JPS5939195B2 - Paint curing method for pre-coated metal - Google Patents

Paint curing method for pre-coated metal

Info

Publication number
JPS5939195B2
JPS5939195B2 JP50082278A JP8227875A JPS5939195B2 JP S5939195 B2 JPS5939195 B2 JP S5939195B2 JP 50082278 A JP50082278 A JP 50082278A JP 8227875 A JP8227875 A JP 8227875A JP S5939195 B2 JPS5939195 B2 JP S5939195B2
Authority
JP
Japan
Prior art keywords
parts
electron beam
paint
water
undercoat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50082278A
Other languages
Japanese (ja)
Other versions
JPS525850A (en
Inventor
義昌 木長
まもる 丸山
弘明 木谷田
理 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP50082278A priority Critical patent/JPS5939195B2/en
Publication of JPS525850A publication Critical patent/JPS525850A/en
Publication of JPS5939195B2 publication Critical patent/JPS5939195B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、プレコートメタルの塗装硬化方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for curing a precoated metal coating.

電子線硬化形塗料をプレコートメタルに塗装することに
ついては、既に文献等にも紹介されており、実際に工業
化ラインヘの適用設計も行なわれつつある。
The application of electron beam curable paint to pre-coated metal has already been introduced in the literature, and design for its application to industrial production lines is also underway.

しかしながら、電子線硬化形塗料は希釈剤として、ビニ
ルモノマー(電子線硬化後塗膜になる)を多量用いてい
るためにプレコートメタルに要求される高度の加工性、
物性を有する塗膜に形成せしめることが困難であり、こ
れらを改良するためにビニルモノマー量を少なくすると
塗装適性が満足できなくなるのである。また、プレコー
トメタル用として電子線硬化形塗料を塗布し加熱乾燥後
、電子線照射し硬化させた塗膜上に上塗用電子線硬化形
塗料を塗布し加熱乾燥後、電子線照射し硬化させプレコ
ートを製造することは知られているが工程が多く、また
エネルギー損失が多く、さらに上塗塗料と下塗塗料との
付着が十分でないという欠点を有している。本発明者ら
は、上述の欠点をなくし、経済的に有利でプレコートメ
タルとしてすぐれた性能を与える塗装硬化方法を鋭意研
究の結果、本発明に到達した。
However, since electron beam curable paints use a large amount of vinyl monomer (which becomes a coating film after electron beam curing) as a diluent, the high workability required for pre-coated metal is difficult.
It is difficult to form a coating film with good physical properties, and if the amount of vinyl monomer is reduced in order to improve these properties, the suitability for coating becomes unsatisfactory. In addition, for pre-coated metal, an electron beam-curable paint is applied, heated and dried, and then an electron beam-cured paint is applied on top of the coating, which is cured by electron beam irradiation. After heat-dried, the electron beam-cured paint is cured by electron beam irradiation. Although it is known that the process involves many steps, there is a lot of energy loss, and the adhesion between the top coat and the base coat is insufficient. The present inventors have arrived at the present invention as a result of intensive research into a coating curing method that eliminates the above-mentioned drawbacks, is economically advantageous, and provides excellent performance as a precoated metal.

即ち、本発明は重合性不飽和結合を有する水溶性または
水分散性電子線硬化形塗料を、プレコートメタルの下塗
塗料として用い、該下塗塗料を塗装してから被塗物を7
0〜200℃に加熱し、該下塗塗膜中の水の殆どまたは
全部を除去した後、被塗物表面の温度が常温に復さない
内に電子線硬化形上塗塗料を塗装し、しかる後電子線を
照射して上記下塗塗膜と上塗塗膜を同時に硬化せしめる
ことを特徴とするプレコートメタルの塗装硬化方法に関
するものである。本発明で用いられる下塗用水溶性また
は水分散性電子線硬化形塗料を以下、水性電子線硬化形
塗料と述べることにする。
That is, in the present invention, a water-soluble or water-dispersible electron beam-curable paint having a polymerizable unsaturated bond is used as an undercoat paint for pre-coated metal, and after applying the undercoat paint, the object to be coated is coated for 7 days.
After heating to 0 to 200°C to remove most or all of the water in the undercoat film, an electron beam curing type top coat is applied before the surface temperature of the object to be coated returns to room temperature, and then electron beam curing is applied. The present invention relates to a method for curing a precoated metal coating, which is characterized in that the undercoat film and the top coat film are simultaneously cured by irradiation with a beam. The water-soluble or water-dispersible electron beam curable paint for undercoating used in the present invention will hereinafter be referred to as a water-based electron beam curable paint.

