JPS5939107A - Fm signal demodulating system - Google Patents

Fm signal demodulating system

Info

Publication number
JPS5939107A
JPS5939107A JP14917282A JP14917282A JPS5939107A JP S5939107 A JPS5939107 A JP S5939107A JP 14917282 A JP14917282 A JP 14917282A JP 14917282 A JP14917282 A JP 14917282A JP S5939107 A JPS5939107 A JP S5939107A
Authority
JP
Japan
Prior art keywords
signal
bandwidth
variable
power
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14917282A
Other languages
Japanese (ja)
Inventor
Tomozo Oota
智三 太田
Yoshihiro Konishi
小西 良弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Oki Electric Industry Co Ltd
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Oki Electric Industry Co Ltd, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP14917282A priority Critical patent/JPS5939107A/en
Publication of JPS5939107A publication Critical patent/JPS5939107A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/02Manually-operated control
    • H03G5/025Equalizers; Volume or gain control in limited frequency bands
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Color Television Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To improve the quality of a demodulated picture, by connecting a fixed reference BPF having a specified band characteristic and a variable BPF in cascade, and controlling the band width of the variable BPF so as to improve the ratio of the power of a received carrier wave to noise power. CONSTITUTION:An input signal Ci from an input terminal 6 passes through the reference BPF8 having the specified band width. A part of this signal is detected at a signal level detector 1 and an output corresponding to the ratio of the power of an input carrier wave to noise power (C/N) is obtained. Further, the signal Ci passes through a circuit 5 and enters the variable BPF2. The BPF2 is controlled so that the pass band width is narrowered as the signal level is decreased from the vicinity of the threshold value. The output of the BPF2 enters a frequency discriminator 3 through the circuit 4 and the frequency demodulation is attained. Thus, the equivalent C/N entering the discriminator 3 is improved to improve the S/N of the demodulation signal. When the receiving C/N is considerably low, spike noise specific to this operating region is improved.

Description

【発明の詳細な説明】 本発明は、簡単な構成でFM変調波の復調信号の雑音特
性を改善する周波数復調方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency demodulation method that improves the noise characteristics of a demodulated signal of an FM modulated wave with a simple configuration.

従来よシ周波数変調された信号を復調する最も簡単な方
法として、LC回路又は遅延線を用いた周波数復調方式
が占く示ら知られよく用いられている。
As the simplest method for demodulating conventionally frequency-modulated signals, a frequency demodulation method using an LC circuit or a delay line is known and often used.

この場合のFM変調された入力信号のCハ(キャリア電
力対雑音電力比)に対するFM復調(検波)された復調
信号のSハ(信号対雑音比)は、い−(C/l’J) 
F I (F Iは定数)として表わされ、復調S/N
は入力信号のC/Nに比例する。
In this case, S (signal to noise ratio) of the FM demodulated (detected) demodulated signal to C (carrier power to noise power ratio) of the FM modulated input signal is - (C/l'J)
It is expressed as F I (F I is a constant), and the demodulation S/N
is proportional to the C/N of the input signal.

一方、とのCハは雑音及び信号帯域幅を制限するため、
復調器の入力側に用いられる帯域通過特性器の通過帯域
幅で決定される。通常C/NklOdB程度まで前述の
関係が保持され、それ以下のいにおいて、いは急激に劣
化する。この点がスレッシュホールド点とよばれる。
On the other hand, C and C limit the noise and signal bandwidth, so
It is determined by the passband width of the bandpass characteristic device used on the input side of the demodulator. Normally, the above-mentioned relationship is maintained up to approximately C/NklOdB, and below that, the relationship deteriorates rapidly. This point is called the threshold point.

一般にTV傷信号伝送する通信、例えば衛星通信におい
ては、その信号の伝送にFM変調方式が用いられる。こ
の場合、通信回線は衛星の送信電力の制限、衛星通信伝
搬路の安定性、地上受信設備の経済性から、受信に際す
る動作点はスレッシ−ホールド付近に設定される場合が
多い。そのため、ときには環境状況の変動で受信入力が
減少し、受信点はスレッシ−ホールド以下の状態となシ
、復調画はTV伝送特有のスパイク雑音にょシ著しく乱
され、さらには復調画の得られない状態にまで至る。従
って衛星受信に際して、簡単な方法でこのスパイク雑音
の改善を行なうことは、TV復調画質の改善、ひいては
受信設備の経済性において非常に重要な問題とされ、特
に放送衛星通信等の簡易衛星受信装置においては、簡易
な構成による雑音改善(復調画質の改善)方法が極めて
重要な課題とされている。
Generally, in communications for transmitting TV signals, such as satellite communications, an FM modulation method is used to transmit the signals. In this case, the operating point of the communication line during reception is often set near the threshold hold due to limitations on satellite transmission power, stability of the satellite communication propagation path, and economical efficiency of ground reception equipment. As a result, sometimes the reception input decreases due to changes in the environmental situation, the reception point becomes below the threshold hold, the demodulated image is significantly disturbed by the spike noise peculiar to TV transmission, and even the demodulated image cannot be obtained. reach the state. Therefore, improving the spike noise using a simple method during satellite reception is considered to be a very important issue in terms of improving the TV demodulated image quality and, ultimately, the economic efficiency of receiving equipment. In this field, a method for improving noise (improving demodulated image quality) using a simple configuration is considered to be an extremely important issue.

