JPS5939372B2 - Separation and recovery method of hexavalent chromium - Google Patents

Separation and recovery method of hexavalent chromium

Info

Publication number
JPS5939372B2
JPS5939372B2 JP52080677A JP8067777A JPS5939372B2 JP S5939372 B2 JPS5939372 B2 JP S5939372B2 JP 52080677 A JP52080677 A JP 52080677A JP 8067777 A JP8067777 A JP 8067777A JP S5939372 B2 JPS5939372 B2 JP S5939372B2
Authority
JP
Japan
Prior art keywords
hexavalent chromium
exchange resin
ions
anion exchange
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52080677A
Other languages
Japanese (ja)
Other versions
JPS5414396A (en
Inventor
晋一 保田
敬和 丹羽
幸三 迫田
章 馬原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Koei Chemical Industry Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Koei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Koei Chemical Industry Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP52080677A priority Critical patent/JPS5939372B2/en
Publication of JPS5414396A publication Critical patent/JPS5414396A/en
Publication of JPS5939372B2 publication Critical patent/JPS5939372B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は少くともハロゲンイオンと6価クロムを含有す
る水溶液からの6価クロムの分離回収法に係り、さらに
詳しくは、該6価クロム含有水溶液からアニオン交換樹
脂を用いて実質的にハロゲンイオンを含まない6価クロ
ムを分離回収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and recovering hexavalent chromium from an aqueous solution containing at least halogen ions and hexavalent chromium. The present invention relates to a method for separating and recovering hexavalent chromium that is substantially free of halogen ions.

従来ハロゲンイオンと6価クロムを含有する水溶液の処
理法としては、還元剤を用いて6価クロムを還元して3
価クロムとなしたのち沈殿濾別するいわゆる凝集沈殿法
があるが、かかる処理法では6価クロムを有効に回収再
利用できないのみならず処理装置が大きくなる等の欠点
があり、更には生成したスラッジの処理あるいはそれに
伴う二次公害等の問題があった。
Conventionally, the treatment method for aqueous solutions containing halogen ions and hexavalent chromium is to reduce hexavalent chromium using a reducing agent.
There is a so-called coagulation-sedimentation method in which hexavalent chromium is separated by precipitation and filtration after it is converted into hexavalent chromium, but this treatment method not only cannot effectively recover and reuse hexavalent chromium, but also has the disadvantage that the processing equipment becomes large. There were problems with sludge treatment and secondary pollution associated with it.

そこで本発明者らは少なくともハロゲンと6価クロムを
含む水溶液から6価クロムを有利に分離回収する方法に
ついて鋭意研究した結果、少くともハロゲンイオンと6
価クロムを含有する水溶液をアニオン交換樹脂塔に通液
(接触)したのち、該樹脂から脱着されて得られる6価
クロム含有水溶液を、再度アニオン交換樹脂塔に通液(
接触)することにより、ハロゲンイオンを実質的に含有
しない6価クロムが得られることを見出し、本発明を完
成するに至った。
Therefore, the present inventors conducted intensive research on a method for advantageously separating and recovering hexavalent chromium from an aqueous solution containing at least halogen ions and hexavalent chromium.
After the aqueous solution containing valent chromium is passed through (contacted with) the anion exchange resin column, the aqueous solution containing hexavalent chromium obtained by being desorbed from the resin is passed through the anion exchange resin column again (
The present inventors have discovered that hexavalent chromium containing substantially no halogen ions can be obtained by contacting the hexavalent chromium (contact), and have completed the present invention.

本発明の方法によって回収された6価クロムは、実質的
にハロゲンイオンを含有していないので皮なめし用或い
は顔料、染料の原料として好適に使用でき、特に皮なめ
し用には本発明の方法によって初めて再利用が可能とな
るものである。
Since the hexavalent chromium recovered by the method of the present invention does not substantially contain halogen ions, it can be suitably used for leather tanning or as a raw material for pigments and dyes. This is the first time that it can be reused.

省資源、無公害化の観点から本発明の効果は大きい。The present invention has great effects from the viewpoint of resource saving and pollution-free production.

本発明を更に詳しく説明する。The present invention will be explained in more detail.

