JPS5939703A - Manufacture of hydrogen fluoride - Google Patents

Manufacture of hydrogen fluoride

Info

Publication number
JPS5939703A
JPS5939703A JP14782882A JP14782882A JPS5939703A JP S5939703 A JPS5939703 A JP S5939703A JP 14782882 A JP14782882 A JP 14782882A JP 14782882 A JP14782882 A JP 14782882A JP S5939703 A JPS5939703 A JP S5939703A
Authority
JP
Japan
Prior art keywords
hydrogen fluoride
producing hydrogen
reaction
sulfuric acid
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14782882A
Other languages
Japanese (ja)
Other versions
JPH0255361B2 (en
Inventor
Keiichi Nakaya
圭一 中矢
Tomohiro Goto
知弘 後藤
Masayuki Kitasako
北迫 雅行
Masaharu Iwasaki
岩崎 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP14782882A priority Critical patent/JPS5939703A/en
Priority to DE8383105557T priority patent/DE3372854D1/en
Priority to US06/501,119 priority patent/US4491571A/en
Priority to EP83105557A priority patent/EP0096817B1/en
Priority to CA000430186A priority patent/CA1191017A/en
Publication of JPS5939703A publication Critical patent/JPS5939703A/en
Publication of JPH0255361B2 publication Critical patent/JPH0255361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To manufacture HF by the reaction of fluorite with SO3, steam and sulfuric acid while almost preventing the corrosion of an agitating blade even when the blade is made of steel by forming a scale film on the surface of the blade using starting materials for the reaction and/or a reaction product. CONSTITUTION:When HF is manufactured by reacting fluorite with SO3, steam and sulfuric acid, a scale film is formed on the surface of an agitating blade using starting materials for the reaction and/or a reaction product. In order to accelerate the mixing of the surface of a powder layer with the inside, the level of the fluidized powder layer is usually kept below the upper ends of an agitating blade. In this case, a scale film is not maintained, and the apparatus undergoes remarkable corrosion and wear. By holding the blade in the powder layer in a state in which the layer is well agitated, the starting materials are well mixed, a scale film is formed on the whole blade, and corrosion proceeds hardly even when the blade is made of steel.

Description

【発明の詳細な説明】 本発明は弗化水素製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing hydrogen fluoride.