本発明は、この問題点の一つの解決策を与えるもので、
固定の帯域幅をもつ規準帯域通過済波器と信号の通過帯
域幅を変化させる特定の可変帯域通過済波器との縦続接
続を構成し、前記規準帯域通過沖波器はTV傷信号最高
変調周波数fh1カラーサブキャリア周波数f、、最大
周波数偏移Δf、カラーサブキャリア成分の変調指数m
t=lf/f、をとるFM入力信号に対し帯域幅B。夕
2(Δf十fh)をもち、前記可変帯域通過ろ波器は信
号電力伝達特性T (1)をもち、帯域幅B。の前記規
準帯域通過r波器を通過後の変調信号電力P。に対する
雑音電力Noの比 (ただし、nf、 < BO/2で、Jn(m、)はベ
ッセル関数)と、可変帯域通過沖波器の出力における帯
域幅B。
The present invention provides one solution to this problem,
A cascade connection is formed between a reference bandpass transducer having a fixed bandwidth and a specific variable bandpass transducer that changes the passband width of the signal, and the reference bandpass transducer has a maximum modulation frequency of the TV signal. fh1 color subcarrier frequency f, maximum frequency deviation Δf, modulation index of color subcarrier component m
Bandwidth B for an FM input signal with t=lf/f. 2 (Δf + fh), the variable bandpass filter has a signal power transfer characteristic T (1), and a bandwidth B. The modulated signal power P after passing through the reference bandpass r-wave generator. The ratio of the noise power No to

内における規格化変調信号電力PTに対する雑音型(た
だ〔、”fr < Bo/2、T(0)=1)まるFM
スレッシ−ホールドレベル近傍又はそれ以下の状態に低
下するに従い、前記信号レベル検出器の出力によシ、前
記可変帯域通過沖波器の通過帯域幅を・制御し、前記信
号伝送路の伝送帯域幅を狭くシ、前記周波数ディスクリ
ミネータによシ復調を行なうことを特徴とする特定の変
調周波数成分(カラーサブキャリア成分)のFM変調指
数と特定の帯域通過特性をもつ帯域通過特性器との関係
において、ディスクリミネータに入る等価C/Nを改善
し、復調信号のS/Nを改善する。特にTV信号受信に
おける受信C/Nが低い場合、モニタ上のTV画質で最
も目ざわシなスレッシ−ホールドによシ生じるスノぐイ
ク雑音を改善し、視覚上よシ見やすい良好な画質を得る
だめの方式でおる。
The noise type (just [, "fr < Bo/2, T (0) = 1) for the normalized modulated signal power PT in FM
As the signal level decreases to near or below the threshold level, the output of the signal level detector controls the passband width of the variable bandpass transducer, and the transmission bandwidth of the signal transmission path is adjusted. Narrowly, in the relationship between the FM modulation index of a specific modulation frequency component (color subcarrier component) and a bandpass characteristic device having a specific bandpass characteristic, characterized in that demodulation is performed by the frequency discriminator. , improve the equivalent C/N entering the discriminator, and improve the S/N of the demodulated signal. Especially when the reception C/N in TV signal reception is low, it is necessary to improve the noise caused by the threshold hold, which is most noticeable in the TV image quality on the monitor, and to obtain good image quality that is visually easy to see. This method is used.

以下実施例について図面を参照して詳細に説明する。Embodiments will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示すブロック図である。1
は信号レベル検出器又はC/N検出器、2は通過帯域幅
が可変される可変帯域通過ろ波器、3はLC回路又は遅
延線・よりなる周波数ディスクリミネータ、4,5は必
要に応じて使用する増幅器、振幅制限器等の回路、6は
FM信号の入力端子、7はFM信号の復調(検波)出力
端子、8は固定の帯域幅B。をもつ規準帯域通過ろ波器
でちる。入力信号のC/N検出方法については種々の方
法が考えられるが本発明の本質でないためその詳細は省
く。
FIG. 1 is a block diagram showing one embodiment of the present invention. 1
is a signal level detector or C/N detector, 2 is a variable bandpass filter whose passband width is variable, 3 is a frequency discriminator consisting of an LC circuit or a delay line, and 4 and 5 are as required. 6 is an FM signal input terminal, 7 is an FM signal demodulation (detection) output terminal, and 8 is a fixed bandwidth B. A standard bandpass filter with . Various methods can be considered for detecting the C/N of the input signal, but the details thereof will be omitted since they are not the essence of the present invention.

第1図において、まず入力端子6よシの入力信号Ciは
、帯域幅B。の規準帯域通過p波器8を通過する。この
とき信号及び雑音の帯域幅はこれによシ決定される。そ
の信号の一部は信号レベル検出器1で検出され、信号レ
ベルの大きさ、換言すれば入力φの大きさに対応した出
力が得られる。
In FIG. 1, the input signal Ci at the input terminal 6 has a bandwidth B. passes through a standard bandpass p-wave filter 8. At this time, the signal and noise bandwidths are determined thereby. A part of the signal is detected by the signal level detector 1, and an output corresponding to the magnitude of the signal level, in other words, the magnitude of the input φ is obtained.

