JPS5938595A - Heat transfer tube for condensation heat - Google Patents

Heat transfer tube for condensation heat

Info

Publication number
JPS5938595A
JPS5938595A JP14883682A JP14883682A JPS5938595A JP S5938595 A JPS5938595 A JP S5938595A JP 14883682 A JP14883682 A JP 14883682A JP 14883682 A JP14883682 A JP 14883682A JP S5938595 A JPS5938595 A JP S5938595A
Authority
JP
Japan
Prior art keywords
drain
fin
condensed liquid
heat transfer
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14883682A
Other languages
Japanese (ja)
Other versions
JPS6027909B2 (en
Inventor
Takenobu Kajikawa
武信 梶川
Hiroyuki Takazawa
高沢 弘幸
Katsuo Nishiyama
西山 勝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14883682A priority Critical patent/JPS6027909B2/en
Publication of JPS5938595A publication Critical patent/JPS5938595A/en
Publication of JPS6027909B2 publication Critical patent/JPS6027909B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To obtain a heat transfer tube of which heat transferring ability for condensation heat is high, by constituting the heat transfer tube of drain fins which gather to discharge condensed liquid every specified section, a drain gutter into which the condensed liquid collected by the drain fins are all gathered, and a drain bar which serves to drain the gathered liquid efficiently. CONSTITUTION:A drain fin 2 has a function to collect liquid condensed on the surface of a primary fine 1, and a recess part 5 is formed on the upper surface of it. A drain gutter 3 is formed vertically on the surface of a tube like a channel with the width dd. The condensed liquid crossing over the primary fin 1 is gathered, passing through the recess part 5 formed on the upper surface of the drain fin 2. All condensed liquid in a pitch Pd (one section) of a drain fin 2 are led into the drain gutter 3. The drain bar 4 serves to prevent the condensed liquid from penetrating into other sections Pd, as well as to certainly discharge the condensed liquid from one section Pd of the drain fin 2, and also serves to help the condensed liquid to be discharged effectively, flowing down through the drain gutter 3.

Description

【発明の詳細な説明】 この発明は、凝縮液膜の薄膜化および凝縮液の迅速な排
除を効率的に行うことによる縦型凝縮伝熱管の高性能化
に関するものである・ 近年、海洋温度差発電、火力発電所や原子力発電所の排
熱利用低熱落差発電、地熱々水利用発電。
[Detailed Description of the Invention] This invention relates to improving the performance of vertical condensing heat transfer tubes by efficiently thinning the condensate film and quickly removing the condensate.In recent years, ocean temperature differences have been increasing. Power generation, low heat drop power generation using waste heat from thermal power plants and nuclear power plants, power generation using geothermal hot water.

各種産業排熱利用低熱落差発電などクローズドランキン
サイクルによる発電技術の開発がす〜められている。こ
のようなシステムでは、低沸点媒体を循環させて、蒸発
と凝縮を繰り返すことにより発電するのであるが、効率
をよくするためKは凝縮器および蒸発器の高性能化が必
要である。特に所内動力としてのポンプ動力をできるだ
け小さくする必要があることから、水側熱伝達率の高性
能化には限度があることを考慮すると、作動流体側の熱
伝達率の高性能化が必須の技術となる。
The development of closed Rankine cycle power generation technology, such as low heat drop power generation using waste heat from various industries, is underway. In such a system, electricity is generated by circulating a low boiling point medium and repeating evaporation and condensation, but in order to improve efficiency, it is necessary to improve the performance of the condenser and evaporator. In particular, it is necessary to reduce the pump power as the in-house power as much as possible, and considering that there is a limit to improving the heat transfer coefficient on the water side, it is essential to improve the heat transfer coefficient on the working fluid side. It becomes technology.