本発明における少くともハロゲンイオンと6価クロムイ
オンを含有する水溶液(以下「本処理液」という)は、
他のイオンとして金属または重金属イオンのようなカチ
オン、或いは硝酸硫酸イ゛オンの如く他のアニオンを含
有していてもよい。
The aqueous solution containing at least halogen ions and hexavalent chromium ions (hereinafter referred to as "this treatment liquid") in the present invention is
Other ions may include cations such as metal or heavy metal ions, or other anions such as nitrate and sulfate ions.

ハロゲンイオンとしては弗素イオン、塩素イオン、臭素
イオン、ヨウ素イオンがあげられる。
Examples of halogen ions include fluorine ions, chlorine ions, bromide ions, and iodine ions.

これらを含有する本処理液としては例えば中和クロメー
トメッキ廃水等があげられる。
Examples of the main treatment liquid containing these include neutralized chromate plating wastewater.

アニオン交換樹脂としては強アニオン交換樹脂、中アニ
オン交換樹脂および弱アニオン交換樹脂のいずれでも使
用することができる。
As the anion exchange resin, any of strong anion exchange resins, medium anion exchange resins, and weak anion exchange resins can be used.

これらの樹脂の例としては、レバチットMP−64、レ
バチットMP−600(バイエル社製)、ダイヤイオン
WA−30、ダイヤイオンPA−306、ダイヤイオン
WA−10(三菱化成製)、アンバーライトIRA−9
3、アンバーライトIRA−68、アンバーライトIR
A−45、アンバーライトIRA−900(ロームアン
ドハース社製)、デュオライ)A−308、デュオライ
トA−57、デュオライトA−10ID(ダイヤモンド
ジャムロック社製)、或いはスミキレ−)CR−2(住
友化学社製)等が挙げられる。
Examples of these resins include Revatit MP-64, Revatit MP-600 (manufactured by Bayer), Diaion WA-30, Diaion PA-306, Diaion WA-10 (manufactured by Mitsubishi Kasei), Amberlite IRA- 9
3. Amberlight IRA-68, Amberlight IR
A-45, Amberlite IRA-900 (manufactured by Rohm and Haas), Duolite) A-308, Duolite A-57, Duolite A-10ID (manufactured by Diamond Jamrock), or Sumikire) CR-2 ( manufactured by Sumitomo Chemical Co., Ltd.).

このうち他のアニオン交換樹脂に比べて回収6価クロム
が高濃度で回収でき、且つアニオン交換樹脂の劣化が最
も少なく、6価クロムの交換容量が極めて大きい点を考
慮して、スミキレートCR−2を使用することが好まし
い。
Among these, Sumikylate CR-2 was developed in consideration of the fact that compared to other anion exchange resins, recovered hexavalent chromium can be recovered at a higher concentration, the deterioration of anion exchange resin is the least, and the exchange capacity of hexavalent chromium is extremely large. It is preferable to use

アニオン交換樹脂に通液する場合、ハロゲンの除去率を
更に高くしたい時は該アニオン交換樹脂への6価クロム
の吸着量以上の6価クロムを含有した、本処理液を通液
することが好ましい。
When passing the solution through an anion exchange resin, if you want to further increase the halogen removal rate, it is preferable to pass this treatment solution containing more hexavalent chromium than the amount of hexavalent chromium adsorbed to the anion exchange resin. .

しかしながらハロゲンの除去率をさほど要求しない場合
には6価りロム吸着量以下の6価クロムを含有する本処
理液であっても充分目的を達成できる。
However, if a high halogen removal rate is not required, even a treatment solution containing less than the amount of hexavalent chromium adsorbed can sufficiently achieve the objective.

6価クロム含有水溶液の液性は酸性もしくは中性である
方が好ましく、処理液がアルカリ性の場合には硫酸・塩
酸・硝酸等の鉱酸で酸性もしくは中性にする必要がある
It is preferable that the hexavalent chromium-containing aqueous solution is acidic or neutral. If the treatment liquid is alkaline, it is necessary to make it acidic or neutral with a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid.

しかしながらアニオン交換樹脂として強アニオン交換樹
脂を用いる場合、本処理液がアルカリ性であってもよい
However, when a strong anion exchange resin is used as the anion exchange resin, the treatment liquid may be alkaline.