一方、入力信号C1は増幅器等の回路5を通って可変帯
域通過p波器2に入る。この帯域通過特性器2は、信号
レベル検出器1の出力によシスレッジ−ホールド付近よ
シ信号レベルが小さく゛なるに従い、入力信号の特定変
調周波数成分のFM変調指数とこの帯域通過特性との特
定の関係において、その通過帯域幅は連続的又はステッ
プ的に狭くなるよう制御される。これによpFM復調に
対する信号及び雑音の帯域幅は決められる。帯域通過ろ
波器2の出力は、増幅器又は振幅制限器等の回路4を経
て周波数ディスクリミネータ3に入シ周波数復調される
On the other hand, the input signal C1 passes through a circuit 5 such as an amplifier and enters the variable bandpass p-wave device 2. This bandpass characteristic device 2 specifies the FM modulation index of a specific modulation frequency component of the input signal and this bandpass characteristic as the signal level becomes smaller near the sysledge hold according to the output of the signal level detector 1. In this relationship, the passband width is controlled to become narrower continuously or stepwise. This determines the signal and noise bandwidth for pFM demodulation. The output of the bandpass filter 2 is frequency demodulated into a frequency discriminator 3 via a circuit 4 such as an amplifier or an amplitude limiter.

一般に、FM信号の復調に対し、帯域通過特性器の通過
帯域増(復調信号帯域幅)Boは、変調信号エネルギー
を充分に通過させ、復調信号の波形歪みを良好に保つた
め、入力信号のFM周波数偏移(ピーク値)をΔf、変
調信号の最高変調周波数をfhとすると、Bo=2(Δ
f十f、)に決められる(但し、実際の復調系において
は、信号搬送周波数の変動を考慮し、帯域幅はB。よシ
若干広くとられることもある。)。
Generally, when demodulating an FM signal, the passband increase (demodulated signal bandwidth) Bo of a bandpass characteristic device is used to sufficiently pass the modulated signal energy and maintain good waveform distortion of the demodulated signal. If the frequency deviation (peak value) is Δf and the highest modulation frequency of the modulation signal is fh, then Bo=2(Δ
(However, in an actual demodulation system, taking into account fluctuations in the signal carrier frequency, the bandwidth may be set to B.).

このとき、ディスクリミネータ3に至るC/NはCs/
(kBo) (kは定数)となる。
At this time, the C/N reaching the discriminator 3 is Cs/
(kBo) (k is a constant).

第1図で可変帯域通過ν波器2が除去され、又は可変帯
域通過ろ波器2の帯域幅が前段の規準帯域通過F波器8
の帯域幅B。よシ充分広い場合、通常のFM復調器と同
様に動作する。
In FIG. 1, the variable bandpass ν wave filter 2 is removed, or the bandwidth of the variable bandpass filter 2 is changed to the standard bandpass F wave filter 8 in the previous stage.
Bandwidth of B. If it is wide enough, it operates like a normal FM demodulator.

入力信号レベルに対するディスクリミネータによシ復調
された信号のS/Nは、第2図のように示され、入力信
号Ciが小さくなるに従い、S/Nは劣化し、いが10
 dB程度になるスレッシュホールド点(C1=Ct)
以下においては、いは急激に劣化する。
The S/N of the signal demodulated by the discriminator with respect to the input signal level is shown in FIG. 2. As the input signal Ci becomes smaller, the S/N deteriorates and becomes 10
Threshold point (C1=Ct) at about dB
In the following conditions, it deteriorates rapidly.

通常、従来の復調器を用いたTV信号の衛星受信におい
ては、受信動作点はスレッシュホールド点Ctよシ数d
B程度高い第2図のP領域に設定され、このときのいは となる。
Normally, in satellite reception of TV signals using a conventional demodulator, the reception operating point is a threshold point Ct and a number d
It is set in the P region of FIG. 2, which is about B higher, and the value at this time is I.

しかし前述の如く、環境状況の変動によシ、受信動作点
は、Ct点以下となる場合も発生し得る。  。
However, as described above, due to changes in environmental conditions, the reception operating point may become lower than the Ct point. .

これは、経済的な簡易小型受信設備になる程その度合は
増加する。
The degree of this problem increases as the receiving equipment becomes more economical and simple.

ところで、スレッシュホールド点よシ高い信号入力にお
いて、FM方式によシ伝送され復調されたTV信号のモ
ニタ上の画質の良さは、主に復調器に入る熱雑音等によ
る画質劣化と、伝送路の位相、振幅特性の非直線性に基
づく波形歪みによる画質劣化によシ決まシ、信号の復調
帯域幅Bによシ大きく影響される。一般には、この帯域
幅を狭くすると、熱雑音等の雑音の点では有利になるが
、波形歪みによる画質の劣化が大きくなる。
By the way, when the signal input is higher than the threshold point, the quality of the image on the monitor of the TV signal transmitted and demodulated by the FM method is mainly due to image quality deterioration due to thermal noise etc. entering the demodulator and the transmission path. Image quality degradation is determined by waveform distortion due to nonlinearity of phase and amplitude characteristics, and is greatly influenced by the demodulation bandwidth B of the signal. In general, narrowing this bandwidth is advantageous in terms of noise such as thermal noise, but it increases the deterioration of image quality due to waveform distortion.

今、帯域幅が前述のB。夕2(Δf+fh)に選ばれた
従来の復調系において、そのスレッシ−ボールド付近に
おけるTV信号の復調画質をみると、視覚上、熱雑音に
基づくスレッシ−ホールド雑音(スパイク雑音)による
特有の画質の劣化が著しく目立ち、伝送路の非直線性に
起因する波形歪みによる画質の劣化は目立たずマスクさ
れる。スレッシ−ホールド以下の信号レベルでは、その
レベル低下に伴う画質の劣化は著しく、画は急激にこの
スパイク雑音でうずもれ、受信画の識別は不可能になる
。従ってこの領域での画質劣化はスパイり雑音を抑圧す
れば、大幅な画質改善が計られる。
Now, the bandwidth is B as mentioned above. When looking at the demodulated image quality of the TV signal in the vicinity of the threshold bold in the conventional demodulation system selected for E2 (Δf + fh), it is visually apparent that the characteristic image quality is affected by threshold-hold noise (spike noise) based on thermal noise. The deterioration is extremely noticeable, and the deterioration in image quality due to waveform distortion due to nonlinearity of the transmission path is masked. When the signal level is below the threshold, the image quality deteriorates significantly as the level decreases, and the image is suddenly swamped by this spike noise, making it impossible to identify the received image. Therefore, if the image quality deteriorates in this area and the spy noise is suppressed, the image quality can be significantly improved.

