JPS5939174A - Picture acquiring device using flat mirror in spin type satellite - Google Patents

Picture acquiring device using flat mirror in spin type satellite

Info

Publication number
JPS5939174A
JPS5939174A JP57148863A JP14886382A JPS5939174A JP S5939174 A JPS5939174 A JP S5939174A JP 57148863 A JP57148863 A JP 57148863A JP 14886382 A JP14886382 A JP 14886382A JP S5939174 A JPS5939174 A JP S5939174A
Authority
JP
Japan
Prior art keywords
satellite
spin
mirror
image
plane mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57148863A
Other languages
Japanese (ja)
Other versions
JPS6364113B2 (en
Inventor
Takeshi Maeda
健 前田
Junichi Aoyama
順一 青山
Kenji Kitade
北出 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57148863A priority Critical patent/JPS5939174A/en
Publication of JPS5939174A publication Critical patent/JPS5939174A/en
Publication of JPS6364113B2 publication Critical patent/JPS6364113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To attain easily a picture of objective in spin state, by obtaining an optical image of an objective located at the outside of a satellite on a screen of a camera in the spin satellite via a rotary flat mirror and a fixed flat mirror. CONSTITUTION:A rotation mechanism and control system 5 controls the rotary flat mirror 2 based on the spin rate data of the satellite main body detected with a sun sensor or the like so that the rotary flat mirror 2 is rotated in a half speed of the spin rate (omega) of the satellite main body 1 viewed from the inertia space and in opposite direction as the direction of rotation of the stellite main body 1. Thus, a still objective image is obtained on a mirror 3 fixed to the satellite 1. The mirror 3 leads the image to an optional position in the satellite, makes it incident to a two-dimensional image pickup device 4, allowing to attain the two-dimensional image of the objective in the spin satellite.

Description

【発明の詳細な説明】 本発明はスピン形衛星において、衛星内で衛星外にある
物体の画像を得るための撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging device for obtaining an image of an object outside the satellite in a spin-type satellite.

上記装置ハ衛星を極低スピンにスピンダウンあるいは静
止させることによって衛星を慣性空間に対して準静的に
静止させ、二次元素子等による撮像によって像を衛星内
に作る方式と、スピンしている衛星上の撮像機によって
目標物体をスキャンし、衛星内あるいL地上で処理する
ことによって目標物体の像を得る方式とが従来よりあっ
た。
The above-mentioned device (c) spins down the satellite to an extremely low spin or stops the satellite quasi-statically with respect to inertial space, and creates an image inside the satellite by imaging with secondary elements, etc. Conventionally, there has been a method of obtaining an image of a target object by scanning the target object with an imager on a satellite and processing it within the satellite or on the ground.

前者の方式でFi被写体が暗くて露光時間を長くする必
要があるときけWμを極低スピンあるいは静止させるこ
とになるが、このとき衛星の姿勢不安定を招く恐れがあ
り、またこnに伴って取得画像に歪みを生ずるという欠
点があった。
In the former method, when the Fi subject is dark and it is necessary to lengthen the exposure time, Wμ will be kept at an extremely low spin or stationary, but this may cause the satellite's attitude to become unstable. This has the disadvantage that distortion occurs in the acquired image.

後者の方式では衛星内でスキャンした信号から画像を得
るには複軸な処理回路が必要となυ、これに伴う重量増
加もさけられない。また、スキャン信号を地上で処理す
る場合も計算機による処理が必要となり、系全体が′P
1.Mfになるという欠点があった。
In the latter method, a multi-axis processing circuit is required to obtain images from signals scanned inside the satellite, which inevitably increases weight. Also, when processing scan signals on the ground, computer processing is required, and the entire system is
1. There was a drawback that it became Mf.

また、スキャンタイプの撮像方式では、−回の撮像時間
はスキャンレートで決定されるため、目標物体が暗い場
合には感度が悪くなるという欠点もあった。
In addition, in the scan type imaging method, since the imaging time for - times is determined by the scan rate, there is also a drawback that the sensitivity deteriorates when the target object is dark.

