無色透明かつ非晶質
構造の薄膜を作製した。Test Example 2 Select from chromium, iron, cobalt, nickel, copper, zinc difluoride, and sodium fluoride according to the prescription.
Each was weighed, mixed, pressed, sintered, and crushed, and a colorless, transparent, amorphous thin film with a thickness of about 0.5 microns was produced in the same manner as in Test Example 1.
これらについて、化学分析を行い、かつ試験例1と同様
の方法で(ただし、金属リチウムの代シに金属ナトリウ
ムを蒸着)、ナトリウムイオンの導電率を測定した。そ
の他、同時に、あらかじめスライドガラス(アルミニウ
ム蒸着被膜を施していない)上に形成した約0.5ミク
ロン厚の該ふつ化物薄膜」二に平面対向くし形電極(ク
ロム金重ね膜より成る)を設け、20ヘルツ〜500キ
ロヘルツの交流を印加しつつインピーダンスを測定する
方法によって該薄膜の交流導電率を測定した。両者の測
定値は±30%の範囲で一致しておシ、その値を、上記
の化学分析の結果と共に表2に示した。These were subjected to chemical analysis, and the conductivity of sodium ions was measured in the same manner as in Test Example 1 (however, metallic sodium was evaporated in place of metallic lithium). In addition, at the same time, a comb-shaped electrode (made of a chromium-gold layered film) facing the plane was provided on the fluoride thin film with a thickness of about 0.5 microns, which had been previously formed on a slide glass (not coated with an aluminum vapor-deposited film). The AC conductivity of the thin film was measured by a method of measuring impedance while applying an AC of 20 Hz to 500 kHz. Both measured values agreed within a range of ±30%, and the values are shown in Table 2 together with the results of the above chemical analysis.
なお、表2において、化合物の欄の組成をかっこで囲ん
だものは本発明によらぬ比較例のものであり、それ以外
のものは本発明の実施例のものである。In Table 2, the compositions in parentheses in the compound column are those of comparative examples not according to the present invention, and the other compositions are those of examples of the present invention.
以下余白
表 2
化 合 物 導電率(S/m)(1[]Q
NaF ) 1/1O−1199NaF
1CrF2 2/ 10 ”6ONaF 4
0CrF2 1 / 10−495NaF 5
FeF24/ 1O−567NaF 33FeF2
8/ 1O−549NaF 51COF2
6/ 10 ”99.13NaF 092NiF
7 / 10 ”61NaF 39NIF2
8/ 1O−55QNaF 5QNiF
1/ 10−4(15NaF 85NI F2 )
4 / 1O−866NaF 34CuF2
1/ 10 ’93NaF 2ZnF2
6/ 10 ’試験例 3
この試験例は、本発明によるものの実施例である。Margin table below 2 Compound Electrical conductivity (S/m) (1[]Q
NaF) 1/1O-1199NaF
1CrF2 2/ 10”6ONaF 4
0CrF2 1/10-495NaF5
FeF24/ 1O-567NaF 33FeF2
8/ 1O-549NaF 51COF2
6/ 10 ”99.13NaF 092NiF
7/10”61NaF 39NIF2
8/ 1O-55QNaF 5QNiF
1/10-4 (15NaF 85NI F2)
4/1O-866NaF 34CuF2
1/10 '93NaF 2ZnF2
6/10' Test Example 3 This test example is an example according to the present invention.
クロム、鉄、コバルト、ニッケル、銅、亜鉛の二ふつ化
物、ぶつ化リチウムおよびぶつ化ナトリウムの中から選
択された試料を用い、試験例1と同様の方法で前処理後
、同じく試験例1と同様の方法で約0.5ミクロン厚の
同様の蒸着膜を作製した。これらについて化学分析を行
い、かつ上記の試験例2におけると同様の方法で交流導
電率を測定した。その結果、表6に示す値を得た。Using a sample selected from chromium, iron, cobalt, nickel, copper, zinc difluoride, lithium butoxide, and sodium butoxide, the sample was pretreated in the same manner as in Test Example 1, and then treated in the same manner as in Test Example 1. A similar deposited film with a thickness of about 0.5 microns was prepared in a similar manner. These were subjected to chemical analysis, and the AC conductivity was measured in the same manner as in Test Example 2 above. As a result, the values shown in Table 6 were obtained.