第1図の構成において、本発明の原理について説明する
。変調信号の最高変調周波数fh′のみに着目し、最大
周波数偏移ΔfでFM変調された場合を考える。(後の
具体例では、特定の条件下でf′はカラーサブキャリア
成分とする。)このとき変調指数m、=Δf/fh′と
なる。規準帯域通過F波器の帯域幅をB。=2(Δf十
fh′)とし、その特性は、第3図■のように帯域内B
。では平坦で、帯域外では急峻な減衰特性をもつものと
する。変調周波数fh′でFM変調された入力信号電力
P。は(1) となる。
The principle of the present invention will be explained with reference to the configuration shown in FIG. Focusing only on the highest modulation frequency fh' of the modulated signal, consider the case where FM modulation is performed with the maximum frequency deviation Δf. (In the later specific example, f' is assumed to be a color subcarrier component under certain conditions.) At this time, the modulation index m, = Δf/fh'. The bandwidth of the standard bandpass F-wave device is B. = 2 (Δf + fh'), and its characteristics are as shown in Figure 3 (■).
. It is assumed that the attenuation characteristic is flat and has a steep attenuation characteristic outside the band. Input signal power P that is FM modulated at modulation frequency fh'. becomes (1).

規準帯域通過沖波器の出力は帯域幅B。で制限されるた
め、上記第(1)式のうち 0 nfh’ <。
The output of a standard bandpass wave transducer has a bandwidth of B. Therefore, in the above equation (1), 0 nfh'<.

の成分のみが伝送される。この出力信号電力をPO2と
する。
Only the components of are transmitted. Let this output signal power be PO2.

一方、規準帯域通過沖波器8の雑音電力をN。On the other hand, the noise power of the standard bandpass transducer 8 is N.

とすれば No=kBo         (2)(kは定数)と
して与えられ、規準帯域通過沖波器8の出力Cハは、P
、’/Noとなる。
Then, No=kBo (2) (k is a constant) is given as, and the output C of the standard bandpass wave transducer 8 is P
,'/No.

次に可変帯域通過ろ波器2の効果について説明する。Next, the effect of the variable bandpass filter 2 will be explained.

可変帯域通過済波器2の電力伝達特性をTCf)とし、
第3図の■のように中心周波数に対し、対称な通過特性
をもつものとする。また、fは沖波器の中心周波数から
の離調周波数を示し、f=oにて、T(o)=1とする
Let the power transfer characteristic of the variable bandpass filter 2 be TCf),
Assume that it has a symmetrical transmission characteristic with respect to the center frequency, as shown by ■ in FIG. Further, f indicates a detuned frequency from the center frequency of the Oki wave device, and when f=o, T(o)=1.

可変帯域通過済波器2の信号出力電力をPTとす。Let PT be the signal output power of the variable bandpass transducer 2.

れば、Pは T PT=Σ、r、、’(m、)・’r (pfh’)p”
=−n =Jo2(mf)+2Jt2(mf)T(fhz)+2
J22(mf)T(2fhり十””””’ 2Jn2(
n+f)T(nfh’)         (3)とな
る。従って、可変帯域通過ろ波器2の出力C/Nは第(
3)式と第(4)式の比p、/N、となる。
Then, P is T PT=Σ,r,,'(m,)・'r (pfh')p”
=-n =Jo2(mf)+2Jt2(mf)T(fhz)+2
J22(mf)T(2fhriten""""' 2Jn2(
n+f)T(nfh') (3). Therefore, the output C/N of the variable bandpass filter 2 is the (
The ratio between equation 3) and equation (4) is p, /N.

入力信号レベルの高い場合、規準帯域通過泥波器8の帯
域幅B。によシ復調帯域幅を制限し、入力信号レベルの
低下に伴い、規準帯域通過p波器8の出力C/N : 
po/ハ。がスレッシュホールド付近に達した時点で特
定の伝送特性T(f)をもつ可変帯域通過p波器2を作
動させ、 P、ハ、 ) po’ハ0(5) の関係が成立するよう当該可変帯域通過沖波器2を制御
する。このとき、スレッシュホールド点はだけ改善され
る。
For high input signal levels, the bandwidth B of the standard bandpass waver 8. By limiting the demodulation bandwidth, as the input signal level decreases, the output C/N of the standard bandpass p-wave converter 8:
po/ha. When T(f) reaches near the threshold, the variable bandpass p-wave transmitter 2 with a specific transmission characteristic T(f) is activated, and the variable bandpass is adjusted so that the relationship P, C, ) po'C0(5) holds. Controls the bandpass wave transducer 2. At this time, only the threshold point is improved.

その結果第2図のスレッシュホールド点ハ、CtからC
t′に変シ、ΔSのい改善が計られる。この効果はCt
以下のS/N劣化特性が急激なだけに大きく、これに対
してTVモニタ上のスフ9イク雑音が大幅に減少し、よ
シ良好な画質が得られる。
As a result, the threshold point C in Figure 2, from Ct to C
There is a change in t' and a significant improvement in ΔS. This effect is Ct
The following S/N deterioration characteristics are rapid and large, but on the other hand, the noise on the TV monitor is significantly reduced, resulting in a much better image quality.

