JPH02638B2 - - Google Patents

Info

Publication number
JPH02638B2
JPH02638B2 JP5415585A JP5415585A JPH02638B2 JP H02638 B2 JPH02638 B2 JP H02638B2 JP 5415585 A JP5415585 A JP 5415585A JP 5415585 A JP5415585 A JP 5415585A JP H02638 B2 JPH02638 B2 JP H02638B2
Authority
JP
Japan
Prior art keywords
tube
heat transfer
drain
heat exchanger
condensing heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5415585A
Other languages
Japanese (ja)
Other versions
JPS61213492A (en
Inventor
Takenobu Kajikawa
Hiroyuki Takazawa
Hiroaki Kuno
Masayoshi Hamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Heavy Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP5415585A priority Critical patent/JPS61213492A/en
Publication of JPS61213492A publication Critical patent/JPS61213492A/en
Publication of JPH02638B2 publication Critical patent/JPH02638B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、凝縮伝熱管に関し、海洋温度差発電
用熱交換器、排熱利用低熱落差発電用熱交換器、
吸収式冷凍機、ヒートポンプなどに利用できるも
のである。 従来の技術 近年、海洋温度差発電、火力発電所や原子力発
電所の排熱利用低熱落差発電、地熱々水利用発
電、各種産業排熱利用低熱落差発電などクローズ
ドランキンサイクルによる発電技術の開発がすゝ
められている。このようなシステムでは、低沸点
媒体を循環させて、蒸発と凝縮を繰り返すことに
より発電するのであるが、効率をよくするために
は凝縮器および蒸発器の高性能化が必要である。
特に、所内動力としてのポンプ動力をできるだけ
小さくする必要があることから、水側熱伝達率の
高性能化には限度があることを考慮すると、作動
流体側の熱伝達率の高性能化が必須の技術とな
る。 従来、凝縮熱伝達の高性能化には、第6図に示
すような、縦溝付き(フルテツド)管が考えら
れ、形状の最適化などが行われている。このフル
テツド管は、凝縮液を第7図に示す谷部aに引き
込み、凸部bでは凝縮液膜は薄くなるものの、軸
方向に凝縮液が累積していくので、軸方向の大き
な液膜分布を生じ、長尺管とするに従つて性能が
低下する。それを改善するため、途中にドレン排
除板を付けることが試みられている。これはある
程度の効果はあるものの製作工程が複雑であり、
また、排除した凝縮液が再び管にふりかゝつてし
まうなど十分とはいない。また、水平管について
は、ハイフイン、ローフインなど各種形状のもの
が提案されているが、低熱落差発電の中の凝縮器
は、大型化するため凝縮液が水平管より落下し、
次々に下段の凝縮伝熱面上に累積していくため、
全体としての性能が低下してしまうという欠点が
ある。 発明が解決しようとする問題点 本発明は、このような従来技術の問題点に鑑み
て、これを解決するためになされたもので、凝縮
液膜の薄膜化及び凝縮液の迅速な排除を効率的に
行なう構造を有する新規な高性能たて型凝縮伝熱
管を提供することを目的とする。 問題点を解決するための手段 この目的を達成するために、本発明では、微細
なたて溝を有する伝熱管即ちフルテツド管に、該
たて溝より深くカツトした傾斜溝を適当なピツチ
で開発し、かつ、該傾斜溝に沿つて排除さた凝縮
液をまとめて鉛直方向に排除するドレンガターを
1乃至複数個開設し、さらに、該ドレンガターに
よつて分断されている前記傾斜溝の下流側に当る
該ドレンガターの側縁に沿つてドレンバーを設け
て構成したことを特徴とする。 実施例 以下、本発明の詳細を図示する実施例に従つて
順次説明する。 第1図において、凝縮伝熱管1は四つの要素か
ら構成されている。 その第一要素は、第6図と同様に、微細なたて
溝2を有すること(フラテツド管)である。第2
図はその断面を示す。 第二要素は、フルテツド管の大きな欠点である
軸方向の液膜分布を解消するため、傾斜溝3が適