表 6
化 合 物 導電率(87m)41LiF1
7NaF42CrF28/1O−536LiF16Na
F48FeF26/10520LiF16NaF64C
oF24/1o−5iQLiF4QNaF5ONiF2
1/1O−415LiF2QNaF65CuF+ 5
/1O−460Li F 35NaF 5ZnF28/
1(:J 4試験例 4
この試験例は、本発明によるものの実施例である。Table 6 Compound Conductivity (87m) 41LiF1
7NaF42CrF28/1O-536LiF16Na
F48FeF26/10520LiF16NaF64C
oF24/1o-5iQLiF4QNaF5ONiF2
1/1O-415LiF2QNaF65CuF+ 5
/1O-460Li F 35NaF 5ZnF28/
1(:J 4 Test Example 4 This test example is an example according to the present invention.
上記の試験例6と同様な方法で、同様な三元化合物の薄
膜を作製し、それらについて試験を行い、表4に示す結
果を得た。Thin films of similar ternary compounds were prepared in the same manner as in Test Example 6 above, and tests were conducted on them to obtain the results shown in Table 4.
表4に示す三元化合物はいずれも高いイオン導電率を示
しだ。All of the ternary compounds shown in Table 4 exhibit high ionic conductivity.
化 合 物 導電率(87m)50Li
F 25CrF225FeF2 1 / 1O−
447L+F 26CrF224COF2 8/
10−548LtF 2QCrF2ろ2NiF2
3/10−451LiF 29CrF220CL
IF2 1 / 10 ’51LiF 33Cr
F216ZnF2 9/ 10−551 LiF
26FeF223CoF27 / 10530LiF
40FeF23QNiF28/ 1Q 552LIF
20FeF228NIF2 2/ 1Q−45
0LIF 23FeF222COF26/1O−449
I、+F 41 FeF210ZnF2 1 /
10〜485LiF 5CoF21ONiF2
3/ 10 ’9[]LiF 6CoF 4CuF
2 7 / 1Q−591LiF 4CoF
25ZnF2 8/ 10 ”95LiF 2
NiF23CuF2 1 / 1O−491
LiF7NiF 2ZnF 2/104
2
97LiF 1cuF 2ZnF2 7/
10 ”’試験例 5
この試験例は、本発明によるものの実施例である。Compound Conductivity (87m) 50Li
F25CrF225FeF2 1/1O-
447L+F 26CrF224COF2 8/
10-548LtF 2QCrF2 2NiF2
3/10-451LiF 29CrF220CL
IF2 1/10 '51LiF 33Cr
F216ZnF2 9/ 10-551 LiF
26FeF223CoF27/10530LiF
40FeF23QNiF28/ 1Q 552LIF
20FeF228NIF2 2/ 1Q-45
0LIF 23FeF222COF26/1O-449
I, +F 41 FeF210ZnF2 1 /
10~485LiF 5CoF21ONiF2
3/ 10 '9[]LiF 6CoF 4CuF
2 7 / 1Q-591LiF 4CoF
25ZnF2 8/10”95LiF2
NiF23CuF2 1/1O-491
LiF7NiF 2ZnF 2/104
2 97LiF 1cuF 2ZnF2 7/
10''Test Example 5 This test example is an example according to the present invention.
上記の試験例6と同様な方法で、同様な四元以上の化合
物の薄膜を作製し、それらについて試験を行い表5に示
す結果を得た。In the same manner as in Test Example 6 above, thin films of similar quaternary or higher compounds were prepared and tested, and the results shown in Table 5 were obtained.