本発明の目的は衛星のスピン安定を保ったままで、かつ
、衛星内で目標物体画像が簡単に得られる平面@を用い
た画像取得装M’fe提供することにある。
An object of the present invention is to provide an image acquisition device M'fe using a plane @ that can easily obtain an image of a target object within the satellite while maintaining the spin stability of the satellite.

前記目的を達成するために本発明によるスピン形衛星に
おける平面鏡分用いた画像取得装置はスピン衛星の一端
面に設けられ、平面上の回転軸が前記スピン衛星の回転
軸に平行になるように設定された回転平面鏡と、撮像の
エレベーション方向を決定するための衛星固定イ拍;鐘
と、前記スピン衛星の一端面に設けられた回転平面鏡を
前記スピン衛星の回転方向と逆方向であって、その回転
速度が前記スピン衛星の回転速糺の1/2になるように
回転させる回転機構およびその制御系とからなシ、衛星
外にある目標物体の光学像を前記回転平面鏡、固定平面
鏡分介してスピン衛星内のカメラ等のスクリーン上に得
るように溝成しである。
In order to achieve the above object, an image acquisition device using a plane mirror in a spin-type satellite according to the present invention is installed on one end face of the spin-type satellite, and the rotation axis on the plane is set to be parallel to the rotation axis of the spin-type satellite. a rotating plane mirror provided on one end surface of the spinning satellite; a rotating plane mirror provided on one end surface of the spinning satellite; A rotation mechanism that rotates the spin satellite so that its rotation speed is 1/2 of the rotation speed of the spin satellite and its control system, and an optical image of a target object outside the satellite is transmitted between the rotating plane mirror and the fixed plane mirror. It is grooved so that it can be seen on the screen of a camera in a spinning satellite.

前記構成によればスピン衛星はスピン状態で容易に目標
物体画像をイ」ることができ本発明の目的は完全に達成
される。
According to the above configuration, the spinning satellite can easily capture images of the target object in a spinning state, and the object of the present invention is completely achieved.

以下、図面を参照して本発明をさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は本発明による平面鏡ケ用いた画像取得装置の一
実施例を示す図で、スピン軸方向から見た平面図および
゛スピンllT111直角方向から見た正面図である。
FIG. 1 is a diagram showing an embodiment of an image acquisition device using a plane mirror according to the present invention, and is a plan view seen from the spin axis direction and a front view seen from the direction perpendicular to the spin 111.

図において1は衛が本体、2は衛にのスピン軸に平行に
IRり付けた回転平面鏡、3は衛星に固定された鏡、4
I/i二次元CCDやIDT等の二次元撮像機器、5は
回転機構および制御系をそれぞれ示す。回転機槽フよび
制御系5Iriサンセンサ等により検出された衛星本体
のスピンレートデータを基に回転平面鏡2を慣性空間か
ら見て衛星本体1のスピンレート(ω)の半分で、かつ
衛岸本体1の回転方向と逆方向に回転するように回転平
面鏡2を制御する。これによって衛星に固定された@3
には静止した目標物体像が?FJられる。鏡3はこの像
をさらに衛星内の任意の場所へ導き、二次元CCD+I
DT等の二次元撮像機器4に入射する。以上の光学経路
によってスピン衛星内に目標物体の二次元像が得られる
。ここで、上述の操作によって鋒3に物体の静止像が得
られることを数学的に証明する。
In the figure, 1 is Mamoru's main body, 2 is a rotating plane mirror attached to Mamoru's IR parallel to its spin axis, 3 is a mirror fixed to the satellite, and 4 is
A two-dimensional imaging device such as an I/i two-dimensional CCD or an IDT, and 5 indicate a rotation mechanism and a control system, respectively. Based on the spin rate data of the satellite main body detected by the rotating machine tank and the control system 5Iri sun sensor, etc., the rotating plane mirror 2 is set at half the spin rate (ω) of the satellite main body 1 when viewed from inertial space, and the guard main body 1 The rotating plane mirror 2 is controlled so that it rotates in a direction opposite to the direction of rotation. This fixed it to the satellite @3
Is there a stationary target object image? FJ is done. Mirror 3 further guides this image to an arbitrary location within the satellite and displays it on a two-dimensional CCD+I
The light enters a two-dimensional imaging device 4 such as a DT. A two-dimensional image of the target object is obtained within the spinning satellite through the optical path described above. Here, it will be mathematically proven that a still image of the object can be obtained on the wing 3 by the above-described operation.