本発明における脱着方法は水酸化カリウム・水酸化すl
−IJウム・アンモニア水等のアルカリ水溶液等を通液
することにより簡単に実施でき、アルカリ濃度は0.2
〜20%の範囲で実施でき好ましい範囲は1〜10%で
ある。
The desorption method in the present invention is potassium hydroxide/sulfur hydroxide.
- It can be easily carried out by passing an alkaline aqueous solution such as IJum or aqueous ammonia, and the alkaline concentration is 0.2.
It can be carried out in the range of -20%, and the preferred range is 1-10%.

脱着液を更にアニオン交換樹脂に通液する場合、液性を
必要に応じ中性もしくは酸性にする必要がある。
When the desorption liquid is further passed through an anion exchange resin, it is necessary to make the liquid property neutral or acidic as necessary.

この時の中和剤としては硫酸、硝酸、塩酸等の鉱酸を用
いることができる。
As a neutralizing agent at this time, mineral acids such as sulfuric acid, nitric acid, and hydrochloric acid can be used.

また、6価クロムは酸化性が強いので、脱着液を必要に
応じ、希釈して用いる事が出きる。
Furthermore, since hexavalent chromium has strong oxidizing properties, the desorption liquid can be diluted and used as required.

脱着液を更にアニオン交換樹脂に通液させる場合、脱着
液中の6価クロム含有量がアニオン交換樹脂の6価りロ
ム吸着量に等しいか、もしくは6価りロム吸着量以上の
量を通液し、リークした6価クロムは他のアニオン交換
樹脂塔で処理することが好ましい、しかしながらアニオ
ン交換樹脂の6価りロム吸着量以下であっても、必要に
応じて目的を達成することができる。
When the desorption liquid is further passed through the anion exchange resin, the content of hexavalent chromium in the desorption liquid must be equal to or greater than the adsorption amount of hexavalent chromium in the anion exchange resin. However, it is preferable to treat leaked hexavalent chromium in another anion exchange resin tower. However, even if the adsorption amount of hexavalent chromium is less than the adsorption amount of hexavalent chromium in the anion exchange resin, the objective can be achieved if necessary.

脱着液を通液し6価クロムを吸着したアニオン交換樹脂
を水洗後アルカリ性水溶液で脱着することにより、実質
的にハロゲンイオンを含有しない6価クロムが回収でき
る。
By passing a desorption liquid through the resin, washing the anion exchange resin that has adsorbed hexavalent chromium with water, and then desorbing it with an alkaline aqueous solution, hexavalent chromium that does not substantially contain halogen ions can be recovered.

次に本発明を実施例で示す。Next, the present invention will be illustrated by examples.

実施例 l スミキレ−FOR−2(アニオン交換樹脂)を150y
d充填したアニオン交換樹脂塔に6価りaムイオンとし
て575ppm ならびに弗素イオンとしてI000p
pm000ppH2,8の廃水を1.500cc/Hr
の速度で通液し、該イオン交換樹脂の6価クロムイオン
の総交換容量以上通液した時点で通液を中止し水1,5
00cc/Hrの速度で通液させた。
Example 1 150y of Sumikire-FOR-2 (anion exchange resin)
575 ppm as hexavalent am ions and I000 p as fluorine ions in an anion exchange resin tower filled with d.
1.500cc/Hr of wastewater with pm000pppH2.8
When the total exchange capacity of hexavalent chromium ions of the ion exchange resin is exceeded, the liquid passage is stopped and water
The liquid was passed at a rate of 00 cc/Hr.

次に4%−NaOH水溶液を300cc/Hrの速度で
通液し該イオン交換樹脂に吸着した6価クロムイオンを
クロム酸ソーダとして脱着せしめ、脱着液を回収した。
Next, a 4%-NaOH aqueous solution was passed through the resin at a rate of 300 cc/hr to desorb the hexavalent chromium ions adsorbed on the ion exchange resin as sodium chromate, and the desorbed liquid was recovered.

この脱着液は6価クロムイオン41.000ppm、な
らびに弗素イオン206ppmを含有し通液後の廃水に
は6価クロムを全く含有せず、はぼ全量の弗素イオンを
含有していた。
This desorption solution contained 41.000 ppm of hexavalent chromium ions and 206 ppm of fluorine ions, and the wastewater after passing through the solution did not contain any hexavalent chromium and contained almost the entire amount of fluorine ions.

