JPS5939235B2 - Low hydrogen welding rod for on-site welding of steel pipes - Google Patents

Low hydrogen welding rod for on-site welding of steel pipes

Info

Publication number
JPS5939235B2
JPS5939235B2 JP16219478A JP16219478A JPS5939235B2 JP S5939235 B2 JPS5939235 B2 JP S5939235B2 JP 16219478 A JP16219478 A JP 16219478A JP 16219478 A JP16219478 A JP 16219478A JP S5939235 B2 JPS5939235 B2 JP S5939235B2
Authority
JP
Japan
Prior art keywords
welding
weight
amount
low hydrogen
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16219478A
Other languages
Japanese (ja)
Other versions
JPS5592289A (en
Inventor
厚 志賀
耕治 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16219478A priority Critical patent/JPS5939235B2/en
Publication of JPS5592289A publication Critical patent/JPS5592289A/en
Publication of JPS5939235B2 publication Critical patent/JPS5939235B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 この発明は、鋼管の配管敷設現場での溶接連結に用いて
とくに好適な、鋼管の現地溶接用低水素糸溶接棒に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low hydrogen thread welding rod for on-site welding of steel pipes, which is particularly suitable for use in welding and connecting steel pipes at piping installation sites.

この種の溶接作業は、パイプラインを形成すべき鋼管端
へ順次に溶接連結をすべき鋼管を突合わせ保持した上で
、パイプ胴の頂上部分から両側を経て底部に至る間に施
される。
This type of welding operation is carried out from the top of the pipe body through both sides to the bottom, after the steel pipes to be welded are successively held against the ends of the pipes to form a pipeline.

かかる溶接に用いる溶接棒が具備すべき条件は、1 鋼
管の円周に沿つて下進方向に同一電流で溶接ができるこ
と。
The conditions that the welding rod used for such welding must meet are: 1. It must be able to weld with the same current in the downward direction along the circumference of the steel pipe.

2 その際、スラグの流動性が適切であること。2 At that time, the fluidity of the slag must be appropriate.

3 またアークが強くて溶込みが深いこと。3 Also, the arc is strong and penetration is deep.

4 とくにルートバス(初層)において30(V7l/
min以上の高速溶接ができ、このとき裏波ビードがき
れいに形成されること。
4 Especially in the route bus (first layer) 30 (V7l/
It is possible to weld at a high speed of min or more, and at this time, a deep bead is formed neatly.

などであり、かような条件を満たし得る溶接棒はいまま
で、高セルローズ系被覆を用いたものに限られていた。
Until now, welding rods that can satisfy these conditions have been limited to those using a high cellulose coating.

すなわち、パイプラインの現地溶接では従来おもに高セ
ルローズ糸棒が使用されている。
That is, conventionally, high cellulose thread rods have been mainly used in on-site welding of pipelines.

その主たる理由はパイプラインの敷設速度を律速するル
ートバスの溶接速度を大きくできること、および同一電
流で全周を下進溶接することが可能でその作業性が良い
ことなどであり、現在は他の系統の棒で高セルローズ糸
棒に匹敵するものはない。しかし、高セルローズ糸棒は
その被覆中に有機物を約30%も含有するため溶接金属
中の拡散性水素量は約30ゴ/1009にも達し、また
脱酸剤添加量が少ないため溶接金属中の非金属介在物量
は多い。したがつて、アラスカ、カナダ、シベリヤなど
の寒冷地におけるパイプラインの現地溶接でこの種溶接
棒を使用すると溶接部に水素誘起われが生じ易く、これ
を防止するためには高温の予熱が必要であるが、この作
業にはかなりの困難がつきまとう。
The main reasons for this are that it is possible to increase the welding speed of the route bus, which controls the pipeline laying speed, and that it is possible to perform downward welding around the entire circumference with the same current, which makes it easier to weld. No other line of rods can compete with high cellulose thread rods. However, since high cellulose thread rods contain approximately 30% organic matter in their coating, the amount of diffusible hydrogen in the weld metal reaches approximately 30g/1009, and because the amount of deoxidizing agent added is small, the amount of diffusible hydrogen in the weld metal is approximately 30%. The amount of nonmetallic inclusions is large. Therefore, when this type of welding rod is used for on-site welding of pipelines in cold regions such as Alaska, Canada, and Siberia, hydrogen is likely to be induced in the weld, and high temperature preheating is required to prevent this. However, this task is fraught with considerable difficulty.