さらに実際の衛星放送システムを例にとシ、より詳細に
説明する。
Further, a more detailed explanation will be given using an actual satellite broadcasting system as an example.

今、4.2MHzの最高信号成分をもつカラー映像信号
を最大周波数偏移5 MHzで伝送を行なうシステムを
設定する。またCCIR,REC、405−1のエンフ
ァシスが適用されるものとする。
Now, we will set up a system that transmits a color video signal having a maximum signal component of 4.2 MHz with a maximum frequency deviation of 5 MHz. It is also assumed that the emphasis of CCIR, REC, and 405-1 is applied.

送信側で、プリエンファシス回路を適用した映像信号は
、低域周波数成分に対して約−10dB 、高域周波数
成分に対して約+3dBの電力の重み付けが与えられる
。その結果、FM変調波として最も周波数変化(偏移)
の大きい変調成分として、カラーサブキャリア成分(3
,58MHz )に着I」すればよい。
On the transmitting side, the video signal to which the pre-emphasis circuit is applied is given power weighting of about -10 dB to low frequency components and about +3 dB to high frequency components. As a result, the frequency change (deviation) is the greatest as an FM modulated wave.
The color subcarrier component (3
, 58MHz).

今、標準映像パターンとして代表的なカラーバー信号の
うち、最もカラーサブキャリア成分の高い状態を例にと
シ、プリエンファシス適用後の状ちよぞ 態を求や、ヨ、変調周波数3.58 MHz゛〒1′M
Hz (7)最大周波数偏移をとることに々る。通常、
一般の映像においては、この周波数成分による偏移はは
るかに小さい。このとき、カラーサブキャリアに対する
最大変調指数はm7 = 6/3.58 = 1.67
となる。
Now, let's take as an example the state where the color subcarrier component is the highest among the typical color bar signals as a standard video pattern, and find the state after pre-emphasis is applied.゛〒1′M
Hz (7) Often takes the maximum frequency deviation. usually,
In general video, the deviation due to this frequency component is much smaller. At this time, the maximum modulation index for the color subcarrier is m7 = 6/3.58 = 1.67
becomes.

一方、規準帯域通過ろ波器の帯域幅B。は通常の如く、
Bo=2(6+4.2)=20.4MHzと設定する。
On the other hand, the bandwidth B of the standard bandpass filter. is as usual,
Set Bo=2(6+4.2)=20.4MHz.

規準帯域通過ろ波器を通過した信号成分P。lはP(1
”” Jo2(mf) + 2 Jf2(mf) + 
2 J22(mf)=0.172+0.663+0.1
50=0.985    (7)となる。第1項は、F
M変調波の中心周波数(搬送波)成分、第2項は中心よ
り3.58 MHz離れた第1側帯波、第3項は中心よ
り 7.16 MHzを離れた第2側帯波の電力成分を
示す。
The signal component P passed through the standard bandpass filter. l is P(1
”” Jo2(mf) + 2 Jf2(mf) +
2 J22(mf)=0.172+0.663+0.1
50=0.985 (7). The first term is F
The center frequency (carrier) component of the M modulated wave, the second term indicates the power component of the first sideband 3.58 MHz away from the center, and the third term indicates the power component of the second sideband 7.16 MHz away from the center. .

一方、規ンろ波器の出力雑音電力N。は、雑麿電力密度
を1/MHzと規格化すれば No=Bo=20.4        (8)Pa’ 
 0.985 従って  −= −(9) No   20.4 となる。
On the other hand, the output noise power N of the regular filter. If the Zomaro power density is normalized to 1/MHz, No=Bo=20.4 (8) Pa'
0.985 Therefore, -=-(9) No 20.4.

このスペクトラム分布を第4図に示す。This spectrum distribution is shown in FIG.

次に可変帯域通過戸波器に対して、まず、第4図の■の
特性の如く、帯域幅すで急峻に狭帯域化した場合を想定
する。
Next, regarding the variable bandpass door door, first assume a case where the bandwidth has already been sharply narrowed, as shown in the characteristic (3) in FIG.

このとき、可変帯域通過ろ波器の出力における信号電力
P、対雑音電力NTの関係及び、つ乍の改善度ηは次の
ように々る。(単位略) i)14.32〈b〈20.4 のときii)  7.
16<b<+ 4.321.20(η(2,41 (0,8dB)   (3,8dB) m)b、< 7.1 に の場合、FM変調波の変調成分が全て除去されるため、
復調不可能である。
At this time, the relationship between the signal power P and the noise-to-noise power NT at the output of the variable bandpass filter, and the degree of improvement η in both are as follows. (Unit omitted) i) When 14.32〈b〈20.4 ii) 7.
16<b<+ 4.321.20(η(2,41 (0,8dB) (3,8dB) m) b, <7.1, all modulation components of the FM modulated wave are removed. ,
Demodulation is not possible.

次に可変帯域通過ろ波器として、実現の容易な第5図の
如き単一共振系を用いた場合を説明する。
Next, a case will be explained in which a single resonant system as shown in FIG. 5, which is easy to implement, is used as a variable bandpass filter.

第5図で漣波器は、固定のインダクタンスし、容量C1
抵抗rと、可変抵抗Rによシ構成される。
In Figure 5, the wave generator has a fixed inductance and a capacitance C1.
It is composed of a resistor r and a variable resistor R.