この脱着液に水を加えて6価クロムイオン5,000p
pm にし、且つ硫酸でpH2,0に調整後再生処理
したイオン交換樹脂塔に1,500cc/Hrの速度で
再流通せしめた。
Add water to this desorption solution to obtain 5,000p of hexavalent chromium ions.
pm and adjusted to pH 2.0 with sulfuric acid, and then recirculated at a rate of 1,500 cc/Hr through a regenerated ion exchange resin column.

イオン交換樹脂の6価クロムの総交換容量以上通液した
時点で通液を中止し、上記と同じ条件で水洗および4%
NaOH水溶液で脱着せしめ、脱着液を回収した。
When the total exchange capacity of hexavalent chromium of the ion exchange resin is exceeded, the flow is stopped, and water is washed under the same conditions as above and 4%
Desorption was performed with an aqueous NaOH solution, and the desorption solution was collected.

この脱着液の組成は6価クロムイオン42,800pp
mに対して弗素イオン0.7ppmであった。
The composition of this desorption liquid is 42,800 pp of hexavalent chromium ions.
The amount of fluorine ion was 0.7 ppm with respect to m.

実施例 2 アンバーライ)IRA−93(アニオン交換樹脂)を1
50rrll充填したアニオン交換樹脂塔に6価クロム
イオン568ppmならびに塩素イオン562 ppm
を含有するpH2,0の廃水を、1,500cc /
Hrの速度で通液し、イオン交換樹脂の6価クロムイオ
ンの総交換容量以上通液した時点で通液を中止し、水1
.500 cc / Hrの速度で通液させた。
Example 2 1 Amberly) IRA-93 (anion exchange resin)
568 ppm of hexavalent chromium ions and 562 ppm of chlorine ions in an anion exchange resin tower filled with 50 rrll
1,500cc/of wastewater with a pH of 2.0 containing
The liquid was passed at a rate of 1 Hr, and when the total exchange capacity of hexavalent chromium ions of the ion exchange resin was exceeded, the passing of the liquid was stopped, and water was added at a rate of 1 Hr.
.. The liquid was passed through at a rate of 500 cc/Hr.

次に4% NaOH水溶液を300cc/Hrの速度
で通液し、該イオン交換樹脂に吸着した6価クロムイオ
ンをクロム酸ソーダとして脱着せしめ、脱着液を回収し
た。
Next, a 4% NaOH aqueous solution was passed through the resin at a rate of 300 cc/hr to desorb the hexavalent chromium ions adsorbed on the ion exchange resin as sodium chromate, and the desorption solution was recovered.

この脱着液は6価クロムイオン25300 ppmなら
びに塩素イオン198 ppm含有していた。
This desorption solution contained 25,300 ppm of hexavalent chromium ions and 198 ppm of chlorine ions.

この脱着液に水を加えて6価クロムイオン5000 p
pmにし、且つ硫酸でpH2,0に調整後再生処理した
イオン交換樹脂塔に1500cc/Hrの速度で再流通
せしめた。
Add water to this desorption solution to remove 5000 p of hexavalent chromium ions.
pm and adjusted to pH 2.0 with sulfuric acid, and then recirculated at a rate of 1500 cc/Hr through a regenerated ion exchange resin column.

イオン交換樹脂の総交換容量以上通液した時点で通液を
中止し、上記と同じ条件で水洗および4 % NaOH
水溶液で脱着せしめ、脱着液を回収した。
When the total exchange capacity of the ion exchange resin was exceeded, the flow was stopped, and the resin was washed with water and 4% NaOH under the same conditions as above.
Desorption was performed using an aqueous solution, and the desorption solution was collected.

この脱着液の組成は6価クロムイオン27700ppm
に対して塩素イオン0.8ppmであった。
The composition of this desorption liquid is 27,700 ppm of hexavalent chromium ions.
The concentration of chlorine ions was 0.8 ppm.