従来工業的に採用されている弗化水素製造方法は、特公
昭49−86361号にみられるように、螢石と硫酸全
コニーダーと称されるプレリアクターで一挙に混合し、
ペースト状或はスラリー状で主に、原料顕熱にて反応熱
を供給しながら混合した後、外熱式回転炉で反応奮進め
る方法や、特公昭42−652号にみられるように流動
層においてSO3,H2O、H,、SO4の存在下で、
主にSO3とH2Oの反応で熱金供給し、反応を完結さ
せる方法等が知られている。前者の場合はペースト状反
応物を取扱うこと、後者の場合は高温であるために画法
共に材質的な問題が多く、工業的にはハステロイやカー
ベンター等の非常に高価な材料を用いねばならない欠点
がある。又プロセス上画法には多くの欠点があシ、これ
らの解決について、本発明者等は検討を重ね、特願昭5
7−99130号として出願をしているが、螢石と80
3. H,O,H2SO4の反応における装置、材料上
の問題は、工業的に実施する上で重要な問題であり、本
発明者等は、この問題を解決すべく、試験研究を行った
結果、反応装置内防蝕のために、反応条件を調節し、装
置表面に、生成物による被膜を形成せしめることにより
、生成物被膜が維持されている限シ、温度範囲140〜
240℃の間では駕くべきことに、鋼鉄でも剛蝕性が示
されること全発見したもので、本発明は螢石と無水硫酸
、水蒸気及び硫酸との反応によシ弗化水素を製造する方
法において、反応器内の攪拌器に上記反応原料及゛び/
又は反応生成物よりなる被膜を設けて上記反応原料を反
応せしめることを特徴とする弗化水素の製造方法ヲ喪旨
とするものである。
The conventional method for producing hydrogen fluoride, which has been adopted industrially, is to mix fluorite and sulfuric acid all at once in a prereactor called a sulfuric acid all-co-kneader, as shown in Japanese Patent Publication No. 86361/1983.
Mainly, paste or slurry is mixed while supplying reaction heat using sensible heat of the raw materials, and then the reaction is accelerated in an external heating rotary furnace, or fluidized bed as shown in Japanese Patent Publication No. 42-652. In the presence of SO3, H2O, H,, SO4,
A known method is mainly to supply hot gold through the reaction of SO3 and H2O to complete the reaction. In the former case, a paste-like reactant is handled, and in the latter case, there are many problems with the painting method and the material due to the high temperature, and industrially, very expensive materials such as Hastelloy and Carventer must be used. There is. In addition, there are many drawbacks to the drawing method due to the process, and the inventors of the present invention have repeatedly studied how to solve these problems, and filed a patent application in 1973.
Although the application has been filed as No. 7-99130, fluorite and 80
3. Problems related to equipment and materials in the reaction of H, O, H2SO4 are important problems in industrial implementation, and the present inventors conducted test research to solve this problem, and as a result, the reaction In order to prevent corrosion inside the device, the reaction conditions are adjusted to form a film of the product on the surface of the device.As long as the product film is maintained, the temperature range is 140~
It was discovered that even steel exhibits corrosion resistance at temperatures of 240°C.The present invention produces hydrogen silica fluoride by the reaction of fluorite with anhydrous sulfuric acid, water vapor, and sulfuric acid. In the method, the above reaction raw materials and/or are placed in a stirrer in a reactor.
Alternatively, a method for producing hydrogen fluoride characterized by reacting the above-mentioned reaction raw materials with a coating formed of a reaction product is excluded.

即ち本発明は、螢石r SOs v H2O1H2SO
4の反応において、それぞれの供給比率を調節すること
によって反応器内温度が140〜240℃、好ましくは
160〜240℃、更に好ましくは160〜200℃に
て反応を進める際に、反応器形式としては、全体容積に
比し、粉体層表面が犬色く、又、表面粉体の内部との攪
拌が充分に行われるような形式が好ましく、容量固定型
の複軸パドル混合材等が適尚である。しかしながら、こ
の反応器内雰囲気は弗酸、硫酸、803等が存在した高
温度雰囲気にある上に、粉体との摩擦による摩耗との相
乗効果から、工業的に使用可能な耐蝕材料は殆んど見当
らない。本発明者等は、数多くの実験金型ねた結果、装
置材料表面に反応原料及び/又は反応生成物によってス
ケール膜を形成させることによシ、実質的に装置材料の
腐蝕を抑制し得ることを見出した。
That is, the present invention provides fluorite r SOs v H2O1H2SO
In reaction 4, when the reaction is carried out at a temperature within the reactor of 140 to 240°C, preferably 160 to 240°C, more preferably 160 to 200°C, by adjusting the respective supply ratios, the reactor type can be adjusted. It is preferable that the surface of the powder layer is brown compared to the total volume, and that the surface powder is sufficiently stirred with the inside of the powder, and a fixed capacity type multi-shaft paddle mixing material is suitable. It is Nao. However, the atmosphere inside this reactor is a high-temperature atmosphere containing hydrofluoric acid, sulfuric acid, 803, etc., and due to the synergistic effect of wear due to friction with powder, there are almost no corrosion-resistant materials that can be used industrially. I can't find it. As a result of numerous experimental mold experiments, the present inventors have found that corrosion of the device material can be substantially suppressed by forming a scale film on the surface of the device material by reaction raw materials and/or reaction products. I found out.