入力信号のい:=p67Ngが大きい場合、可変抵スレ
ッシーホールド付近において、可変抵抗Rは低い抵抗値
に制御し、通過帯域幅を変化させる。
When the input signal p67Ng is large, the variable resistor R is controlled to a low resistance value near the variable resistor threshold hold, and the passband width is changed.

可変抵抗Rが適度に設定された場合、この単一共振系に
よる伝達特性T(f)は次のように近似できる。
When the variable resistance R is set appropriately, the transfer characteristic T(f) of this single resonance system can be approximated as follows.

第4図■にとの通過特性を示し、boは3 dB帯域幅
である。
Figure 4 (■) shows the pass characteristics of the 3-dB band, where bo is 3 dB bandwidth.

とのとき、可変帯域通過が波器の出力信号電力は、 Qη となる。When , the output signal power of the variable bandpass waveform generator is Qη becomes.

一方、可変帯域通過p波器の出力雑音電力N、はとなる
On the other hand, the output noise power N of the variable bandpass p-wave device becomes.

今、帯域幅B。は20.4 MHzであるから、N、 
= b6tan−1””     ’J’s’O 従って、可変帯域通過ろ波器によるCハの改善度ηは となる。
Now, bandwidth B. is 20.4 MHz, so N,
= b6tan-1""'J's'O Therefore, the degree of improvement η of C by the variable bandpass filter is as follows.

3 dB帯域幅す。に対して、改善度グを求めれば第6
図となる。いずれの場合も第5図に示した単一共振系に
よる簡単な帯域通過ろ波器でC/Nの改善度が得られる
。通常の映像信号においては、カラーサブキャリア成分
の振幅は小さい場合が多く、その場合には、FM変調波
の変調成分の電力は、第4図の搬送波電力及び第1側帯
波に集まるため、本発明の方式によシ大きな改善度が得
られる。第7図は可変帯域通過泥波器の帯域幅す。を7
 MHzとした場合のカラーサブキャリアの変調指数m
、に対する改善度ηを示したものである。
3 dB bandwidth. , if we calculate the degree of improvement, we get the 6th
It becomes a figure. In either case, an improvement in C/N can be obtained with a simple band-pass filter using a single resonance system as shown in FIG. In a normal video signal, the amplitude of the color subcarrier component is often small, and in that case, the power of the modulation component of the FM modulated wave is concentrated in the carrier wave power and the first sideband wave in Fig. 4, so the main Significant improvements are obtained with the inventive scheme. Figure 7 shows the bandwidth of the variable band pass mud wave device. 7
Modulation index m of color subcarrier when MHz
, which shows the degree of improvement η for .

ところで他の衛星システム例として、最大周波数偏移1
0.75 MH,z 、最高変調周波数4.2 MHz
の場合を検討する。
By the way, as an example of other satellite systems, the maximum frequency deviation 1
0.75 MHz, maximum modulation frequency 4.2 MHz
Consider the case of

前例と同様にカラーザブキャリア成分に着目し、可変帯
域通過P波器として、単−共振系を用いる。
As in the previous example, we focus on the color subcarrier component and use a single-resonant system as the variable bandpass P-wave device.

この場合、カラーザブキャリア成分の変調指数はB o
= 2 (10,75+4.2 )=29.9 MJ(
zである。可変帯域通過p波器の3dB帯域幅す。に対
してC/Hの改善度ηを計画すると第8図の如くとなる
。これより、当実施例のシステムにおいては、この種の
可変帯域通過沖波器・を用いる方法では、C/Nの改善
度は得られず、狭帯域化に伴いむしろC/N悪化の方向
に向う。即ち、伝送する映像信号の特にカラーザブキャ
リア成分のFM変調指数と、可変帯域通過ろ波器の伝送
特性の関係において、本方式の有用性が変わる。
In this case, the modulation index of the color subcarrier component is B o
= 2 (10,75+4.2)=29.9 MJ(
It is z. 3dB bandwidth of variable bandpass p-wave filter. When the degree of improvement η of C/H is planned for the following figure, it becomes as shown in FIG. From this, in the system of this embodiment, the C/N cannot be improved by the method using this type of variable bandpass offshore transducer, and the C/N tends to deteriorate as the band becomes narrower. . That is, the usefulness of this method changes depending on the relationship between the FM modulation index of the transmitted video signal, especially the color subcarrier component, and the transmission characteristics of the variable bandpass filter.

換言すれば、対象とするシステムの伝送信号・ぐラメー
タのうち、カラーザブキャリアによる変調指数mf(カ
ラーサブキャリア周波数fh’ )と可変帯域通過ろ波
器の伝送特性T(f)と、基準帯域通過ろ波器の帯域幅
B。との間において、 0 nfh’<− となるT (f)を力えることによりC/Hの改善効果
を生じさせる。
In other words, among the transmission signal/grammeters of the target system, the modulation index mf (color subcarrier frequency fh') by the color subcarrier, the transmission characteristic T(f) of the variable bandpass filter, and the reference band Bandwidth B of the pass filter. By increasing T (f) such that 0 nfh'<-, the C/H improvement effect is produced.

前例に示しだ如くの放送衛星システム(通常Kuban
d使用)において、前述の如き簡単な可変帯域通過p波
器を使用しても、大きな効果を得られることになる。
Broadcasting satellite systems (usually Kuban) as shown in the previous example
(d use), even if a simple variable bandpass p-wave device as described above is used, a great effect can be obtained.