従来、凝縮熱伝達の高性能化には、縦溝付き(フルテン
ド)管が考えられ、形状の最適化などがこれはある程度
の効果はあるものの製作工程が複雑であり、また、排除
した凝縮液が再び管にふりかかつてしまうなど十分とは
いえない。また、水平管については、ハイフィン、ロー
フインなど各種形状のものが提案されているが、低熱落
差発電の中の凝縮器は、大型化するため凝縮液が水平管
より落下し、次々に下段の凝縮伝熱面上に累積していく
ため、全体としての性能が低下してしまうという欠点が
ある。
Conventionally, to improve the performance of condensing heat transfer, a vertically grooved (full-tended) tube has been considered, and although optimization of the shape is effective to some extent, the manufacturing process is complicated, and the condensate It is not enough that the water is sprinkled back into the pipe. In addition, various shapes of horizontal pipes have been proposed, such as high-fin and low-fin, but because the condensers used in low thermal drop power generation are large, the condensate falls from the horizontal pipe, and condensation occurs one after another in the lower stage. Since it accumulates on the heat transfer surface, it has the disadvantage that the overall performance deteriorates.

この発明は、上述の点にかんがみなされたもので、凝縮
促進を受は持つ微細なプライマリ−フィンと、凝縮液を
ある区間毎に集め、まとめて排除するためのドレンフィ
ン、ならびに、そのドレンフィンで集められた凝縮液を
さらにまとめて排除するためのドレンガターおよびドレ
ンを効率的に行うためのドレンバーからなる基本的構造
を有する凝縮伝熱管を提供するものである。以下、この
発明の実施例を図面に基づいて説明する。
This invention was made in consideration of the above points, and includes a fine primary fin that promotes condensation, a drain fin that collects condensate in a certain section and removes it all at once, and the drain fin. The present invention provides a condensing heat exchanger tube having a basic structure consisting of a drain gutter for further collectively discharging the condensate collected in the condensate and a drain bar for efficiently draining. Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明の一実施例としての凝縮伝熱管の基本
的構造を示す図である。第1図(a)において、1は熱
伝導性のよい材料からなる伝熱管表面1!I?、%のス
パイラル状に形成されたプライマリ−フィンで、作動流
体蒸気の凝縮を促進させる作用を有する。このプライマ
リ−フィン1は第1図(b)の(イ)、(ロ)、(ハ)
、(ニ)に示すように各種の凸凹状に形成されている。
FIG. 1 is a diagram showing the basic structure of a condensing heat exchanger tube as an embodiment of the present invention. In FIG. 1(a), 1 is a heat exchanger tube surface 1 made of a material with good thermal conductivity! I? , % spirally formed primary fins that promote condensation of working fluid vapor. This primary fin 1 is shown in (a), (b), and (c) in Fig. 1(b).
As shown in , (d), it is formed in various uneven shapes.

プライマリ−フィン1では、そのフィンの形状を最適化
することにより、表面張力効果を利用して薄い凝縮液膜
による凝縮を行えるようにして、表面積増大以上の熱伝
達の高性能化をはかることができる。2は前記プライマ
リ−フィン1と同様スパイラル状に形成されたドレンフ
ィンで、後述するようにプライマリ−フィン10表面で
凝縮された凝縮液を集める作用を有し、第1図(c)K
示1よ5にドレンフィン2上面に凹部5が形成されてい
る。3は凝縮液を集めて下方へ流すドレンガターで、第
1図(d)に示1ように鉛直方向に幅ddの溝状に形成
されている。凝縮液の一部は、各プライマリ−フィン1
を乗り越え、他は、その谷部に沿ってドレンガター3の
方へ流れる。プライマリ−フィン1を乗り越えた凝縮液
は、ドレンフィン2の上部に形成された凹部5を伝って
集められる。ドレンフィン2の1ピンチへ〇間(一区間
)での凝縮液は、すべてドレンガター3に渡れ込む。4
は前記)゛レンガクー3の片側に取り付けられたドレン
バーで、このドレンバー4はドレンフィン2の一区間1
)d内での凝縮液を確実に排除するとともに、他区間T
)dへの凝縮液の浸入を妨げ、さら圧ドレンガター3内
を流下する凝縮液の効果的排除を助ける役割を有してい
る。
In the primary fin 1, by optimizing the shape of the fin, it is possible to achieve condensation with a thin condensate film using the surface tension effect, and to improve the performance of heat transfer more than increasing the surface area. can. 2 is a drain fin formed in a spiral shape similar to the primary fin 1, and has the function of collecting condensate condensed on the surface of the primary fin 10 as described later.
As shown in FIGS. 1 to 5, a recess 5 is formed on the upper surface of the drain fin 2. Reference numeral 3 denotes a drain gutter that collects condensate and flows it downward, and is formed in the shape of a groove with a width dd in the vertical direction, as shown in FIG. 1(d). A portion of the condensate is distributed to each primary fin 1
, and the rest flows along the valley towards Drain Gutter 3. The condensate that has passed over the primary fin 1 flows through a recess 5 formed in the upper part of the drain fin 2 and is collected. All of the condensate from one pinch (one section) of the drain fin 2 flows into the drain gutter 3. 4
(above) is a drain bar attached to one side of the brick fin 3, and this drain bar 4 is connected to one section 1 of the drain fin 2.
) While ensuring that condensate is removed within d, other sections T
) It has the role of preventing the condensate from entering d and assisting in the effective removal of the condensate flowing down inside the pressure drain gutter 3.