また、かかるパイプラインに使用する鋼管およびその溶
接部には高強度・高じん性が要求されるが、高セルロー
ズ糸溶接棒を使用した溶接金属には非金属介在物が多い
ので強度・じん性ともに規格値(たとえば降伏点49.
2kg/一以上、吸収エネルギ〔−40℃〕で4.2k
g・ m以上)を満たすのは容易でない。そこでこの発
明は、上記したような条件を低水素糸被覆剤組成の下で
満足することができるように工夫を凝らしたものである
In addition, high strength and high toughness are required for the steel pipes used in such pipelines and their welded parts, but the weld metal using high cellulose yarn welding rods has many nonmetallic inclusions, so the strength and toughness are low. Both have standard values (for example, yield point 49.
2kg/1 or more, absorbed energy [-40℃] is 4.2k
g・m or more) is not easy to meet. Therefore, the present invention has been devised so that the above-mentioned conditions can be satisfied with a low hydrogen yarn coating composition.

すでにのべたょうに鋼管の現地溶接では、ルートバスで
の溶接速度の高いことが必要であるがこのルートパスの
溶接部にしばしば生じる第1図にTで示したワゴントラ
ツク(深さほぼ1m77!)を二層目の溶接で完全に消
滅させるのに充分な溶込力を要し、この溶込力は、被覆
剤中のガス発生剤量に大きく依存し、ここに炭酸塩、有
機物あるいは結晶水などがガス発生に寄与するところ後
二者は、低水素糸被覆には用いられないので、溶込力は
主として炭酸塩の添加量に依存する。
As has already been said, on-site welding of steel pipes requires a high welding speed in the route pass, and the wagon track shown by T in Figure 1 (approximately 1m77 deep!) often occurs in the welding area of this route pass. A sufficient penetration force is required to completely eliminate carbonates, organic substances, or crystalline water by welding the second layer, and this penetration force largely depends on the amount of gas generating agent in the coating. The latter two contribute to gas generation, but the latter two are not used for low-hydrogen yarn coating, so the penetration power mainly depends on the amount of carbonate added.

我々の実1験によるとルートパスの溶接部に生じる深さ
1mm程度のワゴントラツクを二層目の溶接で消滅させ
ることを基準とすると被覆剤組成としてその60重量?
以上を占めるCacO3を必要とすることがわかつた。
According to our first experiment, if the wagon track with a depth of about 1 mm that occurs in the root pass weld is eliminated by the second layer welding, the coating material composition should be 60% by weight.
It was found that CacO3, which occupies more than 100% of the total amount, is required.

一方CacO3が75重量?を超えると被覆剤中に脱酸
剤として配合する金属S1の酸化量が増加するため、と
くに立向、上向姿勢となる溶接位置で溶融金属が垂れ落
ちる傾向が強くなり、溶接作業性が悪くなる。このよう
にしてCacO3は、60〜75重量?に限定される。
なお溶込力を増すためにはグラフアイトの添加が有効で
、とくにグラフアイトは0.1重量?以上ではその配合
量に比例して溶込深さを増加させる。
On the other hand, CacO3 weighs 75? If the welding temperature is exceeded, the amount of oxidation of the metal S1 mixed as a deoxidizing agent in the coating material will increase, so there will be a strong tendency for molten metal to drip down, especially at welding positions where the welding position is vertical or upward, resulting in poor welding workability. Become. In this way, CacO3 weighs 60-75? limited to.
In addition, in order to increase the penetration power, it is effective to add graphite, especially graphite is 0.1 weight? Above, the penetration depth is increased in proportion to the blended amount.