鏡3の実像を写す性質は数学的に一種の座標変換と考え
られるので、鐘の変換マトリクスは次のように求められ
る。今、鏡面内の任意の点を原点とする直角座標系を考
えて第2図に示すように各ベクトル全以下のように定義
する。
Since the property of mirror 3 to reflect a real image can be mathematically considered as a kind of coordinate transformation, the transformation matrix of the bell can be obtained as follows. Now, considering a rectangular coordinate system whose origin is an arbitrary point on the mirror surface, each vector is defined as shown in FIG.

N;鏡の面内のベクトル M;鏡の単位法線ベクトル P;物体の位置ベクトル t;鏡による物体の虚像の位置ベクトルベクトルN 、
 Mtill1式を満足する。
N: Vector M in the plane of the mirror; Unit normal vector P of the mirror; Position vector t of the object; Position vector of the virtual image of the object due to the mirror Vector N,
Satisfies Mtill1 formula.

(N−M)=o    、    IM+=1   −
−−−  ロ)また、任意の物体Pの位置ベクトルP 
H+21式のベクトル方程式で表わされる。
(NM)=o, IM+=1 −
--- B) Also, the position vector P of any object P
It is expressed by a vector equation of the H+21 formula.

P=tM十N   (t:定数)  ・・・・ (2)
ここで、(1)式より (M−P)=t 1M12+(M・N)= t    
             拳・昏・  (3)である
から、(31式ヲ(2)式に代入ずれは、P=(M−P
)M十N       ・・・・ (4)さらに、鈴の
幾何学的性質より虚住fK苅してはメ=N−tM   
       ・・・・ (5)となり、(5)式に(
31式、(4)式な代入ずれば、虚像〆のベクトル方程
式として(6)式を得る。
P=tM×N (t: constant) ... (2)
Here, from equation (1), (MP)=t 1M12+(M・N)=t
Since (3), the substitution deviation of (31) into equation (2) is P = (M - P
)M0N...(4) Furthermore, from the geometrical properties of the bell, Kousumi fKarishihame=N-tM
...(5), and in equation (5), (
By substituting Equation 31 and Equation (4), we obtain Equation (6) as the vector equation of the virtual image.

d=p−2(M−P)M     ・・・・(6)そこ
で、 とすれば、虚像yす:(6)式より、 と表わせ、鏡の変換マ) +7クスMが得られる。
d=p-2(M-P)M (6) Then, if it is, then the virtual image ys: From equation (6), it can be expressed as, and the mirror transformation ma) +7xM can be obtained.

ただし、 次に第1図に示したようK、衛星に鏡を搭載した時、慣
性空間で静止している物体Pの、鏡に写る虚像−が鏡3
で如何に見えるが求める。
However, as shown in Figure 1, when a mirror is mounted on a satellite, the virtual image of an object P that is stationary in inertial space is reflected in mirror 3.
Ask how it looks.

第3図は衛星に回転平面@2を搭載したときの座標系を
示している。ただし、回転平面鏡2の面内K Z @に
とり、かつZ軸はスピン軸に平行とする。また、回転平
面鏡2は衛星上から見てZ軸まわシにω/2で回転]2
、衛星はスビンラ1伯G−まゎりにωで回転する。
Figure 3 shows the coordinate system when rotating plane @2 is mounted on the satellite. However, it is assumed that K Z @ is in the plane of the rotating plane mirror 2, and the Z axis is parallel to the spin axis. Also, the rotating plane mirror 2 rotates around the Z axis at ω/2 when viewed from the satellite]2
, the satellite rotates at ω around Svinra 1 G-.