第9図は、可変帯域通過p波器20通過帯域幅す、の制
御の状態を示しだものである。カーブ■は規準帯域通過
ろ波器の帯域幅B。で定まるスレッシュホールド点Ct
近傍で、ステップ状に通過帯域の制御を行なった場合、
カーブ■は信号レベル低下に伴いゆるやかな制御を与え
た場合である。
FIG. 9 shows the state of control of the variable bandpass p-wave device 20 passband width. Curve ■ is the bandwidth B of the standard bandpass filter. Threshold point Ct determined by
When the passband is controlled in steps in the vicinity,
Curve ■ is the case where gentle control is applied as the signal level decreases.

入力信号レベルが大きいほど、復調S/Nは高いだめ、
急激な通過帯域幅の変化に伴う復調波形の若干の歪みは
、復調画質に影響を力えることもあり、その場合には、
カーブ■の如く可変帯域通過沖波器のゆるやかな制御は
有効となる。
The higher the input signal level, the higher the demodulation S/N.
Slight distortion of the demodulated waveform due to sudden changes in the passband width may affect the demodulated image quality, and in that case,
The gentle control of the variable band pass offshore wave device is effective as shown by curve ①.

入力信号レベルの変化に対する可変帯域通過r波器の伝
送特性制御の割合は、所望の入力信号レベルと復調画質
の観点から、可変帯域通過沖波器の通過特性および、信
号レベル(又はc/N)検出器の特性により適度に選定
される。
The rate of transmission characteristic control of the variable bandpass transducer with respect to changes in the input signal level is based on the transmission characteristics of the variable bandpass transducer and the signal level (or c/N) from the viewpoint of the desired input signal level and demodulated image quality. It is selected appropriately depending on the characteristics of the detector.

この信号レベル検出器として、AGC増幅器の制御電圧
を利用することも可能である。
It is also possible to use the control voltage of the AGC amplifier as this signal level detector.

以上説明したように、本発明の特徴は、特に規準の帯域
特性を持つ固定の規準帯域通過泥波器と、町変帯域通過
沖波器を縦続接続して、望ましい復調帯域幅の連続可変
を可能とし、前者の規準帯域通過P波器の帯域幅で決ま
る入力信号のスレ、7゜ホールド点付近を境に、入力信
号が大きい領域では可変帯域通過沖波器の帯域幅を規準
帯域通過ろ波器のそれより十分大きくシ、入力信号が前
記スレッシュホールド点より低くなるに従い、入力FM
信号の特定変調周波数成分(カラーサブキャリア成分)
による変調指数と可変帯域通過P波器の通過特性との特
定の関係において当該可変帯域通過p波器の通過特性を
連続的又はステップ状に変化させ、可変帯域通過p波器
の出力側においでC/Nの改善を行なう。その結果、大
きな復g19 S7’Nの改善が行なわれ、視覚上、こ
の動作領域で一杏配的なテレビ(映像)信号特有のス・
やイク雑音による画質の劣化が大幅に改善され、良好な
画質を得ることができる。
As explained above, the feature of the present invention is that the desired demodulation bandwidth can be continuously varied by cascading a fixed standard band-pass mud wave device having standard band characteristics and a town-variant band-pass mud wave device. The input signal thread is determined by the bandwidth of the former standard bandpass P-wave filter, and around the 7° hold point, in the region where the input signal is large, the bandwidth of the variable bandpass filter is determined by the standard bandpass filter. is sufficiently larger than that of the input FM, and as the input signal becomes lower than the threshold point, the input FM
Specific modulation frequency component of the signal (color subcarrier component)
In a specific relationship between the modulation index and the pass characteristic of the variable band pass P wave device, the pass characteristic of the variable band pass P wave device is changed continuously or stepwise, and on the output side of the variable band pass P wave device. Improve C/N. As a result, significant improvements have been made to the G19 S7'N, and visually, the typical TV (video) signal characteristic of a one-size-fits-all in this operating area has been improved.
The deterioration of image quality due to noise and noise is greatly improved, and good image quality can be obtained.

本発明は、簡単な構成で、特定の信号領域において、受
信C/Nを改善し、復調画質の改−;]・、を計る。
The present invention improves the reception C/N in a specific signal region and improves the demodulated image quality with a simple configuration.

従って、低受信入力レベルでTV(,9号を受fitす
る簡易衛星受信iなどに極めて有効に利用できる。
Therefore, it can be used extremely effectively for simple satellite reception i, etc., which fits TV (No. 9) at a low reception input level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すプロ、り図、第2図はS
/N−人力信号の図、第3図は411域通過沖波器の特
性図、第4図はス波りトラム分布と帯域通過特性の図、
第5図は可変帯域通過p波器の回路例、第6図、第7図
、第8図は改善度を示す図、第9図は可変帯域通過ろ波
器の制御の状態を示す図である。 J・・レベル検出器、2・・・可変帯域通過沖波器、3
・・ディスクリミネータ、8・・・規準帯域通過ろ波器
。 特許出願人  沖電気工業株式会社 日本放送協会
Figure 1 is a professional diagram showing an embodiment of the present invention, and Figure 2 is an S diagram.
/N-Human power signal diagram, Figure 3 is a characteristic diagram of the 411 zone-pass offshore transducer, Figure 4 is a diagram of wave tram distribution and band-pass characteristics,
Figure 5 is a circuit example of a variable bandpass p-wave filter, Figures 6, 7, and 8 are diagrams showing the degree of improvement, and Figure 9 is a diagram showing the control status of the variable bandpass filter. be. J...Level detector, 2...Variable bandpass offshore wave device, 3
... Discriminator, 8... Standard bandpass filter. Patent applicant Oki Electric Industry Co., Ltd. Japan Broadcasting Corporation