゛表5に示す四元以上の化合物はいずれも高いイオン導
電率を示しだ。All of the quaternary or higher compounds shown in Table 5 exhibit high ionic conductivity.
表 5
化 合 物 導電率(87m)51
LiF 15CrF25FeF229NiF2 4/
1O−470LiF 13CrF21CoF216C
uF2 2/ 10 ’8[]L+F 5FeF21
3NIF22ZnF2 4/ 10 ’95LiF
lN1F 2CuF 2ZnF 2/1
042 2 2
71]Lip 15crF21[lNiF23CuF2
2ZnF24 / 1Q−4試験例 に
の試験例は、本発明によるものの実施例である。Table 5 Compound conductivity (87m)51
LiF 15CrF25FeF229NiF2 4/
1O-470LiF 13CrF21CoF216C
uF2 2/ 10 '8[]L+F 5FeF21
3NIF22ZnF2 4/ 10 '95LiF
lN1F 2CuF 2ZnF 2/1
042 2 2 71] Lip 15crF21[lNiF23CuF2
2ZnF24/1Q-4 Test Example The test example in 2ZnF24/1Q-4 test example is an example according to the present invention.
上記の試験例6と同様な方法で、同様な四元以上の化合
物の薄膜を作製し、それらについての試験を行い、表6
に示す結果が得られた。Using the same method as in Test Example 6 above, thin films of similar quaternary or higher compounds were prepared and tested. Table 6
The results shown are obtained.
表6に示す四元以上の化合物はいずれも高いイオン導電
率を示した。All of the quaternary or higher compounds shown in Table 6 showed high ionic conductivity.
表 6
化 合 物 導電率(8/m)7Q
NaF 15CrF21ONiF25ZnF2 1
/ 1O−440LiF 18NaF 5FeF237
NiF’23/ 10 ’70LiF21NaF3Cr
F24NiF22CuF23/10’上記の試験例にお
ける本発明の実施例、特に比較例との対照から分かるよ
うに、本発明の効果は極めて顕著である。Table 6 Compound conductivity (8/m) 7Q
NaF 15CrF21ONiF25ZnF2 1
/ 1O-440LiF 18NaF 5FeF237
NiF'23/ 10'70LiF21NaF3Cr
F24NiF22CuF23/10' As can be seen from the comparison with the examples of the present invention in the above test examples, especially the comparative examples, the effects of the present invention are extremely remarkable.
以上のように、本発明による、ぶつ化リチウムぶつ化ナ
トリウムまたはこれらの混晶に適当な二価遷移金属ぶつ
化物を混晶させた組成を持つ固体化合物から成る非晶質
薄膜がおおよそ10 S/m以上の大きいカチオン導
電率を室温で示すので、これらをエレクトロクロミック
表示素子に応用でき、産業上の利益は太きい。しかも、
本発明によれば、二価遷移金属ぶつ化物の混晶量が0.
1モルチから70モル係の広い範囲にわたって上述の優
れた特性が得られるので、薄膜組成の厳密な管理が不要
となり、素子の作製コストを低減できる効果がある。As described above, the amorphous thin film according to the present invention made of a solid compound having a composition of lithium sodium butoxide or a mixed crystal thereof mixed with a suitable divalent transition metal atomide has a crystallinity of about 10 S/ Since they exhibit a large cationic conductivity of m or more at room temperature, they can be applied to electrochromic display elements, and have great industrial benefits. Moreover,
According to the present invention, the amount of mixed crystals of divalent transition metal fragments is 0.
Since the above-mentioned excellent characteristics can be obtained over a wide range from 1 mol to 70 mol, strict control of the thin film composition is no longer necessary, which has the effect of reducing device manufacturing costs.