本発明における水性電子線硬化形塗料に使用される樹脂
としては、その関係の技術分野で知られている電子線の
照射によつて硬化する重合性不飽和結合を有する水溶性
または水分散性樹脂であればいずれでもよく、代表的な
ものとしては、重合性不飽和結合を有するエポキシ樹脂
、アクリル樹脂、ポリエステル樹脂等を塩基で中和し、
水溶化または水分散化した樹脂またはこれらとビニル単
量体との混合物、さらに酢ビ一塩ビ共重合エマルジヨン
樹脂、酢ビーエチレン共重合エマルジヨン樹脂またはア
クリルエマルジヨン樹脂等とビニル単量体との混合物あ
るいはこれらの樹脂を混合したものである。
The resin used in the water-based electron beam curable paint in the present invention is a water-soluble or water-dispersible resin having a polymerizable unsaturated bond that is cured by electron beam irradiation and is known in the related technical field. Any of these may be used, and typical examples include neutralizing epoxy resins, acrylic resins, polyester resins, etc. that have polymerizable unsaturated bonds with a base,
Water-solubilized or water-dispersed resins or mixtures of these with vinyl monomers, and mixtures of vinyl monomers with vinyl acetate monovinyl chloride copolymer emulsion resins, vinyl acetate ethylene copolymer emulsion resins, acrylic emulsion resins, etc. Or a mixture of these resins.

塗料化において水性塗料で通常使用されている顔料、染
料、充てん剤、添加剤、塗装性改善のため不活性有機溶
剤を加えることは何ら差しつかえない。該ビニル単量体
としては、例えばエチレングリコールジメタクリレート
、ジアリルフタレート、メチレンビスアクリルアミド、
トリアリルイソシアヌレート、トリメチロールプロパン
トリアクリレート、アクリル酸エステル類、メタクリル
酸エステル類、スチレン、アクリロニトリル、メタクリ
ロニトリル、酢酸ビニル、コハク酸メチル、ビニルエス
テルおよびアクリルアミド類等の1種または2種以上の
ビニル単量体が用いられる。
When making a paint, there is no problem in adding pigments, dyes, fillers, additives, which are commonly used in water-based paints, and inert organic solvents to improve paintability. Examples of the vinyl monomer include ethylene glycol dimethacrylate, diallyl phthalate, methylene bisacrylamide,
One or more types of triallylisocyanurate, trimethylolpropane triacrylate, acrylic esters, methacrylic esters, styrene, acrylonitrile, methacrylonitrile, vinyl acetate, methyl succinate, vinyl esters, and acrylamides. Vinyl monomers are used.

該不活性有機溶剤としては、例えばメチルアルコール、
エチルアルコール、n−プロピルアルコール、n−ブチ
ルアルコール、Sec−ブチルアルコール、イソブチル
アルコール等のモノアルコール類;エチレングリコール
、プロピレングリコール等のポリオール類;エチレング
リコールモノメチルエーテル、エチレングリコールモノ
エチルエーテル、エチレングリコールモノブチルエーテ
ル、1−メトキシ−2−プロパノール、1−エトキシ−
2−プロパノール等のエーテルアルコール類;1J4−
ジオキサン等のエーテル類;アセトン、メチルエチルケ
トン、メチル−n−プロピルケトン、ジエチルケトン、
メチルイソブチルケトン、メチル−n−ブチルケトン、
エチル−n−ブチルケトン等のケトン類;メチルアセテ
ート、エチルアセテート、n−プロピルアセテート、イ
ソプロピルアセテート、n−ブチルアセテート、イソブ
チルアセテート、2−メトキシエチルアセテート等のア
セテート類:n−ペンタン、n−ヘキサン、n−ヘプタ
ン、n−オクタン、ベンゼン、トルエン、キシレン、エ
チルベンゼン、シクロヘキサン、メチルシクロヘキサン
等のハイドロカーボン類等の1種または2種以上の不活
性有機溶剤が用いられる。なお、該ビニル単量体は水性
電子線硬化形塗料に対して重量で40%以下含まれるこ
とが好ましい。
Examples of the inert organic solvent include methyl alcohol,
Monoalcohols such as ethyl alcohol, n-propyl alcohol, n-butyl alcohol, Sec-butyl alcohol, isobutyl alcohol; polyols such as ethylene glycol, propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono Butyl ether, 1-methoxy-2-propanol, 1-ethoxy-
Ether alcohols such as 2-propanol; 1J4-
Ethers such as dioxane; acetone, methyl ethyl ketone, methyl-n-propyl ketone, diethyl ketone,
Methyl isobutyl ketone, methyl-n-butyl ketone,
Ketones such as ethyl-n-butyl ketone; Acetates such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, 2-methoxyethyl acetate; n-pentane, n-hexane, One or more inert organic solvents such as hydrocarbons such as n-heptane, n-octane, benzene, toluene, xylene, ethylbenzene, cyclohexane, and methylcyclohexane are used. The vinyl monomer is preferably contained in an amount of 40% or less by weight based on the water-based electron beam curable coating material.