実施例 3 ダイヤイオンWA−30(アニオン交換樹脂)を150
WII!充填したアニオン樹脂塔に6価クロムイオン5
90 ppmならびによう素イオン580ppmを含有
するpH2,0の廃水を、1,500cc7/Hrの速
度で通液し、イオン交換樹脂の6価クロムイオンの総交
換容量以上通液した時点で通液を中止し、水を1500
cc /Hrの速度で通液させた。
Example 3 Diaion WA-30 (anion exchange resin) 150
WII! Hexavalent chromium ion 5 is added to the filled anion resin column.
Wastewater with a pH of 2.0 containing 90 ppm and 580 ppm of iodine ions was passed through the tube at a rate of 1,500 cc/Hr, and the flow was stopped when the total exchange capacity of hexavalent chromium ions of the ion exchange resin was exceeded. Stop and drink 1500 ml of water.
The solution was passed at a rate of cc/Hr.

次に4%−NaOH水溶液を300cc/Hrの速度で
通液し、該イオン交換樹脂に吸着した6価クロムイオン
をクロム酸ソーダとして脱着せしめ、脱着液を回収した
Next, a 4%-NaOH aqueous solution was passed through the resin at a rate of 300 cc/hr to desorb the hexavalent chromium ions adsorbed on the ion exchange resin as sodium chromate, and the desorbed liquid was recovered.

この脱着液は6価クロムイオン28500 ppmなら
びによう素イオン200ppmを含有していた。
This desorption solution contained 28,500 ppm of hexavalent chromium ions and 200 ppm of iodine ions.

この脱着液に水を加えて6価クロムイオン5000pp
mにし、且つ硫酸でpH2,0に調整後、再生処理した
イオン交換樹脂塔に1500cc/Hrの速度で再流通
せしめた。
Add water to this desorption solution to obtain 5000pp of hexavalent chromium ions.
After adjusting the pH to 2.0 with sulfuric acid, it was recirculated to the regenerated ion exchange resin column at a rate of 1500 cc/Hr.

イオン交換樹脂の総交換容量以上通液した時点で通液を
中止し、上記と同じ条件で水洗および4%−NaOH水
溶液で脱着せしめ、脱着液を回収した。
When the total exchange capacity of the ion exchange resin was exceeded, the liquid passage was stopped, and the resin was washed with water and desorbed with a 4% NaOH aqueous solution under the same conditions as above, and the desorbed liquid was recovered.

この脱着液の組成は6価クロムイオン25380 pp
mに対してよう素イオン0.9ppmであった。
The composition of this desorption liquid is 25,380 ppp of hexavalent chromium ions.
The amount of iodine ion was 0.9 ppm with respect to m.

実施例 4 レバチツ)MP−64(アニオン交換樹脂)を1501
nl充填したアニオン樹脂塔に6価クロムイオン575
ppmならびに弗素イオン578ppmを含有するp
H2,0の廃水を、1500cc/Hrの速度で通液し
、イオン交換樹脂の6価クロムイオンの総交換容量以上
通液した時点で通液を中止し、水を1500cc/Hr
の速度で通液させた。
Example 4 MP-64 (anion exchange resin) was added to 1501
Hexavalent chromium ion 575 in an anion resin tower filled with nl
p containing 578 ppm and 578 ppm of fluoride ions.
H2,0 wastewater was passed through at a rate of 1500cc/Hr, and when the total exchange capacity of hexavalent chromium ions of the ion exchange resin was exceeded, the flow was stopped, and water was passed through at a rate of 1500cc/Hr.
The liquid was passed at a speed of .

次に4%−NaOH水溶液を300cc/Hrの速度で
通液し、該イオン交換樹脂に吸着した6価クロムイオン
をクロム酸ソーダとして脱着せしめ、脱着液を回収した
Next, a 4%-NaOH aqueous solution was passed through the resin at a rate of 300 cc/hr to desorb the hexavalent chromium ions adsorbed on the ion exchange resin as sodium chromate, and the desorbed liquid was recovered.

この脱着液は6価クロムイオン28200 ppmなら
びに弗素イオン185 ppmを含有していた。
This desorption solution contained 28,200 ppm of hexavalent chromium ions and 185 ppm of fluorine ions.

この脱着液に水を加えて6価クロムイオン5000 p
pmにし、且つ硫酸でpH2,0に調整後、再生処理し
たイオン交換樹脂塔に1500 cc/Hrの速度で再
流通せしめた。
Add water to this desorption solution to remove 5000 p of hexavalent chromium ions.
After adjusting the pH to 2.0 with sulfuric acid, the mixture was recirculated to a regenerated ion exchange resin column at a rate of 1500 cc/Hr.