しかし0.7重量?を超えると普通に使用される鋼心線
の下で溶接金属中のC量が0.15%を超え、われ発生
の危険が生じる。したがつて、グラフアイト添加量は0
.7%以下に限定する必要がある。なおグラフアイトは
溶融金属中の歩留りを低くする方法として粒度の微細な
ものを使用することが有効である。ここで上向姿勢にお
ける溶接部分の溶接作業性を改善するためスラグの流動
性を適当な値にする必要があるが、これをもつとも効果
的に達成するのはCacO3とCaF2の配合比率Ca
F2/CacO3を0.1〜0.2とすることである。
But 0.7 weight? If it exceeds 0.15%, the amount of C in the weld metal under the commonly used steel core wire will exceed 0.15%, and there will be a risk of cracking. Therefore, the amount of graphite added is 0.
.. It is necessary to limit it to 7% or less. Note that it is effective to use graphite with a fine grain size as a method of lowering the yield in the molten metal. Here, in order to improve the welding workability of the welding part in the upward position, it is necessary to set the fluidity of the slag to an appropriate value, but even with this, the only way to effectively achieve this is by adjusting the blending ratio of CacO3 and CaF2.
It is to set F2/CacO3 to 0.1 to 0.2.

この比率が0.1未満のときはスラグの流動性が小さく
てヒート外観が悪くなり、一方0.2を超えるとスラグ
の流動性が大さずぎて立向姿勢の溶接立置〔時計位置で
2時から4時までおよび10時から8時まで)の溶接で
スラグが先行し作業性が悪くなる。ところで一般に、低
水素糸溶接棒による円周溶接におけるルートノぐスの溶
接速度と溶接棒の溶融速度との間には、第2図のような
止の相関関係があり、さらにこの溶接棒の溶融速度に及
ぼす電流密度の関係を、鉄粉配合の有無と、市源極性の
影響に関して調べ第3図の結果が得られた。
When this ratio is less than 0.1, the fluidity of the slag is low and the appearance of the heat is poor; on the other hand, when it exceeds 0.2, the fluidity of the slag is too large and welding is performed in a vertical position [clock position]. During welding (from 2 o'clock to 4 o'clock and from 10 o'clock to 8 o'clock), slag precedes welding, making workability worse. By the way, in general, there is a correlation between the welding speed of the root nozzle and the melting speed of the welding rod in circumferential welding using a low-hydrogen thread welding rod, as shown in Figure 2, and furthermore, the melting speed of the welding rod The relationship between current density and speed was investigated with regard to the presence or absence of iron powder blending and the effects of source polarity, and the results shown in Figure 3 were obtained.