40%を越えると前述したようにプレコートメタルに要
求される高度の加工性、物性が悪くなる。
If it exceeds 40%, the high workability and physical properties required for precoated metal will deteriorate as described above.

また、該不活性有機溶剤は水性電子線硬化形塗料に対し
て重量で20%以下が好ましい。
Further, the amount of the inert organic solvent is preferably 20% or less by weight based on the water-based electron beam curable paint.

20%を越えると水を除去するための加熱の際、溶剤の
揮散による作業環境の悪化がおこりうる。
If it exceeds 20%, the working environment may deteriorate due to evaporation of the solvent during heating to remove water.

本発明の電子線硬化形上塗塗料に使用される樹脂として
は、その関係の技術分野で知られている電子線の照射に
よつて硬化する重合性不飽和結合を有する樹脂(水溶性
も含む)であればいずれでもよく、例えば不飽和ポリエ
ステル樹脂、アクリル系樹脂、ウレタン系樹脂、エポキ
シ系樹脂、ブタジエン系樹脂、アルキド系樹脂またはこ
れらと前記ビニル単量体との混合物、さらに塩化ビニル
系樹脂、酢酸ビニル系樹脂、ブチラール系樹脂、エチレ
ン一酢ビ系樹脂、アミド系樹脂と前記ビニル単量体との
混合物がある。
The resin used in the electron beam curable top coating of the present invention is a resin having a polymerizable unsaturated bond that is cured by electron beam irradiation and is known in the related technical field (including water-soluble resins). Any of them may be used, for example, unsaturated polyester resins, acrylic resins, urethane resins, epoxy resins, butadiene resins, alkyd resins, or mixtures of these and the vinyl monomers, vinyl chloride resins, There are mixtures of vinyl acetate resins, butyral resins, ethylene monovinyl acetate resins, amide resins, and the above vinyl monomers.

塗料化において、電子線硬化形塗料に通常使用されてい
る顔料、染料、充てん剤、添加剤、溶剤(水または前記
不活性有機溶剤)をさらに加えることはなんら差しつか
えない。不活性有機溶剤を用いる場合、上塗塗料中に含
まれる不活性有機溶剤量としては重量で40%以下が望
ましく、好ましくぱ20%以下である。
In making a paint, there is no problem in adding pigments, dyes, fillers, additives, and solvents (water or the above-mentioned inert organic solvents) that are commonly used in electron beam curable paints. When an inert organic solvent is used, the amount of inert organic solvent contained in the top coating is desirably 40% or less by weight, preferably 20% or less.

溶剤量が40%より多くなると溶剤が塗膜中に多量に残
るので塗膜の硬度、耐溶剤性が低下し塗膜性能上望まし
いことではない。本発明では、前述のように下塗用水性
電子線硬化形塗料を塗布してから、下塗塗膜に含まれて
いる水の殆どまたは全てを除去するために加熱を行ない
、かつその余熱を利用して電子線硬化形上塗塗料中の溶
剤分も蒸発せしめるのである。
If the amount of solvent exceeds 40%, a large amount of solvent remains in the coating film, which reduces the hardness and solvent resistance of the coating film, which is not desirable in terms of coating performance. In the present invention, after applying the water-based electron beam curable paint for the base coat as described above, heating is performed to remove most or all of the water contained in the base coat film, and the residual heat is utilized. This also evaporates the solvent in the electron beam curable top coat.

したがつて、上塗塗料を塗布するには金属板の表面温度
が常温に復さない内、すなわち、金属板の昇温(加熱)
前の表面温度をT。(常温)とし、昇温(加熱)直後の
表面温度をT1とすると、形成塗膜の硬度、耐溶剤性、
仕上り状態などを考慮すれば、望ましくは金属板の表面
温度TがT1からT1−TO?+TOの範囲内に上塗塗
料を塗布する ことである。
Therefore, in order to apply the top coat, the surface temperature of the metal plate must be raised (heated) before it returns to normal temperature.
The previous surface temperature is T. (room temperature) and the surface temperature immediately after heating (heating) is T1, the hardness of the formed coating film, solvent resistance,
Considering the finishing condition, etc., it is desirable that the surface temperature T of the metal plate is between T1 and T1-TO? It means applying top coat paint within the range of +TO.

金属板の表面温度Tが++島より低いときに上塗塗料を
塗布すると上塗塗料中の溶剤(不活性有機溶剤および/
または水)の蒸発が十分でなく、塗膜中に多量の溶剤が
残存することもあり、硬化後の塗膜性能とくに硬度、耐
溶剤性の低下がおこるか、または該溶剤を蒸発させるた
めに長時間を要し、工業化ラインへの適用が不可能とな
るおそれがある。
If the top coat is applied when the surface temperature T of the metal plate is lower than ++ island, the solvent in the top coat (inert organic solvent and/or
or water) may not evaporate sufficiently, and a large amount of solvent may remain in the coating film, resulting in a decrease in coating film performance, especially hardness, and solvent resistance after curing, or due to insufficient evaporation of the solvent. It takes a long time and may not be applicable to industrial production lines.