すなわち、ドレンバー4の幅dbおよび形状を適当に選
ぶことによって、凝縮液をドレンガター3内に効率的に
引き込むとともに、ドレンガター3の幅ddをなるべ(
小さくし、凝縮伝熱管の有効面積を減らさないようKす
ること、ならびにドレンバー4に沿って凝縮液を流下さ
せ、伝熱管より速やかに凝縮液を引き離す役割をしてい
る。ドレンバー4には、金属プレート、多孔質プレート
That is, by appropriately selecting the width db and shape of the drain bar 4, the condensate can be efficiently drawn into the drain gutter 3, and the width dd of the drain gutter 3 can be made as large as possible (
The function is to make the condensate small so as not to reduce the effective area of the condensing heat transfer tube, and to cause the condensate to flow down along the drain bar 4 to draw the condensate away more quickly than the heat transfer tube. Drain bar 4 has a metal plate and a porous plate.

高分子材料等による薄いプレートなどを利用できる。作
動流体蒸気流に対する配慮からドレンバー4は、例えば
上端部を狭く、下端部にいくに従って広くしていくとい
った形状も考えられる。6は伝熱管の内部に形成された
冷水通路である。作動流体蒸気は第1図(a)の矢印7
で示すように流入する。8は凝縮伝熱管全体を示す。
A thin plate made of polymeric material or the like can be used. In consideration of the working fluid vapor flow, the drain bar 4 may have a shape that is narrow at the upper end and widened toward the lower end, for example. 6 is a cold water passage formed inside the heat exchanger tube. The working fluid vapor is indicated by arrow 7 in Fig. 1(a).
There is an inflow as shown in . 8 shows the entire condensing heat exchanger tube.

次に、上記のような基本的構造を有する凝縮伝熱管8の
実験例とその結果について説明する。第2図は凝縮伝熱
管8の実験装置の系統概念図である。同図妃おいて、9
は前記凝縮伝熱管8を包む形状の外筒、9′は蒸気の流
れを整流するための内筒、10は膨張弁、11は液溜タ
ンク、12は作動流体ポンプである。13は冷水流:を
調整弁、14は温度側測器、15は圧力計測器、16は
流量計、ITは水冷却器、18は蒸発器である。
Next, an experimental example of the condensing heat exchanger tube 8 having the basic structure as described above and its results will be explained. FIG. 2 is a conceptual diagram of the experimental apparatus for the condensing heat exchanger tube 8. In the same picture, 9
Reference numeral denotes an outer cylinder having a shape to enclose the condensing heat transfer tube 8, 9' an inner cylinder for rectifying the flow of steam, 10 an expansion valve, 11 a liquid storage tank, and 12 a working fluid pump. 13 is a cold water flow regulating valve, 14 is a temperature side measuring device, 15 is a pressure measuring device, 16 is a flow meter, IT is a water cooler, and 18 is an evaporator.