イオン交換樹脂の総交換容量以上通液した時点で通液を
中止し、上記と同じ条件で水洗および4%−NaOHで
脱着せしめ、脱着液を回収した。
When the total exchange capacity of the ion exchange resin was exceeded, the flow of liquid was stopped, and the resin was washed with water and desorbed with 4% NaOH under the same conditions as above, and the desorption liquid was recovered.

この脱着液の組成は6価クロムイオン28200 pp
mに対して弗素イオン5.3ppmであった。
The composition of this desorption liquid is 28,200 ppp of hexavalent chromium ions.
The amount of fluorine ion was 5.3 ppm with respect to m.

実施例 5 デュオライ)A−10ID(アニオン交換樹脂)をI
50m充填したアニオン交換樹脂塔に6価クロムイオン
575ppm1弗素イオン578 ppmを含有するp
H2,0の廃水を1500cc/Hrの速度で通液しイ
オン交換樹脂の6価クロムイオンの総交換容量以上通液
した時点で通液を中止し水を1500 cc/Hrの速
度で通液させた。
Example 5 Duoly) A-10ID (anion exchange resin)
P containing 575 ppm of hexavalent chromium ions, 1 fluoride ions of 578 ppm in an anion exchange resin column filled with 50 m
H2,0 wastewater was passed at a rate of 1500 cc/Hr, and when the total exchange capacity of hexavalent chromium ions of the ion exchange resin was exceeded, the flow was stopped and water was passed at a rate of 1500 cc/Hr. Ta.

次に4係−NaOH水溶液を300 cc / Hrの
速度で通液し、該イオン交換樹脂に吸着した6価クロム
イオンをクロム酸ソーダとして脱着せしめ脱着液を回収
した。
Next, a 4-NaOH aqueous solution was passed through the resin at a rate of 300 cc/Hr to desorb the hexavalent chromium ions adsorbed on the ion exchange resin as sodium chromate, and a desorption solution was recovered.

この脱着液は6価クロムイオン16500ppm弗素イ
オンlI2ppm含有していた。
This desorption solution contained 16,500 ppm of hexavalent chromium ions and 2 ppm of fluorine ions.

この脱着液に水を加えて6価クロムイオン5000pp
mにし、且つ硫酸でpH2,0に調整後、再生処理した
イオン交換樹脂塔に1500cc/Hrの速度で再流通
せしめた。
Add water to this desorption solution to obtain 5000pp of hexavalent chromium ions.
After adjusting the pH to 2.0 with sulfuric acid, it was recirculated to the regenerated ion exchange resin column at a rate of 1500 cc/Hr.

イオン交換樹脂の総交換容量以上通液した時点で通液を
中止し、上記と同じ条件で水洗および4%−1’JaO
Hで脱着せしめ、脱着液を回収した。
When the total exchange capacity of the ion exchange resin is exceeded, the flow is stopped and washed with water under the same conditions as above.
It was desorbed with H and the desorption solution was collected.

この脱着液の組成は6価クロムイオン12500ppm
に対して弗素イオン1.5ppmであった。
The composition of this desorption liquid is 12,500 ppm of hexavalent chromium ions.
The fluorine ion concentration was 1.5 ppm.

Claims (1)