本発明の下塗塗料は水性電子線硬化形塗料であるため粘
度調整が極めて容易であり、100%固形分型塗料と異
なつて薄塗り塗装が容易であることから、通常のプレコ
ートメタル用の焼付塗料などに比べ、加熱は低温かつ短
時間ですむ。
Since the undercoat paint of the present invention is a water-based electron beam curable paint, it is extremely easy to adjust the viscosity, and unlike 100% solids type paints, it is easy to apply thin coats, so it can be used as a baking paint for ordinary pre-coated metal. Compared to other methods, heating can be done at a lower temperature and in a shorter time.

つまり、本発明における下塗塗膜の加熱は該下塗塗膜に
含まれる水分の殆どまたは全部を除去するために行ない
、その温度は70はC〜200℃、好ましくは100〜
180℃、加熱時間は10〜180秒、好ましくは20
〜80秒程度でよい。加うるに該下塗塗料は、物理的な
塗料のフローがよく、さらに加熱されるため、電子線に
よる塗膜の硬化時の応力歪が小さくなるため、素材に対
する付着性が良くなる等の効果がある。
That is, the heating of the undercoat film in the present invention is carried out in order to remove most or all of the moisture contained in the undercoat film, and the heating temperature is 70°C to 200°C, preferably 100°C to 200°C.
180°C, heating time is 10 to 180 seconds, preferably 20
~80 seconds is sufficient. In addition, the undercoat paint has a good physical paint flow, and since it is heated, the stress strain during curing of the paint film by electron beams is reduced, resulting in improved adhesion to the material. be.

さらに本発明では、水性電子線硬化形下塗塗料を塗装し
、塗料中の水および必要ならば有機溶剤を蒸発させる程
度の加熱を短時間で行ない、その余熱を利用して上塗塗
料中の有機溶剤および/または水を蒸発させ、その後電
子線を照射して硬化させるため、上塗塗料と下塗塗料と
の付着性および仕上り状態がよく、また、エネルギー節
減、工程の短縮化に有利である。
Furthermore, in the present invention, a water-based electron beam curable undercoat paint is applied, and the water in the paint and, if necessary, the organic solvent is heated in a short period of time to evaporate, and the residual heat is used to remove the organic solvent in the top coat paint. Since the water is evaporated and then cured by irradiation with electron beams, the adhesion between the top coat and the base coat and the finish are good, and it is also advantageous in saving energy and shortening the process.

本発明における下塗塗料および上塗塗料塗装方法は、通
常用いられている塗装方法が適応でき、ロール塗装、ス
プレー塗装、カーテン塗装などが適応される。
As the method for applying the undercoat and topcoat in the present invention, commonly used coating methods can be applied, such as roll coating, spray coating, curtain coating, etc.

本発明における塗膜の硬化は、電子線の照射によつて行
なわれ、その電子加速器としてはコツククロフト型、コ
ツククロフトワルトン型、バン・デ・グラーフ型、共振
変圧器型、絶縁コア変圧器型、ダイナミトロン型および
高周波型などの電子加速器があり、これから放出される
100〜2000Ke(特に好ましくは100〜500
KeV)の加速エネルギーをもつた電子線を塗膜に照射
することにより下塗塗膜と上塗塗膜とを同時に硬化する
The coating film in the present invention is cured by irradiation with an electron beam, and examples of the electron accelerator include Kotscroft type, Kotscroft-Walton type, Van de Graaf type, resonant transformer type, insulated core transformer type, There are electron accelerators such as Dynamitron type and high frequency type, and the 100 to 2000 Ke (especially preferably 100 to 500 Ke) emitted from them is available.
The undercoat film and topcoat film are simultaneously cured by irradiating the paint film with an electron beam having an acceleration energy of (KeV).

一般に電子線硬化形塗料は、酸素により硬化を抑制また
は禁止されやすいので本発明においても不活性気体中で
電子線照射するのが望ましい。
In general, curing of electron beam curable paints tends to be inhibited or inhibited by oxygen, so in the present invention, it is also desirable to irradiate electron beams in an inert gas.

以下製造例および実施例を挙げて具体的に説明する。本
発明で使用する部とあるのは、重量部を示す。製造例
1 エピコート樹脂1004、ハイドロキノン、および酢酸
ブチルを52の反応容器に仕込み、マントルヒーターを
用いて120℃まで攪拌しつつ、昇温しエピコート樹脂
を溶解した。
A detailed explanation will be given below with reference to production examples and examples. Parts used in the present invention indicate parts by weight. Manufacturing example
1. Epicoat Resin 1004, hydroquinone, and butyl acetate were placed in a reaction vessel No. 52, and the temperature was raised to 120° C. with stirring using a mantle heater to dissolve the Epicoat resin.