今、  GO=Y’t   、GP=’l’2 、op
=pとおくと、P=1’2nであ、!l) 、?2.2
1 &:を衛星固定座種糸で見ると、 ただし、  rtrz:定 数 α  ;鐘の単位法線ベクトル (M)とPの初期位相差 とおけるから、座標系0でPを表わすととなる。そこで
、衛星から天体を観測する場合には、IT* l > 
ll’ lI jシ衛星固定系かう見ルト(8)式が成
立する。
Now, GO=Y't, GP='l'2, op
If we set =p, then P=1'2n! l) ,? 2.2
1 If we look at &: in terms of the satellite fixed seat, where: rtrz: constant α; Since it can be set as the initial phase difference between the unit normal vector of the bell (M) and P, we can express P in the coordinate system 0. . Therefore, when observing celestial bodies from a satellite, IT* l >
ll' lI j From the satellite fixed system, equation (8) holds true.

また、衛星固定系て見た鏡の単位法線ベクトルMと書け
るから、(7)式よシこのときの錦の変換マトリクス材
は、 となる。ゆえに+81 、 +91式よシ衛星上から見
た物体Pの虚像■)は、+111式で表わせる。
Also, since it can be written as the unit normal vector M of the mirror seen from the satellite fixed system, the Nishiki conversion matrix material in this case is as follows from equation (7). Therefore, the virtual image of the object P seen from the satellite can be expressed by the +111 formula.

帥式シj、ωでスピンしている衛星上から、漬ωて回転
する鏡を通して見た物体Pの虚像f)は時間tK独立で
あυ、これは第1図における回転平面鏡2に得られる物
体Pの像が衛星から見ると静止していることを意味する
The virtual image f) of an object P seen from a satellite spinning at an angle of ω and through a mirror rotating at an angle of ω is independent of time tK, υ, which is obtained by the rotating plane mirror 2 in Fig. 1. This means that the image of the object P is stationary when viewed from the satellite.

以上詳しく説明したように、本発明によれば衛星全スピ
ン安定させたままで、かつ衛星内で目標物体の像を簡単
に取得できる。し走がって、画像を衛星内で得るために
ホイールを搭載し、撮像時に衛星をスピンダウン、ある
いは静止させるスピン形衛星では本発明ケ用いることに
よりホイールを削除できるという利点が生ずる。また、
簡単な光学系の組み合わせて構成されるため、スキャン
形の撮像方式にくらべ取扱いが容易であり、受像装貿と
して二次元CCDなどを用いれけ重月、消費電力ともに
低減可能という利点もある。
As described in detail above, according to the present invention, it is possible to easily obtain an image of a target object within the satellite while keeping the entire spin of the satellite stable. In addition, in a spin-type satellite in which a wheel is mounted to obtain an image within the satellite, and the satellite is spun down or stationary during imaging, the use of the present invention has the advantage that the wheel can be eliminated. Also,
Since it is composed of a combination of simple optical systems, it is easier to handle than a scan type imaging system, and it also has the advantage that it is possible to use a two-dimensional CCD or the like as an image receiving device, reducing both the size and power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図祉本発明による平面鏡を用いた画像取得@置の一
実施例を示す平面図と正面図である。第2図は鏡の変換
マトリックスを求めるための座標系を示す図、第3じ(
1は費I星に4.t・を搭載した時の座標系を示す図で
ある。 1・−・衛星本体 2・・一回転平面鏡 3・・拳固定平面鏡 4・拳・二次元の撮像機器 5・me回転機構およびその11:序11系特許出願人
 日本電気株式会社 代理人 弁理士 井 ) ロ   壽 第1図 第3図
FIG. 1 is a plan view and a front view showing an embodiment of an image acquisition @ apparatus using a plane mirror according to the present invention. Figure 2 is a diagram showing the coordinate system for determining the mirror transformation matrix, Figure 3 (
1 is a cost I star and 4. FIG. 3 is a diagram showing a coordinate system when a t. 1.--Satellite main body 2..One-rotation plane mirror 3..Fist fixed plane mirror 4.Fist.Two-dimensional imaging device 5.Me rotation mechanism and part 11: Introduction 11 series patent applicant NEC Co., Ltd. agent Patent attorney I ) Ro Hisashi Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] スピン衛星の一端面に設けられ、平面上の回転軸が前記
スピン衛星の回転軸に平行になるように設定された回転
平面鏡と、撮像のエレベーション方向を決定するための
衛星固定平面鏡と、前記スピン衛星の一端面に設けられ
た回転平面鏡を前記スピン衛星の回転方向と逆方向であ
って、その回転速度が前記スピン衛星の回転速度の17
2になるように回転させる回転機構およびその制御系と
からなシ、衛星外にある目標物体の光学像ケ前記回転平
面鏡、固定平面鏡を介してスピン衛星内のカメラ等のス
クリーン上に得ることを特徴とするスピン形衛星におけ
る平面鏡を用いた画像取得装置。
a rotating plane mirror provided on one end surface of the spin satellite and set so that the rotation axis on the plane is parallel to the rotation axis of the spin satellite; a satellite fixed plane mirror for determining the elevation direction of imaging; A rotating plane mirror provided on one end face of the spin satellite is rotated in a direction opposite to the rotation direction of the spin satellite, and its rotation speed is 17 times higher than the rotation speed of the spin satellite.
2, and a control system for the rotation mechanism, to obtain an optical image of a target object outside the satellite onto a screen of a camera or the like inside the spinning satellite via the rotating plane mirror and the fixed plane mirror. An image acquisition device using a plane mirror on a spin-type satellite.
JP57148863A 1982-08-27 1982-08-27 Picture acquiring device using flat mirror in spin type satellite Granted JPS5939174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57148863A JPS5939174A (en) 1982-08-27 1982-08-27 Picture acquiring device using flat mirror in spin type satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57148863A JPS5939174A (en) 1982-08-27 1982-08-27 Picture acquiring device using flat mirror in spin type satellite