Claims (1)

【特許請求の範囲】 入力信号の大きさ又は入力信号の搬送波電力対雑音電力
比(C/N)を検出する信号レベル検出器と、復調に対
する信号及び雑音帯域幅を決め゛る固定の通過帯域幅を
もつ規準帯域通過ろ波器と、前記固定の通過帯域幅よシ
狭い通過帯域幅にまで通過帯域幅を可変にする可変帯域
通過沖波器と周波数ディスクリミネ、−夕を備え、前記
規準帯域通過F波器。 可変帯域通過ろ波器、ディス、クリミネータを受−入力
信号の伝送路に直列に接続し、前記規準帯域通過沖波器
はTV信号の最高変調周波数fh、カラーサブキャリア
周波数fy +最大周波数偏移Δf。 カラーサブキャリア成分の変調指数m、=Δf/f v
をとるFM入力信号に対し、帯域幅B。〜2(Δf+f
h)をもち、前記可変帯域通過FFE器は信号電力伝達
特性T (f)をもち、帯域幅B。の前記規準帯域通過
済波器を通過後の変調信号電力Poに対する雑音電力N
0の比 (ただし、nfl、〈Bo/2、Jn(m、)はベッセ
ル関数)と、可変帯域通過p波器の出力における帯域幅
B。 内における規格化変調信号電力PTに対する雑音電力N
、の比 Jo2(mf)+2Jt2(mf)T(fu)+2J2
”(mf)T(2f、)まるFMスレッシュホールドレ
ベル近傍又はそれ以下の状態に低下するに従い、前記信
号レベル検出器の出力によシ、前記可変帯域通過沖波器
の通過帯域幅を制御し、前記信号伝送路の伝送帯域幅を
狭くシ、前記周波数ディスクリミネータによシ復調を行
なうととを特徴としたFM信号復調方式。
[Claims] A signal level detector that detects the magnitude of the input signal or the carrier power-to-noise power ratio (C/N) of the input signal, and a fixed passband that determines the signal and noise bandwidth for demodulation. a standard bandpass filter having a width, a variable bandpass filter and a frequency discriminator for making the passband width variable from the fixed passband width to a narrower passband width; Bandpass F wave device. A variable bandpass filter, a disc, and a delimiter are connected in series to the transmission path of the received input signal, and the standard bandpass filter has the maximum modulation frequency fh of the TV signal, the color subcarrier frequency fy + maximum frequency deviation Δf. . Modulation index m of color subcarrier component, = Δf/f v
For an FM input signal with a bandwidth of B. ~2(Δf+f
h), the variable bandpass FFE device has a signal power transfer characteristic T (f), and a bandwidth B. The noise power N with respect to the modulated signal power Po after passing through the reference band-passed waveformer
0 (where nfl, <Bo/2, Jn(m,) is the Bessel function) and the bandwidth B at the output of the variable bandpass p-wave device. The noise power N for the normalized modulated signal power PT in
, the ratio Jo2(mf)+2Jt2(mf)T(fu)+2J2
"(mf)T(2f,) As the signal level decreases to near or below the FM threshold level, the passband width of the variable bandpass transducer is controlled according to the output of the signal level detector, An FM signal demodulation method characterized in that the transmission bandwidth of the signal transmission path is narrowed and demodulation is performed by the frequency discriminator.
JP14917282A 1982-08-30 1982-08-30 Fm signal demodulating system Pending JPS5939107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14917282A JPS5939107A (en) 1982-08-30 1982-08-30 Fm signal demodulating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14917282A JPS5939107A (en) 1982-08-30 1982-08-30 Fm signal demodulating system

Publications (1)

Publication Number Publication Date
JPS5939107A true JPS5939107A (en) 1984-03-03

Family

ID=15469368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14917282A Pending JPS5939107A (en) 1982-08-30 1982-08-30 Fm signal demodulating system

Country Status (1)

Country Link
JP (1) JPS5939107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147893A (en) * 1985-12-23 1987-07-01 Maspro Denkoh Corp Satellite broadcasting receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147893A (en) * 1985-12-23 1987-07-01 Maspro Denkoh Corp Satellite broadcasting receiver

Similar Documents

Publication Publication Date Title
EP0064819B1 (en) An fm signal demodulation system
US4531148A (en) High sensitivity FM signal demodulation system
US4405835A (en) Receiver for AM stereo signals having a circuit for reducing distortion due to overmodulation
EP0086839B1 (en) High-sensitivity fm demodulating system
US4101837A (en) Threshold extension fm demodulator apparatus for wide band width fm signals
JPS6148313B2 (en)
JPS5939107A (en) Fm signal demodulating system
JP3195794B2 (en) Circuit device for transmitting a carrier-modulated signal
JPH0251282B2 (en)
EP0135301B1 (en) Demodulation circuit from fm signals and demodulation system therefor
EP0660539A2 (en) RF Receiver using IF amplifier operative during low level reception
US4928166A (en) Apparatus for suppressing noises in a video signal
US5241538A (en) Transmission apparatus
JPS6250028B2 (en)
JPS60194609A (en) Television receiver
JPS6250027B2 (en)
US3333054A (en) Receiving arrangements for the reception of colour television signals
JPH0122764B2 (en)
JPH0122763B2 (en)
JPS61163780A (en) Television receiver
JPS62281685A (en) High sensitivity fm demodulator
JPH10190356A (en) Fm demodulation device and method
JPS6253084B2 (en)
JPH0322714A (en) Adjacent carrier interference preventing circuit for receiver
JPH0330531A (en) Fm receiver