すなわち線径3.2,4.0、および5.0m7ILの
鋼心線径棒で鉄粉添加量をOおよび15重量?として比
較した結果において交流電源を使用した場合は溶融速度
に殆ど優立差はなく、一方直流正極性にしたとぎには相
対的に値は小さいながら鉄粉配合の方が大きくなり、こ
れに反して直流逆極性を使用すると相対的に値がはるか
に大きく鉄粉無添加では、溶融速度はより大きくなり、
しかも高セルローズ糸棒の場合を凌駕することがわかつ
た。そこで鉄粉配合量を0,7,15,および40重量
rとした3.2mm径俸について電流130A(DCR
P)で溶融速度の比較を行つた結果を第4図に示すよう
に鉄粉量を7重量?以下に制限すれば溶融速度は350
.w1w/Min以上が容易に得られてルートパスの溶
接速度は目標値の30(177!/[Tllnを達成で
きることがたしかめられたものである。以上のべたとこ
ろのほか、低水素糸溶接棒被覆成分として普通に用いら
れる量で、脱酸剤にはSi,Mnを主体に、またさらに
Al,Tiなどを用い、そしてスラグ生成剤としては、
SiO2,Al2O3,TiO2,MnOおよびMgO
などを用いた被覆剤組成についてその使用量の検討を行
い、とくに鋼管の全周を下進溶接が容易にできるように
、つまり立向、上向き姿勢の溶接位置(時計位置でいう
と2時から6時、また10時から6時まで)でのスラグ
の垂れ落ちを防止するには、心線に対する被覆剤の重量
比を、0.23〜0.33とすることが必要であること
を確認した。
In other words, for steel core wire diameter rods with wire diameters of 3.2, 4.0, and 5.0 m7IL, the amount of iron powder added is O and 15 weight? The comparison results show that there is almost no difference in the melting rate when AC power is used, whereas when DC positive polarity is used, the value is larger for iron powder mixture although it is relatively small; When using direct current with reverse polarity, the value is relatively much larger.Without the addition of iron powder, the melting rate is higher;
Moreover, it was found that the performance was superior to that of a high-cellulose thread rod. Therefore, a current of 130 A (DCR
Figure 4 shows the results of comparing the melting rates in P), when the amount of iron powder was 7% by weight. If you limit it to below, the melting rate is 350
.. It was confirmed that w1w/Min or more could be easily obtained and the root pass welding speed could achieve the target value of 30 (177!/[Tlln).In addition to the above, the low hydrogen yarn welding rod coating component The deoxidizing agents are mainly composed of Si and Mn, and also Al, Ti, etc. are used as the slag forming agents.
SiO2, Al2O3, TiO2, MnO and MgO
We investigated the amount of coating material composition using such materials, and we focused on the welding position in a vertical or upward position (from 2 o'clock on a clock) so that downward welding can be easily performed around the entire circumference of the steel pipe. It was confirmed that in order to prevent the slag from dripping at 6 o'clock and from 10 o'clock to 6 o'clock), it was necessary to set the weight ratio of the coating material to the core wire to 0.23 to 0.33. did.

ここにこの重量比が0.33をこえるとスラグの先行に
よる作業性阻害を生じる一方、0.23未満ではスラグ
の量的不足のためにビード外観が悪化した。つぎに本発
明を実施例により説明する。
If this weight ratio exceeds 0.33, workability will be hindered due to the advance of slag, while if it is less than 0.23, bead appearance will deteriorate due to insufficient amount of slag. Next, the present invention will be explained by examples.

本実施例においては、表1に示した13種類の溶接棒を
用いてパイプの円周溶接における作業性の比較および溶
接金属の低温じん性を調査した。
In this example, the workability in circumferential welding of pipes was compared and the low-temperature toughness of weld metal was investigated using 13 types of welding rods shown in Table 1.

これらの結果をまとめて表2,3に示す。煮1,2は全
姿勢溶接用の低水素糸棒、煮3,4は立向下進専用の低
水素糸棒、?5〜10が比較例、?11,12,13が
この発明による低水素糸棒である。溶接は60゜開先、
ルートフエース1.6龍、ルートギヤツブ1.6m71
Lとしたパイプ継手部をルートパスでは3.27nm1
2層目以降は4.0mmの径の鋼心線を用いた被覆棒に
より130〜190A(DCRP)の条件で行つた。
These results are summarized in Tables 2 and 3. Boiled 1 and 2 are low hydrogen thread rods for all position welding, Boiled 3 and 4 are low hydrogen thread rods exclusively for vertical downward welding. 5 to 10 are comparative examples, ? 11, 12, and 13 are low hydrogen thread rods according to the present invention. Welding has a 60° bevel,
Root face 1.6 dragon, root gear knob 1.6m71
The pipe joint part with L is 3.27nm1 in the root path.
The second and subsequent layers were coated with a coated rod using a steel core wire with a diameter of 4.0 mm under conditions of 130 to 190 A (DCRP).