この理由は明らかでないが、このような温度範囲におい
ては、スケール膜の内側である装置材料表面は、腐蝕性
雰囲気から隔離されると共に粉体との摩擦による摩耗が
なくなる等両面から腐蝕が抑制されるものと想像できる
。しかしながら、このような表面膜全回転する回転羽根
に常に形成するためには特別な条件が好ましい事を見出
した。
The reason for this is not clear, but in this temperature range, the surface of the equipment material inside the scale film is isolated from the corrosive atmosphere, and corrosion is suppressed from both aspects, such as eliminating wear due to friction with powder. I can imagine that. However, it has been found that special conditions are preferable in order to always form such a surface film on a rotating blade that rotates completely.

即ち、通常粉体層表面が、内部との混合による更新を促
進するためには、攪拌羽根の影響を充分に表面層に及ぼ
すために、流動、粉体層レベルはむしろ攪拌羽根の上端
よシ低く保つ場合が多いが、このような状態にて反応を
進めた場合は、明確な理由は判らないが、スケール膜は
維持できないことが判明した。その結果、装置の腐蝕、
摩耗は著しく、工業装置として使用することは困難であ
ることが判った。しかしながら粉体層レベルを材料表面
に生成物スケールが生成するような条件に改め、粉体層
が充分攪拌される状態にて攪拌羽根が常に粉体流動層内
にあるよう改めた場合、反応原料の混合が充分に行われ
ることは勿論、攪拌羽根全体にスケール膜が形成され、
先に述べた雰囲気では常識的には考えられない鋼鉄を材
料に用いても殆んど腐蝕の進行がみられないという驚く
べき結果が得られることを見出した。又、このような状
態において危惧された粉体層表面での硫酸と蛍石混合不
良による団塊の生成は攪拌羽根上部先端から粉体層レベ
ルの深さが羽根先端回転直径の約1〜30%、好ましく
は2〜20%、更に好ましくは2〜10%に保つことに
より生ずることなく、又、羽根の保護スケールは充分に
生成することを見出した。又、硫酸の供給速度は局部的
に添加した場合、螢石との混合が充分でなくなる上に、
羽根面保護膜に対しでも悪い影*’r及ぼすことから5
00〜5000 h/rr?kb 、好ましくは700
〜3000 #/−翫に行うのがよいことが判った。ま
た、この際、硫酸と羽根の直接接触を防ぐことが好まし
く、これは羽根に保護被膜を形成することによシ達成さ
れる〇又、硫酸と螢石との混合を可及蒔速に行い、かつ
、又羽根スケールの維持が行える攪拌羽根の速度として
は羽根先端部周速において20〜150 m/閣、好ま
しくは40〜100 m/酊、更に好ましくは50〜8
om7m−がよく、これよりも速い場合は攪拌羽根先端
の摩耗が早くなシ、又遅過ぎると充分な攪拌が行なはれ
なくなる。又、攪拌羽根同志、或はケース等で羽根の回
転に際し、保護膜を剥離する程接近することは避けなけ
ればならない。実験の結果、回転羽根と他の物体との鍛
接近時距離は3wR以上、好ましくは5g以上とするの
がよいことがわかった。
In other words, in order to promote the renewal of the surface of the powder bed through mixing with the inside, the flow and powder layer level should be moved closer to the upper end of the stirring blade in order to sufficiently exert the influence of the stirring blade on the surface layer. Although it is often kept at a low level, it has been found that if the reaction is allowed to proceed under such conditions, the scale film cannot be maintained, although the exact reason is unknown. As a result, equipment corrosion,
It was found that the wear was so severe that it was difficult to use it as an industrial device. However, if the powder bed level is changed to a condition where product scale is generated on the material surface, and if the stirring blade is always kept in the powder fluidized bed while the powder bed is sufficiently stirred, the reaction raw material Of course, sufficient mixing is performed, and a scale film is formed on the entire stirring blade
We have found that in the above-mentioned atmosphere, even when we use steel as a material, which is unconceivable in common sense, we can obtain the surprising result that almost no progress of corrosion is observed. In addition, under such conditions, the formation of nodules due to poor mixing of sulfuric acid and fluorite on the surface of the powder bed may occur if the depth from the top tip of the stirring blade to the level of the powder layer is approximately 1 to 30% of the rotating diameter of the blade tip. It has been found that by keeping the content preferably between 2 and 20%, more preferably between 2 and 10%, this does not occur and a protective scale on the blades is sufficiently formed. In addition, if the sulfuric acid is added locally, mixing with fluorite will not be sufficient, and
5. It also has a negative impact on the blade surface protection film.
00~5000 h/rr? kb, preferably 700
It turns out that it is better to do this at ~3000 #/-. In addition, at this time, it is preferable to prevent direct contact between the sulfuric acid and the blades, which can be achieved by forming a protective film on the blades. Also, mix the sulfuric acid and fluorite as quickly as possible. , and the speed of the stirring blade that can maintain the blade scale is 20 to 150 m/kilometer, preferably 40 to 100 m/kaku, more preferably 50 to 8 m/cm per circumferential speed at the tip of the blade.
om7m- is good; if it is faster than this, the tip of the stirring blade will wear out quickly, and if it is too slow, sufficient stirring will not be achieved. Further, when rotating the stirring blades or the case, etc., it is necessary to avoid the stirring blades coming close to each other to the extent that the protective film may be peeled off. As a result of experiments, it was found that the distance between the rotating blade and another object when approaching the forging should be 3wR or more, preferably 5g or more.