Publications (2)

Publication Number Publication Date
JPS5939174A true JPS5939174A (en) 1984-03-03
JPS6364113B2 JPS6364113B2 (en) 1988-12-09

Family

ID=15462416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57148863A Granted JPS5939174A (en) 1982-08-27 1982-08-27 Picture acquiring device using flat mirror in spin type satellite

Country Status (1)

Country Link
JP (1) JPS5939174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7221401B2 (en) * 2002-05-15 2007-05-22 Sony Corporation Monitoring system, monitoring method, and imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7221401B2 (en) * 2002-05-15 2007-05-22 Sony Corporation Monitoring system, monitoring method, and imaging apparatus

Also Published As

Publication number Publication date
JPS6364113B2 (en) 1988-12-09

Similar Documents

Publication Publication Date Title
TWI289237B (en) Imaging stabilizer using micromirror array lens
CN109211107A (en) The measuring instrument of image acquisition is carried out for sweep object and to object
TW201719267A (en) A wide field of view camera for integration with a mobile device
US20140340474A1 (en) Panoramic image scanning device using multiple rotating cameras and one scanning mirror with multiple surfaces
EP3367057A1 (en) Surveying instrument for scanning an object and image acquisition of the object
US10139276B2 (en) Hyperspectral imaging of a moving scene
US4017145A (en) Device mountable in a craft for the recording of data from a remote object
US7324747B2 (en) Aircraft fuselage element and method of taking a number of pictures
CN107870415A (en) Panoramic scanning device
JPS5939174A (en) Picture acquiring device using flat mirror in spin type satellite
CN108121146A (en) Panoramic scanning device
CN206523738U (en) Optical imaging device bearing support
CN206411335U (en) Panoramic scanning device
US4788423A (en) Two-mirror scanning system
JP2016532101A (en) System structure for line scanner with fixed projection area, fixed GSD, fixed spatial resolution
JPH05231934A (en) Scanning method and apparatus for photoelectron camera having high resolution and wide filed of view
RU2622233C1 (en) Aerial camera
CN108121066A (en) Panoramic scanning device
CN107872615A (en) Panoramic scanning monitoring system
US8605349B2 (en) Large area surveillance scanning optical system
JPH04237038A (en) Image pickup action correction system
CN108680254B (en) 360-degree panoramic hyperspectral imager
JP2856739B2 (en) Spacecraft visual device
US5570178A (en) Scanning imaging system having reduced detected signal aliasing in cross scan direction
JPH0432852Y2 (en)