次にアクリル酸とトリエチルアミンを混合した液を、攪
拌中の反応容器に加え、120℃でさらに約5時間加熱
した。樹脂酸価を測定し、10以下になつたのを確認し
た後に、無水コハク酸を加え、120℃で約3時間撹拌
を続け、樹脂酸価104のワニスを得た。
Next, a mixture of acrylic acid and triethylamine was added to the stirring reaction vessel, and the mixture was further heated at 120° C. for about 5 hours. After measuring the resin acid value and confirming that it was 10 or less, succinic anhydride was added and stirring was continued at 120° C. for about 3 hours to obtain a varnish with a resin acid value of 104.

このワニスの不揮発分は約75%であつた。さらに減圧
して不揮発分95%になつたところで、このワニス79
0部に対し2−ヒドロキシプロピルアクリレート210
部配合し、ワニス囚を得た。ワニスCA)100部、2
−ヒドロキシプロピルアクリレート50部および70%
ジメチルアミノエタノール12部を十分混合した後に、
精製水200部を加えて、ワニス(B)を得た。ワニス
(B)は水性ワニスである。次にワニス(B)362部
、ルチル型酸化チタン50部、ストロンチウムクロメー
ト15部をペイントコンデイシヨナ一で分散し、下塗塗
料(1)を得た。
The nonvolatile content of this varnish was approximately 75%. When the pressure was further reduced to 95% nonvolatile content, the varnish 79
0 parts to 210 parts of 2-hydroxypropyl acrylate
The mixture was mixed and a varnish was obtained. Varnish CA) 100 copies, 2
- 50 parts and 70% of hydroxypropyl acrylate
After thoroughly mixing 12 parts of dimethylaminoethanol,
Varnish (B) was obtained by adding 200 parts of purified water. Varnish (B) is an aqueous varnish. Next, 362 parts of varnish (B), 50 parts of rutile titanium oxide, and 15 parts of strontium chromate were dispersed in a paint conditioner to obtain an undercoat (1).

製造例メタクリル酸メチル487部、アクリル酸エチル
454部、アクリル酸126部をキシロール中で常法に
より溶液重合を行なつた。
Production Example 487 parts of methyl methacrylate, 454 parts of ethyl acrylate, and 126 parts of acrylic acid were subjected to solution polymerization in xylene by a conventional method.

さらにメタクリル酸グリシジル102部、トリエチルア
ミン2部を配合して常法により反応させ、不飽和アクリ
ル樹脂を得た。この樹脂の酸価は53であつた。このア
クリル樹脂ワニスを減圧して、不揮発分90%のワニス
を得た。このワニス830部に対して2−ヒドロキシエ
チルメタクリレート170部配合して混合溶解した。こ
のワニス1000部に対し28%アンモニア水100部
を添加して中和し、精製水1000部を配合し、混合し
て水性ワニス(C)を得た。この水性ワニス(C)10
00部、ルチル型酸化チタン300部、酸化鉄顔料10
0部を配合して、ボールミルで分散して下塗塗料9を得
た。製造例 酢ビ一塩ビ共重合体エマルジヨン(46%不揮発分)1
000部に酸化チタン300部、硫酸バリウム100部
配合し、分散して塗料を得た。
Furthermore, 102 parts of glycidyl methacrylate and 2 parts of triethylamine were blended and reacted in a conventional manner to obtain an unsaturated acrylic resin. The acid value of this resin was 53. The pressure of this acrylic resin varnish was reduced to obtain a varnish with a nonvolatile content of 90%. 170 parts of 2-hydroxyethyl methacrylate was added to 830 parts of this varnish and mixed and dissolved. 100 parts of 28% ammonia water was added to 1000 parts of this varnish to neutralize it, and 1000 parts of purified water was added and mixed to obtain an aqueous varnish (C). This water-based varnish (C) 10
00 parts, 300 parts of rutile titanium oxide, 10 parts of iron oxide pigment
0 parts were blended and dispersed in a ball mill to obtain an undercoat paint 9. Production example Vinyl acetate monovinyl chloride copolymer emulsion (46% non-volatile content) 1
000 parts, 300 parts of titanium oxide and 100 parts of barium sulfate were blended and dispersed to obtain a paint.

この塗料1000部にトリエチレングリコールジアクリ
レート50部配合して、電子線硬化形水性下塗塗料(自
)を得た。製造例 アクリル樹脂水性エマルジヨン塗料(白)(関西ペイン
ト社製、商品名ビニデラツクス、不揮発分50%)10
00部に対し、ペンタエリスリトールジメタクリレート
30部配合し、下塗塗料(4)を得た。
50 parts of triethylene glycol diacrylate was added to 1,000 parts of this paint to obtain an electron beam-curable water-based undercoating paint (self). Production example Acrylic resin water-based emulsion paint (white) (manufactured by Kansai Paint Co., Ltd., trade name Vinidelux, non-volatile content 50%) 10
00 parts, 30 parts of pentaerythritol dimethacrylate was blended to obtain an undercoat (4).