SO3とH20ガスは常識的には粉体贋金通過させるよ
うに、例えば流動層底部に供給する方法が考えられるが
、このような場合、ノズルの閉塞等問題が多い。本発明
者等は、種々実験の結果、空間にSO3、H,Oガスを
2流体ノズル、好ましくは同心ノズルにて供給すること
で目的とする反応器内温度を全体的に保持し、制御でき
ることを知った。S03、H20ガスの供給位置として
は、螢石の投入側から、固体見掛滞留時間が0〜15分
の領域空間に、又硫酸及び又は発煙硫酸の供給位置とし
ては同様3〜20分の領域空間が適当であること金知っ
た。
Common sense suggests that the SO3 and H20 gases be supplied to the bottom of the fluidized bed, for example, so as to pass through the powder, but in such a case, there are many problems such as nozzle clogging. As a result of various experiments, the present inventors have found that by supplying SO3, H, and O gases into the space using a two-fluid nozzle, preferably a concentric nozzle, the target temperature inside the reactor can be maintained and controlled as a whole. I learned. The S03, H20 gas supply position is from the fluorite input side to a space with an apparent solid residence time of 0 to 15 minutes, and the supply position of sulfuric acid and/or fuming sulfuric acid is a similar region of 3 to 20 minutes. Kim knew that the space was adequate.

発生する弗酸ガスの取出しのため、上部空間でのガス流
速は3m/8以下、好ましくは2m/S以下が適当であ
り、それ以上になると同伴粉塵量が増し、精製工程で操
作に支障をきたす。
In order to take out the generated hydrofluoric acid gas, the gas flow velocity in the upper space is suitably 3 m/8 or less, preferably 2 m/S or less; if it exceeds this, the amount of entrained dust will increase, which will hinder operations in the purification process. Come.

以下に実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.