黒1,2は被覆重量/心線重量が0.40、CaF2/
CacO3が0.36でスラグの流動性が良く、下向お
よび立向、上向上進溶接における作業性はかなり良好で
あるが、本実験におけるような下進溶接ではスラグが溶
接線前方に先行し凝固するため溶接不能となる。RI)
.3,4は被覆重量/心線重量が0.38、CaF2/
CacO3が0.1未満で、とくに上向位置のスラグ流
動性が悪く溶接不能となる。また、煮1〜4に共通して
アークの吹付けが弱いため溶込が浅くて裏波ビードが凸
状に生成されず、溶融速度が遅いため高速溶接が出来な
い。黒5〜7はスラグの流動性は下進溶接に適している
が、黒5は若干アークの吹付けが弱く、煮6は溶接速度
が遅くFi).7は溶扱金属中のC量が0.15?を超
えルートパスで高温われが生じるという欠点がある。
Black 1 and 2 have coating weight/core weight of 0.40, CaF2/
With CacO3 of 0.36, the fluidity of the slag is good, and the workability in downward, vertical, and upward welding is quite good, but in downward welding as in this experiment, the slag precedes the weld line. It solidifies and becomes unweldable. RI)
.. 3 and 4 have coating weight/core weight of 0.38, CaF2/
When CacO3 is less than 0.1, the fluidity of the slag is particularly poor in the upward position, making welding impossible. In addition, in common with Nos. 1 to 4, the arc blowing is weak, so the penetration is shallow and no convex bead is formed, and the melting speed is slow, making high-speed welding impossible. Blacks 5 to 7 have slag fluidity suitable for downward welding, but black 5 has slightly weaker arc blowing, and slag 6 has a slower welding speed (Fi). In 7, the amount of C in the molten metal is 0.15? There is a drawback that high temperature cracks occur in the root pass when the temperature exceeds 1.

煮8は被覆重量/心線重量が0.35なので立向、上向
立置でスラグが先行しビード外観が悪くなる。▲9は被
覆重量/心融重量が0.21なのでスラグ量が不足して
ビード外観が悪い。これらに反して?11,12,13
はスラグの流動性が下進溶接に適していてビード外観は
良好であり、γ−クの吹付けも適度な強さを持ち、溶接
速度もルートパスにおける目標値30cm\Minを達
成できる。また、溶接金属のじん性は−40℃で6.0
〜7.2k9・mで十分高い値を示した。なお比較例の
?10はアークの酸化性雰囲気が強くて脱酸剤の消耗が
多く、下進溶接部分で溶融金属が垂れ落ちるため作業性
が悪い。以上説明したようにこの発明の低水素糸溶接棒
は円周溶接作業性が良好で、高じん性かつ低水素量の溶
接金属が得られる。
In case of No. 8, the coating weight/core weight is 0.35, so when placed vertically or vertically, slag precedes the bead, resulting in poor bead appearance. In case of ▲9, the coating weight/core weight is 0.21, so the amount of slag is insufficient and the bead appearance is poor. Contrary to these? 11, 12, 13
The fluidity of the slag is suitable for downward welding, the bead appearance is good, the spraying of γ-k has a suitable strength, and the welding speed can achieve the target value of 30 cm\Min in the root pass. In addition, the toughness of weld metal is 6.0 at -40℃.
It showed a sufficiently high value of ~7.2k9·m. What about comparative examples? In No. 10, the arc has a strong oxidizing atmosphere, the deoxidizing agent is often consumed, and the molten metal drips down at the downward welding part, resulting in poor workability. As explained above, the low-hydrogen thread welding rod of the present invention has good circumferential welding workability, and a weld metal with high toughness and low hydrogen content can be obtained.

この発明による低水素糸溶接棒をパイプの円周溶接に使
用すればつぎのような利点が得られる。
When the low hydrogen yarn welding rod according to the present invention is used for circumferential welding of pipes, the following advantages can be obtained.

第1に溶接金属中の拡散性水素量を比較すると高セルロ
ーズ糸棒の場合が約30m1/1009であるのに対し
て約3a/1009以下であるので、予熱を省略するこ
とが可能であり、もし必要であつてもその温度を低くで
きる。第2に溶接金属中の酸素量を比較すると高セルロ
ーズ糸棒の場合が約0.06%であるのに対して約0.
03%であり溶接部の低温じん性は良くなる。
First, when comparing the amount of diffusible hydrogen in the weld metal, it is about 3a/1009 or less for a high cellulose thread rod, compared to about 30m1/1009, so preheating can be omitted. The temperature can be lowered if necessary. Second, when comparing the amount of oxygen in the weld metal, it is approximately 0.06% in the case of high cellulose thread rods, while it is approximately 0.06% in the case of high cellulose thread rods.
03%, which improves the low-temperature toughness of the welded part.