作動流体蒸気は膨張弁10を通って外筒9内に流入し、
内筒9′により蒸気の流れが整流された後凝縮伝熱管8
0表面で凝縮され、その凝縮された凝縮液は液溜タンク
11に集められ、作動流体ポンプ12により再び蒸発器
18へ送り込まれる。
The working fluid vapor flows into the outer cylinder 9 through the expansion valve 10;
After the flow of steam is rectified by the inner cylinder 9', it is condensed into a heat transfer tube 8.
The condensed liquid is collected in a sump tank 11 and sent to the evaporator 18 again by the working fluid pump 12.

一方冷却水は、水冷却器1Tより凝縮伝熱管8の冷水通
路6に流入し、凝縮伝熱管8の冷水通路6の内面から熱
を得て冷水流量調整弁13を通って再び水冷却器17に
送り込まれる。
On the other hand, the cooling water flows from the water cooler 1T into the cold water passage 6 of the condensing heat exchanger tube 8, obtains heat from the inner surface of the cold water passage 6 of the condensing heat exchanger tube 8, passes through the cold water flow rate adjustment valve 13, and returns to the water cooler 17. sent to.

第3図は実験に用いた凝縮伝熱管8の形状の一例を示す
図である。同図において、Aは前記プライマリ−フィン
1とドレンフィン2からなるスバイラルダプルフインが
形成される部分であり、Bは両端の平滑部である。への
部分の詳細を第4図(a)〜(d)に示す。すなわち、
第4図(a)はプライマリ−フィン1とドレンフィン2
の一部を示しており、各フィンの拡大図を第4図(c)
、 <d)に示す。第4図(b)は第4図(a)の側面
図である。
FIG. 3 is a diagram showing an example of the shape of the condensing heat exchanger tube 8 used in the experiment. In the figure, A is a portion where the Svairalda pull fin consisting of the primary fin 1 and drain fin 2 is formed, and B is a smooth portion at both ends. The details of the section are shown in FIGS. 4(a) to 4(d). That is,
Figure 4(a) shows primary fin 1 and drain fin 2.
An enlarged view of each fin is shown in Figure 4(c).
, <d). FIG. 4(b) is a side view of FIG. 4(a).

またs alはプライマリ−フィン1の外径、hpは同
じく高さ、Ppは同じくピッチ幅、hdはドレンフィン
2の高さを示す。aOはドレンフィン2の外径である。
Further, s al indicates the outer diameter of the primary fin 1, hp indicates the height, Pp indicates the pitch width, and hd indicates the height of the drain fin 2. aO is the outer diameter of the drain fin 2.

寸法の一例を示すと、への部分の長さは990關、Bの
部分の長さは55泪、冷却水路6の内径&t16mφ、
aoは24刺φ、ドレンフィン20山数はインチ当り4
、alは21.6 rant  hpは0.8 mm。
To give an example of the dimensions, the length of the part B is 990mm, the length of the part B is 55mm, the inner diameter of the cooling water channel 6 &t16mφ,
ao has 24 threads in diameter, and the number of drain fins is 20 threads per inch.
, al is 21.6 rant hp is 0.8 mm.

p2はlomml  hdは2.Owrm+ dr+は
2關となる。
p2 is lomml hd is 2. Owrm+dr+ becomes the 2nd step.

上述の第2図に示す実験装置で、第3図に示す凝縮伝熱
管8を用い、作動流体をR22として、凝縮温度8〜2
0℃、熱流束3000〜15000kc a I /7
7” h程度の領域にわたって伝熱性能実験を行った。
In the experimental apparatus shown in FIG. 2 described above, using the condensing heat transfer tube 8 shown in FIG.
0℃, heat flux 3000-15000kc a I/7
Heat transfer performance experiments were conducted over a region of about 7” h.