実施例1 複式パドル攪拌器を備えた内容積1o l (巾19、
5 cm1長さ50α)の試験反応容器の一端から蛍石
粉末’i42に/−/ybの割合で投入し、蛍石供給端
から9crr1の位置で無水硫酸を7.2 h/In1
また9crnの位置で水蒸気’(r 2.3 k/−k
b、また、17、5 clnの位置で6%発煙硫酸@ 
40 #/&で供給し、複式パドル攪拌器の羽根の上端
が原料粉体層の3IM下になるようにした。羽根の回転
速度ld、 180 rpmで、この時の羽根の周速は
60m/7であった。原料の上記割合での供給により、
反応器内温度は170〜180℃に維持された。
Example 1 Internal volume 1 ol (width 19,
Fluorite powder 'i42 was charged at a rate of /-/yb from one end of a test reaction vessel with a length of 5 cm1 (50α), and sulfuric anhydride was added at a rate of 7.2 h/In1 at a position 9 crr1 from the fluorite supply end.
Also, water vapor'(r 2.3 k/-k
b. Also, 6% oleum at the 17,5 cln position
40 #/& so that the upper end of the blade of the double paddle stirrer was 3 IM below the raw material powder layer. The rotation speed ld of the blade was 180 rpm, and the circumferential speed of the blade at this time was 60 m/7. By supplying raw materials at the above ratio,
The temperature inside the reactor was maintained at 170-180°C.

発生した弗化水素ガスの粉体層上部における空間の速度
は1.8 m / see であった。
The velocity of the generated hydrogen fluoride gas in space above the powder bed was 1.8 m/see.

また、無水硫酸及び水蒸気の添加は原料の反応容器内に
おける滞溜時間が5分の所であり、また硫酸の添加は、
原料の反応容器内における滞溜時間が10分の所であっ
た。
In addition, the addition of sulfuric anhydride and steam was performed when the residence time of the raw materials in the reaction vessel was 5 minutes, and the addition of sulfuric acid was
The residence time of the raw material in the reaction vessel was 10 minutes.

以上によシ弗化水素の製造実験全790時間続けた所、
反応容器及び攪拌器す拐質が鋼鉄であったにもかかわら
ず、殆んど腐食がみられなかった。
The above hydrogen fluoride production experiment continued for a total of 790 hours.
Although the reaction vessel and agitator were made of steel, almost no corrosion was observed.

比較例 生成粉体取シ出しレベルを下げ、攪拌器の羽根頂部が粉
体層の上部1.5 cmにあるようにしたこと以外は実
施例1と全く同様に実験した。羽根の表面の保護被膜は
形成されず、16時間の運転実験の結果、鋼鉄製羽根は
腐れ及び腐蝕のため約6 ran羽根長さが減じていた
Comparative Example An experiment was carried out in exactly the same manner as in Example 1, except that the level of powder removal was lowered and the top of the stirrer blade was placed 1.5 cm above the powder layer. No protective coating was formed on the blade surface, and after 16 hours of operation, the steel blade had lost approximately 6 ran of blade length due to rot and corrosion.

Claims (1)