第3に溶着速度を適正電流(直径4mmの棒をDCRP
l7O〜190Aで使用)範囲内で比較すると、高セル
ローズ糸棒の場合が25〜289/Minであるのに対
して30〜349/Minであり一つの継手を完成させ
るのに必要なパス数が少なくできるので、現地溶接にお
ける人員の削減も可能である。また、応用分野としては
つぎのようなものが挙げられる。
Thirdly, adjust the welding speed to the appropriate current (DCRP for a 4mm diameter rod).
When compared within the range (used in 17O to 190A), the number of passes required to complete one joint is 30 to 349/Min, compared to 25 to 289/Min for high cellulose thread rods. Since it can be done less, it is also possible to reduce the number of personnel involved in on-site welding. Further, the following fields of application can be mentioned.

第1にNi,Cr,MOなどの合金元素を添加すれば、
60,70,801<g/Md級の強度の溶接金属が得
られるのでより高強度のパイプめ円周溶接にも適用でき
る。
First, if alloying elements such as Ni, Cr, and MO are added,
Since a weld metal with a strength of 60, 70, 801<g/Md class can be obtained, it can also be applied to higher strength pipe circumferential welding.

第2に交流電源を用いても溶融速度が劣るのみで溶接作
業性は劣化しない。以上のべたようにしてこの発明によ
る低水素糸溶接棒を使用すればルートパスの溶接速度の
目標値である30(:m/Minが達成でき、さらに特
長として溶着速度が大きいので必要パス数低減でき、高
強度・高じん性が比較的容易に得られ、また溶接金属中
の拡散性水素量は約3m1/1009以下であるので予
農温度を低くすることも可能である。
Second, even if an AC power source is used, the melting speed is only inferior and the welding workability is not deteriorated. As described above, by using the low-hydrogen thread welding rod of the present invention, the target root pass welding speed of 30 m/Min can be achieved, and furthermore, the welding speed is high, so the number of passes required can be reduced. Since high strength and high toughness can be obtained relatively easily, and the amount of diffusible hydrogen in the weld metal is about 3 m1/1009 or less, it is also possible to lower the pre-harvesting temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はルートハブ溶接の断面図、第2図は棒の溶接速
度とルートパスの溶接速度の関係を示すグラフ、第3図
は棒の溶接速度におよぼす極性および鉄粉添加量の影響
を示すグラフ、第4図は棒の溶融速度におよぼす鉄粉添
加量の影響を示すグラフである。
Figure 1 is a cross-sectional view of root hub welding, Figure 2 is a graph showing the relationship between rod welding speed and root pass welding speed, and Figure 3 is a graph showing the influence of polarity and iron powder addition amount on rod welding speed. , FIG. 4 is a graph showing the influence of the amount of iron powder added on the melting rate of the bar.

Claims (1)

【特許請求の範囲】[Claims] 1 被覆剤成分としてその全配合物の60〜75重量%
を占めるCaCO_3と0.1〜0.7重量%のグラフ
アイトおよびCaCO_3量に対する配合比が0.1〜
0.2に当る量のCaF_2とを含み、残余は、低水素
系被覆組成として常用されるスラグ生成剤と脱酸剤およ
び7重量%以下に制限された量の鉄粉とよりなる組成に
配合した被覆剤による鋼心線の被覆を有し、この被覆剤
の鋼心線に対する重量比を0.23〜0.33とし直流
逆極性で使用することを特徴とする鋼管の現地溶接用低
水素系溶接棒。
1 60-75% by weight of the total formulation as a coating component
CaCO_3 which accounts for 0.1 to 0.7% by weight of graphite and the blending ratio to the amount of CaCO_3 is 0.1 to 0.7% by weight.
0.2 of CaF_2, and the remainder consists of a slag forming agent and a deoxidizing agent commonly used in low hydrogen coating compositions, and an amount of iron powder limited to 7% by weight or less. Low hydrogen for on-site welding of steel pipes, characterized in that the steel core wire is coated with a coating material of 0.23 to 0.33, and the weight ratio of the coating material to the steel core wire is 0.23 to 0.33, and is used with direct current reverse polarity. system welding rod.
JP16219478A 1978-12-29 1978-12-29 Low hydrogen welding rod for on-site welding of steel pipes Expired JPS5939235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16219478A JPS5939235B2 (en) 1978-12-29 1978-12-29 Low hydrogen welding rod for on-site welding of steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16219478A JPS5939235B2 (en) 1978-12-29 1978-12-29 Low hydrogen welding rod for on-site welding of steel pipes