製造例 アスカプライマ一(赤サビ)(関西ペイント社製、商品
名、アクリル系樹脂エマルジヨン、不揮発分50%)1
000部にポリエチレングリコールジメタクリレート2
0部配合して下塗塗料(7)を得た。
Production example Asuka Primer 1 (red rust) (manufactured by Kansai Paint Co., Ltd., product name, acrylic resin emulsion, non-volatile content 50%) 1
000 parts of polyethylene glycol dimethacrylate 2
An undercoat (7) was obtained by blending 0 parts.

製造例 (f)をキシレンに添加して常法により反応させて、ア
クリル樹脂ワニスを得た。
Production Example (f) was added to xylene and reacted in a conventional manner to obtain an acrylic resin varnish.

次いで全体を50℃に冷却した。内容物にメタクリル酸
(d)を添加し、約1.5時間を要して温度を138℃
に漸次上昇させた。
The whole was then cooled to 50°C. Add methacrylic acid (d) to the contents and bring the temperature to 138°C over about 1.5 hours.
gradually increased to

この温度に約1時間維持し、キシレンを除去してアクリ
ル樹脂を得た。このアクリル樹脂500部、イソブチル
アクリレート250部、2−ヒドロキシエチルアクリレ
ート250部を添加溶解してワニス(有)を得だ。製造
例 イソフタル酸1.0モル、アジピン酸1.0モル、ネオ
ペンチルグリコール3モルを常法により加熱して酸価6
のポリエステルを得た。
This temperature was maintained for about 1 hour, and xylene was removed to obtain an acrylic resin. 500 parts of this acrylic resin, 250 parts of isobutyl acrylate, and 250 parts of 2-hydroxyethyl acrylate were added and dissolved to obtain Varnish Co., Ltd. Production Example 1.0 mol of isophthalic acid, 1.0 mol of adipic acid, and 3 mol of neopentyl glycol were heated in a conventional manner to give an acid value of 6.
of polyester was obtained.

このポリエステルにヘキサメチレンジイソシアネート2
モル、2−ヒドロキシエチルアクリレート2モルを加え
て反応させ、不飽和ウレタン樹脂を得た。この樹脂70
0部をヒドロキシプロピルメタクリレート150部、2
−エチルヘキシルアクリレート150部に混合溶解して
ワニス(至)を得た。製造例 アクリル樹脂(パラロイドB−72:BOOm&Has
s社製)を400部、酢酸ブチル300部、ヒドロキシ
プロピルメタクリレート300部に溶解してアクリル樹
脂ワニス(自)を得た。
Hexamethylene diisocyanate 2 is added to this polyester.
2 moles of 2-hydroxyethyl acrylate were added and reacted to obtain an unsaturated urethane resin. This resin 70
0 parts to 150 parts of hydroxypropyl methacrylate, 2
- Mix and dissolve in 150 parts of ethylhexyl acrylate to obtain a varnish. Production example Acrylic resin (Paraloid B-72: BOOm&Has
Acrylic resin varnish (proprietary) was obtained by dissolving 400 parts of (manufactured by S Company) in 300 parts of butyl acetate and 300 parts of hydroxypropyl methacrylate.

製造例ワニス2500部、ワニス6000部、ワニス1
500部、ヒドロキシエチルメタクリレート500部に
酸化チタン5000部を添加配合して常法により分散し
て白エナメルの上塗塗料1を得た。
Production example Varnish 2500 parts, Varnish 6000 parts, Varnish 1
500 parts of hydroxyethyl methacrylate and 5000 parts of titanium oxide were added and blended and dispersed by a conventional method to obtain a white enamel top coat 1.

実施例 1 板厚0.6mmの表面処理亜鉛引鉄板に下塗塗料1をロ
ールコーターにより膜厚が約5μとなる様に塗装し、そ
の後ただちに熱風炉に入れ素材温度(T1)が130だ
Cになる様に40秒加熱した。
Example 1 Primer paint 1 was applied to a surface-treated galvanized iron plate with a thickness of 0.6 mm using a roll coater so that the film thickness was approximately 5 μm, and then immediately placed in a hot air oven to bring the material temperature (T1) to 130°C. It was heated for 40 seconds so that