【特許請求の範囲】 (1)  螢石と無水硫酸、水蒸気及び硫酸との反応に
よシ弗化水素を製造する方法において、反応器内の攪拌
器に上記反応原料及び/又は反応生成物よシなる被膜を
設けて上記反応原料を反応せしめることを特徴とする弗
化水素の製造方法。 (2)攪拌器は反応原料及び/又は反応生成物に埋設さ
れてなる特許請求の範囲第(1)項の弗化水素の製造方
法。 (3)攪拌器は硫酸と直接接触しない特許請求の範囲第
(1)項又は第(2)項の弗化水素の製造方法。 (4)反応器は一端から螢石が供給され、他端から反応
生成物が取シ出されるものである特許請求の範囲第(1
)〜(3)項いずれかの弗化水素の゛製造方法。 (5)攪拌器がその周囲3酎以上を粉体層によって囲ま
れてなる特許請求の範囲第(1)〜(4)項いずれかの
弗化水素の製造方法。 (6)攪拌器が複式パドル型攪拌器である特許請求の範
囲第(1)項の弗化水素の製造方法。 (7)複式パドル攪拌器が、その羽根周速が20〜15
0 m/m1ttである特許請求の範囲第(6)項の弗
化水素の製造方法。 (8)無水硫酸が発煙硫酸から供給される特許請求の範
囲第(0項の弗化水素の製造方法。 (9)無水硫酸、水蒸気が螢石供給端から反応原料の滞
溜時間0〜15分の範囲で供給される特許請求の範囲第
(4)項の弗化水素の製造方法。 (珂硫酸及び/又は発煙硫酸が螢石供給端から反応原料
の滞溜時間3〜20分の範囲で供給される特許請求の範
囲第(4)項又は第(8)項の弗化水素の製造方法。 (1υ無水硫酸、水蒸気が二流体ノズルで供給される特
許請求の範囲第(1)項の弗化水素の製造方法。 (12)反応器内の上部空間を移動する反応生成ガスの
移動速度が3m/っ以下である特許請求の範囲第(1)
項の弗化水素の製造方法。 (13)反応原料及び/又は反応生成物によって形成さ
れる表面への硫酸及び/又は発煙硫酸の供給速度が50
0〜5000Ay/、?丸である特許請求の範囲第(1
)項又は第(8)項の弗化水素の製造方法。 (14)無水硫酸、水蒸気及び硫酸が、反応器内温度が
140〜240℃を維持するように供給される特許請求
の範囲第(1)項の弗化水素の製造方法。
[Claims] (1) In a method for producing hydrogen silica fluoride by reacting fluorite with sulfuric anhydride, steam, and sulfuric acid, a stirrer in a reactor is charged with the reaction raw materials and/or reaction products. 1. A method for producing hydrogen fluoride, which comprises reacting the above-mentioned reaction raw materials with a coating formed thereon. (2) The method for producing hydrogen fluoride according to claim (1), wherein the stirrer is embedded in the reaction raw material and/or the reaction product. (3) The method for producing hydrogen fluoride according to claim (1) or (2), in which the stirrer does not come into direct contact with sulfuric acid. (4) The reactor is one in which fluorite is supplied from one end and the reaction product is taken out from the other end.
) to (3), the method for producing hydrogen fluoride. (5) The method for producing hydrogen fluoride according to any one of claims (1) to (4), wherein the stirrer is surrounded by three or more layers of powder. (6) The method for producing hydrogen fluoride according to claim (1), wherein the stirrer is a double paddle type stirrer. (7) The double paddle agitator has a blade circumferential speed of 20 to 15
0 m/mltt, the method for producing hydrogen fluoride according to claim (6). (8) The method for producing hydrogen fluoride according to claim 0, in which sulfuric anhydride is supplied from oleum. (9) Sulfuric anhydride and water vapor are supplied from the fluorite feed end for a residence time of 0 to 15 minutes for the reaction raw materials. The method for producing hydrogen fluoride according to claim (4), in which silica and/or oleum is supplied from the fluorite feed end for a residence time of 3 to 20 minutes as a reaction raw material. A method for producing hydrogen fluoride according to claim (4) or (8), in which 1υ sulfuric acid anhydride and water vapor are supplied through a two-fluid nozzle. A method for producing hydrogen fluoride. (12) Claim No. 1, wherein the movement speed of the reaction product gas moving in the upper space in the reactor is 3 m/m or less.
2. Method for producing hydrogen fluoride. (13) The supply rate of sulfuric acid and/or fuming sulfuric acid to the surface formed by the reaction raw materials and/or reaction products is 50%
0~5000Ay/? Claim No. 1 (1), which is a circle
) or (8), the method for producing hydrogen fluoride. (14) The method for producing hydrogen fluoride according to claim (1), wherein sulfuric anhydride, steam, and sulfuric acid are supplied so that the temperature inside the reactor is maintained at 140 to 240°C.
JP14782882A 1982-06-11 1982-08-27 Manufacture of hydrogen fluoride Granted JPS5939703A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14782882A JPS5939703A (en) 1982-08-27 1982-08-27 Manufacture of hydrogen fluoride
DE8383105557T DE3372854D1 (en) 1982-06-11 1983-06-06 Process for producing hydrogen fluoride
US06/501,119 US4491571A (en) 1982-06-11 1983-06-06 Process for producing hydrogen fluoride
EP83105557A EP0096817B1 (en) 1982-06-11 1983-06-06 Process for producing hydrogen fluoride
CA000430186A CA1191017A (en) 1982-06-11 1983-06-10 Process for producing hydrogen fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14782882A JPS5939703A (en) 1982-08-27 1982-08-27 Manufacture of hydrogen fluoride