Claims (1)
れた少なくとも一種の元素を表わし、Mは、Cr、 F
e、 Co、 Ni、C’u、Zn から成る群から
選ばれた少なくとも一種の元素を表わし、aは、0.3
〈a、、(0,999の範囲の数値であり、bは、b=
1−aで表わされる数値である)そ表わされる化合物
より成ることを特徴とする固体化合物。[Claims] General formula: aM1F-bMIIF2, (where Ml represents at least one element selected from the group consisting of Ll and Na, and M represents Cr, F
represents at least one element selected from the group consisting of e, Co, Ni, C'u, and Zn, and a is 0.3
<a,, (is a numerical value in the range of 0,999, b is b=
A solid compound characterized by being composed of a compound represented by (the numerical value represented by 1-a).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14922882A JPS5939720A (en) | 1982-08-30 | 1982-08-30 | Solid compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14922882A JPS5939720A (en) | 1982-08-30 | 1982-08-30 | Solid compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5939720A true JPS5939720A (en) | 1984-03-05 |
Family
ID=15470663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14922882A Pending JPS5939720A (en) | 1982-08-30 | 1982-08-30 | Solid compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939720A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3979369A4 (en) * | 2019-05-30 | 2022-08-03 | Panasonic Intellectual Property Management Co., Ltd. | Active material for fluoride ion secondary batteries, and fluoride ion secondary battery using same |
-
1982
- 1982-08-30 JP JP14922882A patent/JPS5939720A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3979369A4 (en) * | 2019-05-30 | 2022-08-03 | Panasonic Intellectual Property Management Co., Ltd. | Active material for fluoride ion secondary batteries, and fluoride ion secondary battery using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2702080C2 (en) | New lithium orthosilicate compounds and their use as a solid electrolyte | |
US4513070A (en) | Vitreous materials with ionic conductivity, the preparation of same and the electrochemical applications thereof | |
US10044061B2 (en) | Methods for growth of lithium-rich antiperovskite electrolyte films and use thereof | |
US5217826A (en) | Lithium-ion conducting solid electrolyte | |
EP1217682A2 (en) | Method of forming thin film of inorganic solid electrolyte | |
EP0039220B1 (en) | Amorphous lithium fluoaluminate, a solid electrolyte comprising the same and devices including the same | |
JPH05306117A (en) | Amorphous lithium ion conductive solid electrolyte and its synthesizing method | |
US20220131183A1 (en) | Sulfide solid electrolyte | |
JP2019131458A (en) | Glass ceramic having ion conductive residual glass phase and manufacturing method therefor | |
CN115117433A (en) | Solid electrolyte, electrode mixture, solid electrolyte layer, and all-solid-state battery | |
US4714798A (en) | Titanium nitride electrodes for thermoelectric generators | |
KR880001421B1 (en) | Lithium oxide based amorphous material and process for preparation thereof | |
EP0104936B1 (en) | Lithium oxide-based amorphous ionic conductor | |
JPS5939720A (en) | Solid compound | |
US4223077A (en) | Na+ -conducting glass, glass-ceramic and crystalline cubic composition | |
Tozri et al. | Structure and related physical properties of Li2O-Sb2O3-B2O3 glasses | |
US7351502B2 (en) | Solid inorganic glassy electrolyte and method of production thereof | |
JPH04160011A (en) | Conductive solid electrolyte | |
JPS58202428A (en) | Lithium-ionic conductor of lif-base mixed crystal | |
JPS60100301A (en) | Lithium ion conductor | |
JPS58172234A (en) | Thin film of amorphous lithium tantalate-lithium niobate and its preparation | |
US4181579A (en) | Sodium ion conducting sodium aluminum phosphate glasses | |
JP3098212B2 (en) | Lithium ion conductive glass ceramics and batteries and gas sensors using the same | |
JPS62139266A (en) | Polymer solid electrolyte | |
JPS63105962A (en) | Manufacture of thin film of solid electrolyte |