その後素材温度(T)が80℃のときにカーテンフロー
コーターにより上塗塗料1を膜厚25μとなる様に塗装
し、20秒後に不活性雰囲気中で、電子線を5Mrad
照射した。TOは20℃であつた。得られた塗膜の仕上
りは良好で加工性(折り曲げ性、衝撃性)、付着性は良
好であつた。実施例 2 0.3m1Lの表面処理亜鉛引鉄板に下塗塗料を口ール
コータ一により膜厚が約5μとなるように塗装し、その
後ただちに雰囲気温度200℃の熱風炉に入れ、40秒
加熱した。
Then, when the material temperature (T) was 80°C, topcoat 1 was applied to a film thickness of 25μ using a curtain flow coater, and after 20 seconds, an electron beam was applied to the film at 5 Mrad in an inert atmosphere.
Irradiated. TO was at 20°C. The resulting coating film had a good finish and good processability (bending properties, impact resistance) and adhesion. Example 2 A 0.3 mL surface-treated galvanized steel plate was coated with an undercoat using a rotary coater to a film thickness of approximately 5 μm, and then immediately placed in a hot air oven at an ambient temperature of 200° C. and heated for 40 seconds.

素材温度(T1)は200℃であつた。その後素材温度
(1)が100′Cのときにカーテンフローコーターに
より上塗塗料Iを膜厚20μとなる様に塗装し、その後
電子線を5Mrad照射して塗膜を硬化した。TOは?
℃であつた。得られた塗膜の仕上り状態は良好で、加工
性も良好であつた。実施例 3 0.6mTfLの表面処理亜鉛引鉄板に下塗塗料をロー
ルコーターにより5μとなる様に塗装し、その後ただち
に雰囲気温度70℃の熱風炉に入れ、180秒加熱した
The material temperature (T1) was 200°C. Thereafter, when the material temperature (1) was 100'C, a top coat I was applied to the film using a curtain flow coater to a film thickness of 20 μm, and then an electron beam was irradiated at 5 Mrad to cure the film. What about T.O.?
It was warm at ℃. The resulting coating film had a good finish and good workability. Example 3 A 0.6 mTfL surface-treated galvanized iron plate was coated with an undercoat to a thickness of 5 μm using a roll coater, and then immediately placed in a hot air oven at an ambient temperature of 70° C. and heated for 180 seconds.

素材温度(T1)は70℃であつた。その後素材温度(
T)が50℃のときに上塗塗料1をロールコーターで2
5μとなる様に塗装し、その後電子線を9Mrad照射
して塗膜を硬化させた。TOは20℃であつた。得られ
た塗膜の仕上り状態は良好で、加工性も良好であつた。
実施例 40.6鼎の表面処理亜鉛引鉄板に下塗塗料を
ロールコーターにより5μとなる様に塗装し、その後た
だちに雰囲気温度150℃の熱風炉に入れ、60秒加熱
した。
The material temperature (T1) was 70°C. Then the material temperature (
When T) is 50℃, apply top coat 1 to 2 using a roll coater.
It was coated to a thickness of 5μ, and then irradiated with an electron beam of 9 Mrad to cure the coating film. TO was at 20°C. The resulting coating film had a good finish and good workability.
Example 40.6 A surface-treated galvanized steel plate was coated with an undercoat to a thickness of 5 μm using a roll coater, and then immediately placed in a hot air oven at an ambient temperature of 150° C. and heated for 60 seconds.

素材温度(T1)は150℃であつた。その後素材温度
(1)が80℃のときに上塗塗料1をカーテンフローコ
ーターで25μとなる様に塗装し、その後電子線を5M
rad照射して塗膜を硬化した。TOは20℃であつた
。得られた塗膜の仕上り状態は良好で、加工性も良好で
あつた。実施例 5 0.6mmの表面処理亜鉛引鉄板に下塗塗料をカーテン
フローコーターで膜厚が7μとなる様に塗装し、雰囲気
温度200℃の熱風炉に入れ、40秒加熱した。
The material temperature (T1) was 150°C. After that, when the material temperature (1) is 80℃, apply top coat 1 with a curtain flow coater to a thickness of 25μ, and then apply an electron beam to 5M.
The coating film was cured by rad irradiation. TO was at 20°C. The resulting coating film had a good finish and good workability. Example 5 A 0.6 mm surface-treated galvanized iron plate was coated with an undercoat using a curtain flow coater to a film thickness of 7 μm, and placed in a hot air oven at an ambient temperature of 200° C. and heated for 40 seconds.

素材温度(T1)は200℃であつた。その後素材温度
(1)が80℃のときに上塗塗料をカーテンフローコー
ターで25μ塗装し、電子線を5Mrad照射し、塗膜
を硬化した。TOは20℃であつた。得られた塗膜の仕
上り状態は良好で、加工性も良好であつた。なお、これ
らの実施例と比較するために、上記実施例1〜5におけ
る上塗塗料1を、素材表面温度(T)が常温(20上C
)に復してから塗装し、それ以外は各実施例と同じ条件
および方法で塗装し、硬化せしめて得た塗膜は、上記実
施例に比べて、仕上り状態が劣り、加工性ならびに付着
性なども十分でなかつた。
The material temperature (T1) was 200°C. Thereafter, when the material temperature (1) was 80° C., a top coat of 25 μm was applied using a curtain flow coater, and an electron beam of 5 Mrad was irradiated to cure the coating film. TO was at 20°C. The resulting coating film had a good finish and good workability. In addition, in order to compare with these Examples, the top coat 1 in Examples 1 to 5 above was tested when the material surface temperature (T) was room temperature (20C).
), and then painted under the same conditions and methods as in each example, and cured. Compared to the above examples, the finished coating was inferior, and the workability and adhesion were poor. etc. were not sufficient.