作動流体側の実面積を基準として性能が評価された。第
5図は凝縮熱伝達率α。と熱流束qとの関係を示づ図で
、同図には、この発明の一実施例である第1図に示す基
本的構造のスパイラルダグルフィンを有イる凝縮伝熱管
8(0印)と平滑管(・印)の実験値を示し、両者の比
較を容易にした。第4図において、平滑管の実験値は、
ヌツセルトの膜状凝縮理論からの値より約30%はど高
い値が得られているが、これは蒸気流の効果によろもの
と思われる。平滑管とこの発明による凝縮伝熱管8の性
能を作動流体側の実面積を基準として比較すると4〜6
倍の値が得られるこ仁がわかった。水流速を2 m/ 
s  として、同一処理熱量および同一凝縮温度を得る
ようKした場合、平滑管の約l/25 で済むことが実
験的に本数を減らしていくことにより確認された。
Performance was evaluated based on the actual area on the working fluid side. Figure 5 shows the condensing heat transfer coefficient α. This figure shows the relationship between the heat flux q and the condensing heat exchanger tube 8 (marked 0) having a spiral double fin having the basic structure shown in FIG. 1, which is an embodiment of the present invention. and experimental values for a smooth tube (marked with a *) are shown to facilitate comparison between the two. In Figure 4, the experimental values for the smooth tube are:
The obtained value is approximately 30% higher than the value obtained from Nutsselt's theory of film condensation, but this seems to be due to the effect of vapor flow. Comparing the performance of the smooth tube and the condensing heat exchanger tube 8 according to the present invention based on the actual area on the working fluid side, it is 4 to 6.
I found out that you can get double the value. Water flow rate 2 m/
It was experimentally confirmed by reducing the number of tubes that when K is set to obtain the same amount of processing heat and the same condensation temperature as s, only about 1/25 of a smooth tube is required.

上記実験に用いたこの発明によるスパイラルダブルフィ
ン式の凝縮伝熱管8は、有効管長900鰭と短いが、長
尺化すれば、より効果が発揮できることが、その構造か
ら十分予測される。すなわち、このスパイラルダブルフ
ィン式の凝縮伝熱管8は長尺化に適しているといえる。
Although the spiral double fin type condensing heat exchanger tube 8 according to the present invention used in the above experiment has a short effective tube length of 900 fins, it is fully predicted from its structure that it will be more effective if it is made longer. That is, it can be said that this spiral double fin type condensing heat exchanger tube 8 is suitable for increasing the length.

また、上記実験例では、いまだ凝縮伝熱管8の形状パラ
メータの最適化が行われていないが、第1図に示したよ
うに、ドレンフィン2のピッチpd、ドレンフィン2の
高さhd、プライマリ−フィン1の高さhp、プライマ
リ−フィン1のピッチpp、ドレンガター3の円周方向
の数、および幅dd、ドレンバー4の幅db、およびそ
れらの形状な変えて、各々の作動流体や温度、熱流束等
の動作条件に適合した最適形状パラメータを選ぶことが
できる。
In addition, in the above experimental example, the shape parameters of the condensing heat exchanger tube 8 have not yet been optimized, but as shown in FIG. - Height hp of the fins 1, pitch pp of the primary fins 1, number and width in the circumferential direction of the drain gutter 3, width dd, width db of the drain bar 4, and their shapes, each working fluid and temperature, Optimal shape parameters can be selected that suit operating conditions such as heat flux.

第6図はモジュール化された長尺の凝縮伝熱管束の一例
を示す図で、第7図にその部分拡大図をである。プライ
マリ−フィン1.ドレンフィン2およびドレンガター3
と集められた凝縮液は中間ドレンフィンフランジ20を
介してドレンガイド21を通って流下する。
FIG. 6 is a diagram showing an example of a modularized long condensing heat exchanger tube bundle, and FIG. 7 is a partially enlarged view thereof. Primary fin 1. Drain fin 2 and drain gutter 3
The collected condensate flows down through the drain guide 21 via the intermediate drain fin flange 20.