Publications (2)

Publication Number Publication Date
JPS5939703A true JPS5939703A (en) 1984-03-05
JPH0255361B2 JPH0255361B2 (en) 1990-11-27

Family

ID=15439151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14782882A Granted JPS5939703A (en) 1982-06-11 1982-08-27 Manufacture of hydrogen fluoride

Country Status (1)

Country Link
JP (1) JPS5939703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004348A1 (en) * 2000-07-10 2002-01-17 Daikin Industries, Ltd. Method and apparatus for producing hydrogen fluoride
JP2011519335A (en) * 2008-04-22 2011-07-07 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Production of hydrogen fluoride from waste containing fluorite or calcium fluoride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759626A (en) * 1980-09-30 1982-04-10 Asahi Chem Ind Co Ltd Protection of stirring shaft

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759626A (en) * 1980-09-30 1982-04-10 Asahi Chem Ind Co Ltd Protection of stirring shaft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004348A1 (en) * 2000-07-10 2002-01-17 Daikin Industries, Ltd. Method and apparatus for producing hydrogen fluoride
EP1300362A1 (en) * 2000-07-10 2003-04-09 Daikin Industries, Ltd. Method and apparatus for producing hydrogen fluoride
US6841140B2 (en) 2000-07-10 2005-01-11 Daikin Industries, Ltd. Method and apparatus for producing hydrogen fluoride
EP1300362A4 (en) * 2000-07-10 2006-01-18 Daikin Ind Ltd Method and apparatus for producing hydrogen fluoride
JP2011519335A (en) * 2008-04-22 2011-07-07 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Production of hydrogen fluoride from waste containing fluorite or calcium fluoride

Also Published As

Publication number Publication date
JPH0255361B2 (en) 1990-11-27

Similar Documents

Publication Publication Date Title
CN109368703B (en) Preparation method of tungsten trioxide thin sheet
US4235862A (en) Production of low sulphur chromium (III) oxide
JP5428594B2 (en) Method for producing hydrogen fluoride
JPS5939703A (en) Manufacture of hydrogen fluoride
JP6673048B2 (en) Method for producing hydrogen fluoride
EP0096817B1 (en) Process for producing hydrogen fluoride
US3063815A (en) Apparatus for the continuous production of hydrogen halides
US3718736A (en) Process for the manufacture of hydrogen fluoride
US3712941A (en) Highly siliceous alkali metal silicates
US3537815A (en) Preparation of alkali metal silicates
US1150415A (en) Manufacture of hydrofluoric acid.
US3044965A (en) Process for the manufacture of bismuth catalysts
US3378340A (en) Process for the preparation of potassium phosphate
KR890003670B1 (en) Process for manufacture of hydro-fluoric acid by reaction of sulphuric acid with fluorospar in rotating oven
US2208175A (en) Manufacture of alkali sulphate
JPS6137202B2 (en)
USRE22500E (en) Process of manufacturing animal
US3936451A (en) Process for producing salts of hexamethylenetetramine
US2328884A (en) Process of manufacturing animal feed compositions
US2741542A (en) Process for preparing phosphorus oxychloride
JP4848098B2 (en) Method for producing hydrogen fluoride in a rotary tube furnace
JPS59102822A (en) Production of manganese dixoide
JPH0519487B2 (en)
US2700618A (en) Manufacture of ultramarine
US3414375A (en) Two-stage process for the preparation of potassium metaphosphate