上記実施例および比較例で得た塗膜の試験結果は表−1
のとおりであつた。
Table 1 shows the test results of the coating films obtained in the above examples and comparative examples.
It was as follows.

Claims (1)

【特許請求の範囲】[Claims] 1 金属上に、重合性不飽和結合を有する水溶性又は水
分散性電子線硬化形下塗塗料を塗装してから70〜20
0℃に加熱を行ない、該下塗塗膜中の水分の殆どまたは
全部を除去した後、被塗物の表面温度が常温に復さない
内に電子線硬化形上塗塗料を塗装し、その後、電子線を
照射して上記下塗塗膜と上塗塗膜を同時に硬化せしめる
ことを特徴とするプレコートメタルの塗装硬化方法。
1 70 to 20 minutes after applying a water-soluble or water-dispersible electron beam-curable undercoat having a polymerizable unsaturated bond to the metal.
After heating to 0°C to remove most or all of the moisture in the undercoat film, an electron beam curing type top coat is applied before the surface temperature of the object to be coated returns to room temperature. A method for curing a precoated metal coating, characterized by curing the undercoat film and the topcoat film simultaneously by irradiating with.
JP50082278A 1975-07-03 1975-07-03 Paint curing method for pre-coated metal Expired JPS5939195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50082278A JPS5939195B2 (en) 1975-07-03 1975-07-03 Paint curing method for pre-coated metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50082278A JPS5939195B2 (en) 1975-07-03 1975-07-03 Paint curing method for pre-coated metal

Publications (2)

Publication Number Publication Date
JPS525850A JPS525850A (en) 1977-01-17
JPS5939195B2 true JPS5939195B2 (en) 1984-09-21

Family

ID=13770023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50082278A Expired JPS5939195B2 (en) 1975-07-03 1975-07-03 Paint curing method for pre-coated metal

Country Status (1)

Country Link
JP (1) JPS5939195B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942921C1 (en) * 1989-12-23 1991-01-31 Herberts Gmbh, 5600 Wuppertal, De
DE102008059014A1 (en) * 2008-05-28 2009-12-03 Basf Coatings Ag Process for coating metal strips

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498929A (en) * 1972-05-25 1974-01-26
JPS51107335A (en) * 1975-03-18 1976-09-22 Kansai Paint Co Ltd Purekootometaruno tosokokahoho

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498929A (en) * 1972-05-25 1974-01-26
JPS51107335A (en) * 1975-03-18 1976-09-22 Kansai Paint Co Ltd Purekootometaruno tosokokahoho

Also Published As

Publication number Publication date
JPS525850A (en) 1977-01-17

Similar Documents

Publication Publication Date Title
US4358477A (en) Process of curing unsaturated epoxy coating composition with radiation and epoxy curing agent, and coated substrate
JP4282861B2 (en) Coating method
US3664861A (en) Coating process
CA2370350A1 (en) Polymer
JPH0812925A (en) Water-based coating composition and coating using same
JP3282182B2 (en) Method for painting polyolefin resin molded products
US5786033A (en) Method of forming multi-layer paint films, base coat composition and method of painting
US4436849A (en) Aqueous resin composition
JP4775830B2 (en) Water-based paint composition and method for forming waterproof coating using the same
JPS5939195B2 (en) Paint curing method for pre-coated metal
JP2941014B2 (en) Method of forming highly corrosion-resistant coating film
JP2004073956A (en) Paint film forming method
JPH09296023A (en) Aqueous resin composition
JPH10128234A (en) Thermosetting coating composition
JPS5824190B2 (en) Pre-coated metal
JP2608466B2 (en) Acid-curable coating composition for polyolefin resin
JPS5819355B2 (en) Piano Tosoushiagehouhou
JP2811773B2 (en) Aqueous coating composition and coating method using the same
JPS6031347B2 (en) aqueous coating composition
JP3232712B2 (en) Coating method of polyolefin resin molded product
JPH0493374A (en) Aqueous intercoating material
JP2009249573A (en) Aqueous primer for lamp reflector, production method of aqueous primer for lamp reflector, and lamp reflector
JP2883958B2 (en) Waterborne intermediate coating
JP2865889B2 (en) Topcoat colored base coating composition and coating method
JPH04233926A (en) Hybrid polymer, and aqueous dispersion and coating composition obtained therefrom