【特許請求の範囲】 1 少なくともハロゲンイオンと6価クロムを含有する
水溶液から、イオン交換樹脂を用いて6価クロムを分離
回収する方法において、該6価クロム含有水溶液をアニ
オン交換樹脂と接触せしめたのち該アニオン交換樹脂を
脱着処理し、得られた脱着液を更にアニオン交換樹脂と
接触せしめ、脱着処理して脱着液を回収することからな
る6価クロムの分離回収法。 2 アニオン交換樹脂が弱塩基性イオン交換樹脂である
特許請求の範囲第1項記載の方法。 3、少なくともハロゲンイオンと6価クロムを含有する
水溶液中もしくは脱着液中の6価クロムの含有量が、ア
ニオン交換樹脂の6価りロム総吸着量以上である特許請
求の範囲第1項または第2項記載の方法。 4 ハロゲンイオンが弗素イオンである特許請求の範囲
第1項、第2項または第3項ge載の方法。
[Claims] 1. In a method for separating and recovering hexavalent chromium from an aqueous solution containing at least halogen ions and hexavalent chromium using an ion exchange resin, the hexavalent chromium-containing aqueous solution is brought into contact with an anion exchange resin. A method for separating and recovering hexavalent chromium, which comprises subsequently subjecting the anion exchange resin to a desorption process, bringing the resulting desorption liquid into contact with an anion exchange resin, performing a desorption process, and recovering the desorption liquid. 2. The method according to claim 1, wherein the anion exchange resin is a weakly basic ion exchange resin. 3. The content of hexavalent chromium in the aqueous solution containing at least halogen ions and hexavalent chromium or in the desorption liquid is greater than or equal to the total amount of hexavalent chromium adsorbed by the anion exchange resin. The method described in Section 2. 4. The method according to claim 1, 2 or 3ge, wherein the halogen ion is a fluorine ion.
JP52080677A 1977-07-05 1977-07-05 Separation and recovery method of hexavalent chromium Expired JPS5939372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52080677A JPS5939372B2 (en) 1977-07-05 1977-07-05 Separation and recovery method of hexavalent chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52080677A JPS5939372B2 (en) 1977-07-05 1977-07-05 Separation and recovery method of hexavalent chromium

Publications (2)

Publication Number Publication Date
JPS5414396A JPS5414396A (en) 1979-02-02
JPS5939372B2 true JPS5939372B2 (en) 1984-09-22

Family

ID=13724975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52080677A Expired JPS5939372B2 (en) 1977-07-05 1977-07-05 Separation and recovery method of hexavalent chromium

Country Status (1)

Country Link
JP (1) JPS5939372B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014601C2 (en) * 2000-03-10 2001-09-11 Ferro Techniek Bv Heating element, liquid container and method for detecting temperature changes.
CN102260020A (en) * 2011-05-27 2011-11-30 河南省科学院化学研究所有限公司 Deep processing method of leather production biochemical tail water with resin adsorption method
CN102897837A (en) * 2012-11-06 2013-01-30 北京理工大学 Method for separating high-concentration K2Cr2O7 from saturated NaCl solution

Also Published As

Publication number Publication date
JPS5414396A (en) 1979-02-02

Similar Documents

Publication Publication Date Title
US3961029A (en) Process for recovering chromic acid solution from a waste liquor containing chromic ions
US4303704A (en) Selective removal of copper or nickel from complexing agents in aqueous solution
CA1186075A (en) Method for partially desalinating water with a weakly acid and strongly basic ion exchanger materials and subsequently regenerating the ion exchanger materials
US3475330A (en) Methods of removing and reclaiming ammonia ions from water
CN106587433B (en) Chromium-containing wastewater treatment system adopting double anion exchange columns and treatment method thereof
JPH04134054A (en) Purification of amino acid using ion exchange resin
CA1214621A (en) Process for removing aluminum and silica from alkali metal halide brine solutions
US3788983A (en) Selective separation of cyanide from waste streams by adsorption process
US3493498A (en) Ion-exchange process
US4009101A (en) Recycle treatment of waste water from nickel plating
CN110564977A (en) Method for recovering nickel resource from chemical nickel waste liquid
US2470500A (en) Demineralizing
US4481087A (en) Process for removing chromate from solution
US3352641A (en) Recovery of iodide ions from anion exchange resins used to extract iodine
US3842002A (en) Method for removing sulfate and bicarbonate ions from sea water or brackish water through the use of weak anionic exchange resins containing amino groups of the primary and secondary type
US4049772A (en) Process for the recovery of chromic acid solution from waste water containing chromate ions
JPS5939372B2 (en) Separation and recovery method of hexavalent chromium
US2965441A (en) Ion exchange for the recovery of chemicals
US4595508A (en) Reduction of sodium/ammonium alkalinity in industrial wastewater
US2127310A (en) Hydrogen zeolite water treatment
JPH04231487A (en) Regeneration method of pickling waste liquor containing metal salt and acid
US3699207A (en) Process for the purification of cadmium solutions
JPS6036833B2 (en) How to treat chrome peck wastewater
JPH07206804A (en) Purification of taurine
US3043867A (en) Method for the purification of aminocarboxylic acids