Publications (2)

Publication Number Publication Date
JPS5592289A JPS5592289A (en) 1980-07-12
JPS5939235B2 true JPS5939235B2 (en) 1984-09-21

Family

ID=15749779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16219478A Expired JPS5939235B2 (en) 1978-12-29 1978-12-29 Low hydrogen welding rod for on-site welding of steel pipes

Country Status (1)

Country Link
JP (1) JPS5939235B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356506U (en) * 1986-09-30 1988-04-15
CN102189355A (en) * 2010-03-11 2011-09-21 上海大西洋焊接材料有限公司 Special nuclear power welding rod matched with steel plate for AP1000-type pressurized water reactor containment vessel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046022B2 (en) * 2013-10-29 2016-12-14 日鐵住金溶接工業株式会社 Low hydrogen coated arc welding rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356506U (en) * 1986-09-30 1988-04-15
CN102189355A (en) * 2010-03-11 2011-09-21 上海大西洋焊接材料有限公司 Special nuclear power welding rod matched with steel plate for AP1000-type pressurized water reactor containment vessel

Also Published As

Publication number Publication date
JPS5592289A (en) 1980-07-12

Similar Documents

Publication Publication Date Title
CN108526752B (en) Self-protection flux-cored wire for welding in wading environment
CN106944765A (en) A kind of self-protection flux-cored wire for X80 pipe line steels
CN108406159B (en) High-toughness titanium-alkali seamless flux-cored wire suitable for all-position welding
CN105728989B (en) High-toughness atmosphere corrosion resistance flux-cored solder wire and preparation method thereof
CN104741816A (en) Flux-cored welding wire for X120 pipeline steel welding and manufacturing method thereof
US3221136A (en) Method and electrode for electric arc welding
CN106736020A (en) Heat-resistant steel flux-cored wire
CN105127613A (en) Flux-cored wire for welding Q420 steel and preparation method thereof
CN103551761B (en) Solder flux, its application and welding method
CN111745325B (en) Self-protection flux-cored wire for X70 pipeline steel
JP2002361486A (en) Flux cored wire for gas-shielded arc welding
JPS5939235B2 (en) Low hydrogen welding rod for on-site welding of steel pipes
CN106624449B (en) Flux-cored wire for heat treatment of ocean engineering large and thick plates and preparation method and application thereof
JP3433790B2 (en) Welding material for martensitic stainless steel
WO2021090953A1 (en) Fluxed core wire and method for manufacturing weld joint
CN107803612A (en) Liner two-phase stainless steel composite steel pipe band pole sintered flux for submerged arc welding and preparation method
CN109530962B (en) Flux-cored wire for high-current vertical upward welding and preparation method and application thereof
JP2711060B2 (en) Low hydrogen coated arc welding rod
CN108515288A (en) One kind paddle welding welding rod and coating under environment, and preparation method thereof
JPH04138895A (en) High cellulose covered electrode
CN1188035A (en) Low hydrogen type downward continuous welding rod
CN109483091B (en) Welding wire flux-cored powder, rutile type seamless flux-cored wire, preparation and application
CN109175777B (en) 550 MPa-level low-temperature steel matched flux-cored wire
JPS608150B2 (en) Flux-cored wire for electrogas arc welding
CN105234592A (en) High-strength-level single-side welding and double-side forming root welding welding bar