第8図は凝縮器の平断面図で、第6図に示す凝熱管8は
高性能な凝縮熱伝達が得られるから、凝結果より予測で
きる。従ってコストならびにコンパクト化に大きな威力
を発揮することが期待できる。特に海洋温度差発電のよ
うに低温度差発電システムでは、熱交換器の寸法は大き
くなるから、本数が少なくてすむこの発明のスパイラル
ダブルフィン式の凝縮伝熱g8を用いれば、そのフンバ
ク)(εが可能とな1ハ配管のひきまわし、格納容器の
寸法(例えば海洋構造体など)の減少など全体システム
コストの低減化にも大きく貢献できる。
FIG. 8 is a plan cross-sectional view of the condenser, and since the condensing tube 8 shown in FIG. 6 can achieve high-performance condensing heat transfer, it can be predicted from the condensation results. Therefore, it can be expected to have a great effect on cost and compactness. In particular, in low temperature difference power generation systems such as ocean temperature difference power generation, the size of the heat exchanger becomes large, so if you use the spiral double fin type condensing heat transfer G8 of this invention, which requires fewer heat exchangers, it will be easier to use. It can also greatly contribute to reducing the overall system cost, such as by routing 1-hole piping and reducing the size of the containment vessel (for example, an offshore structure), which enables ε.

また、この発明の一実施例として示した凝縮伝熱管8は
、長さに対する制約をある程度取り除くことに成功して
おり、全体システムの構造レイアウトの決定に大きな自
由度を与えることが可能となる。
Further, the condensing heat exchanger tube 8 shown as an embodiment of the present invention has succeeded in removing restrictions on length to some extent, and it becomes possible to provide a large degree of freedom in determining the structural layout of the entire system.

以上詳細に説明したように、この発明に係る凝縮伝熱管
は、凝縮された液をある区間毎に区切って集めて排除1
°るためのスパイラル状に形成されためのスパイラル状
圧形成された凝縮促進用フィンを有するスパイラルダグ
ルフィン式の凝縮伝熱管を基本的構造とするので、従来
の凝縮伝熱管では得られない高性能の凝縮熱伝達が得ら
れ、熱交換器のコンパクト化に極めてすぐれた効果を発
揮する。また、凝縮管をモジュール構造化すること釦よ
り長尺の凝縮伝熱管束とすることができ、全体システム
の構造レアウトの決定に大きい自由度を与えるという極
めてすぐれた効果も有づる。
As explained in detail above, the condensing heat transfer tube according to the present invention divides the condensed liquid into sections, collects it, and removes it.
The basic structure is a spiral-shaped condensing heat exchanger tube with pressure-formed condensation promoting fins, which provide high performance that cannot be obtained with conventional condensing heat exchanger tubes. The condensation heat transfer is achieved, and the heat exchanger is extremely effective in making the heat exchanger more compact. Further, by making the condensing tubes into a module structure, it is possible to form a bundle of condensing heat transfer tubes that is longer than the button, which has an extremely excellent effect of providing a large degree of freedom in determining the structural layout of the entire system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)はこの発明に係る凝縮伝熱管の基
本的構造を示′1−図で、第1図(a)は凝縮伝熱管の
一部切欠図、第1図(b)はプライマリ−フィンの形状
例を示1図、第1図(c)はドレンフィンの形状例を示
1図、第1図(d)は凝縮伝熱管の横断面図、第2図は
実験装置の系統図、第3図は実験に用いた凝縮伝熱管の
ノ杉状を示す図、第4図(a)〜(d)は第3図の要部
の拡大図で、第4図(a)は部分側面図、第4図(b)
は正面図、第4図(C)。 (d)はプライマリ−フィン、ドレンフィンの断面図、
第5図は実験結果を示す図、第6図はモジュール縮伝熱
管、19は凝縮伝熱管束、20は中間ドレy)7(y7
 ′ y9 ・ 2191+″1″ガ”’Fr七−)モ
1−:1 1、−); ・:
Figures 1(a) to 1(d) show the basic structure of the condensing heat exchanger tube according to the present invention; Figure 1(a) is a partially cutaway view of the condensing heat exchanger tube; Figure 1 b) shows an example of the shape of a primary fin, Figure 1 (c) shows an example of the shape of a drain fin, Figure 1 (d) is a cross-sectional view of a condensing heat exchanger tube, and Figure 2 shows an example of the shape of a drain fin. System diagram of the experimental equipment, Figure 3 is a diagram showing the cedar shape of the condensing heat exchanger tube used in the experiment, Figures 4 (a) to (d) are enlarged views of the main parts of Figure 3, Figure 4 (a) is a partial side view, Fig. 4 (b)
is a front view, FIG. 4(C). (d) is a cross-sectional view of the primary fin and drain fin,
Fig. 5 is a diagram showing the experimental results, Fig. 6 is a module condensing heat exchanger tube, 19 is a condensing heat exchanger tube bundle, 20 is an intermediate drain y) 7 (y7
'y9 ・2191+"1"ga"'Fr7-)Mo1-:1 1,-); ・:

Claims (1)

【特許請求の範囲】[Claims] 凝縮された液をある区間毎に区切って集めて排除するた
めのスパイラル状に形成されたドレンフィンを有し、そ
こで集められた凝縮液をさらに管の鉛直方向にまとめて
排除するドレンガターを有し、前記ドレンフィンと次の
ドレンフィンとの間の区間に凝縮熱伝達を促進させるた
めのスパイラル状に形成されたプライマリ−フィンを有
することを特徴とする凝縮伝熱管。
It has a drain fin formed in a spiral shape for collecting and discharging the condensed liquid in sections, and has a drain gutter for discharging the condensed liquid collected there in the vertical direction of the pipe. . A condensing heat exchanger tube comprising a spirally formed primary fin for promoting condensing heat transfer in a section between the drain fin and the next drain fin.
JP14883682A 1982-08-27 1982-08-27 condensing heat transfer tube Expired JPS6027909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14883682A JPS6027909B2 (en) 1982-08-27 1982-08-27 condensing heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14883682A JPS6027909B2 (en) 1982-08-27 1982-08-27 condensing heat transfer tube

Publications (2)

Publication Number Publication Date
JPS5938595A true JPS5938595A (en) 1984-03-02
JPS6027909B2 JPS6027909B2 (en) 1985-07-02

Family

ID=15461815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14883682A Expired JPS6027909B2 (en) 1982-08-27 1982-08-27 condensing heat transfer tube

Country Status (1)

Country Link
JP (1) JPS6027909B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992512A (en) * 1996-03-21 1999-11-30 The Furukawa Electric Co., Ltd. Heat exchanger tube and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992512A (en) * 1996-03-21 1999-11-30 The Furukawa Electric Co., Ltd. Heat exchanger tube and method for manufacturing the same

Also Published As

Publication number Publication date
JPS6027909B2 (en) 1985-07-02

Similar Documents

Publication Publication Date Title
CA1184816A (en) Wet/dry steam condenser
US3675710A (en) High efficiency vapor condenser and method
SU1269750A3 (en) Air-cooled steam condenser
US4379485A (en) Wet/dry steam condenser
JP2576292B2 (en) Condenser and power plant using the same
US3887002A (en) Air-cooled heat exchanger with after-condenser
JPS5938595A (en) Heat transfer tube for condensation heat
JP5630187B2 (en) Solar collector and hot water system
CN106382836A (en) Separation type heat pipe bathing wastewater waste heat recovery system and method
JPS5826519B2 (en) Red-bellied woodpecker
JPS61213493A (en) Condensing thermal transfer pipe
Royal et al. Experimental study of horizontal in-tube condensation
Boda et al. Design and Development of Parallel-Counter Flow Heat Exchanger
CN216711640U (en) Overhead condensing device for water treatment distillation tower
JPH02638B2 (en)
CN215675754U (en) Cold volume recovery unit of comdenstion water
JPS58200995A (en) Condensing heat transfer pipe
CN115854747A (en) Co-directional double-corrugated finned tube heat exchanger and heat exchange method
CN209558933U (en) A kind of shell-tube type steam exhaust recycling heat-exchanger rig
CN107651720A (en) A kind of multistage humidification dehumidification type sea water desalinating unit with loop type gravity assisted heat pipe structure
CN209877417U (en) Heat exchange device for air conditioner condenser
RU102251U1 (en) HEAT EXCHANGE SECTION
RU47084U1 (en) HEAT EXCHANGER
SU1000730A1 (en) Heat exchanging element
JPS5947836B2 (en) steam condenser