当なピツチpで設けられ、前記たて溝部2で凝縮
した凝縮液をすばやく該傾斜溝3に流し、液膜の
累積を防ぐようになつていることである。したが
つて、第2図に示すように、フルテツド管谷部2
aの深さより該傾斜溝3は深く堀る必要があり、
第3図のa及びbに示す断面形状などのような再
びその凝縮液がたて溝2に入らないような構造が
望ましい。 第三要素は、前記傾斜溝3に流れ込んだ凝縮液
を軸方向に流れ込むドレンガター4を設けている
ことである。該ドレンガター4は円周方向に1個
所乃至複数個所に設けることができるが、多く設
けると伝熱面積が低下するため、第2図に示すよ
うに溝巾lは十分この点を考慮して計画する必要
がある。 第四要素は、ドレンバー5を前記ドレンガター
4によつて分断される前記傾斜溝3の下流側に当
る該ドレンガターー4の側縁4aに沿つて設けた
ことである。該ドレンガター5はその傾斜溝3か
ら凝縮液が流れ込むため、たて型で用いると、下
方部では相当液膜が厚くなる。従つて、該凝縮液
が次のピツチの傾斜溝3へ流れ込むのを防止する
ために、前述のようにドレンバー5を設けてい
る。 こゝで、ドレンバー5の巾hおよび形状を適当
に選ぶことによつて、凝縮液をドレンガター4内
に効率的に引き込むとともに、ドレンガター4の
巾lを小さくし、凝縮伝熱管1の有効面積を減ら
さないこと、並びに、ドレンバー5に沿つて凝縮
液を流下させ、該伝熱管1より速やかに凝縮液を
引離す役割をしている。該ドレンバー5には、金
属プレート、多孔質プレート、高分子材料等の薄
いプレートなどを利用できる。作動流体蒸気流に
対する配慮からドレンバー5は、例えば、上端部
を狭く、下端部にいくに従つて広くしていくとい
つた形状も考えられる。 発明の効果 次に、以上の基本的構造を有する凝縮伝熱管1
の効果を説明するため、実験例に従つて説明す
る。先ず、第4図は実験装置系統概念図を示した
ものである。同図において、たて型凝縮器6はそ
の内部にインナーシエル7を有し、蒸気を上部か
ら導く構造となつている。本発明の凝縮伝熱管1
は当該凝縮器6の中央に配位し、内部冷却流体を
直列に流すことができるように、該凝縮器6の外
部で接続できる構造となつている。ここで8は液
溜タンク、9は蒸発器、10は循環ポンプであ
る。 この実験装置において、先ず、作動流体蒸気は
ライン11から凝縮器6に流入し、インナーシエ
ル7により蒸気の流れが整流されたのち、凝縮伝
熱管1の表面で凝縮する。凝縮液はライン12か
ら液溜タンク8に集められ、循環ポンプ10によ
り、ライン13から蒸発器9に送られ、再び蒸気
となつて循環される。 前記凝縮伝熱管1内部には、蒸気温度より低い
流体がライン14から流入し、ライン15から系
外に戻される。こゝで、内部冷却流体の流量、比
熱、出入の温度差から、該凝縮伝熱管1の交換熱
量を算出することができる。 また、蒸発器9では、シエルアンドチユーブタ
イプの熱交換器が用いられ、蒸気温度より高い流
体をライン16から流し、ライン17から出す構
造となつており、凝縮器6と同様、加熱流体の流
量、比熱、出入の温度差から、蒸気量を算出する
ことができる。 さて、この実験装置を用いて、本発明の凝縮伝
熱管の凝縮伝熱性能を測定した。 供試凝縮伝熱管は、本発明の凝縮伝熱管Aと、
フルテツド管B、表面に加工されていない普通の
ベア(平滑)管Cの3本について測定された。 各管A,B,Cの仕様は一例として次の通りで
ある。
INDUSTRIAL APPLICATION FIELD The present invention relates to a condensing heat exchanger tube, a heat exchanger for ocean temperature difference power generation, a heat exchanger for low heat drop power generation using waste heat,
It can be used in absorption refrigerators, heat pumps, etc. Conventional technology In recent years, closed Rankine cycle power generation technologies have been developed, such as ocean temperature difference power generation, low heat drop power generation using waste heat from thermal power plants and nuclear power plants, geothermal hot water power generation, and low heat drop power generation using waste heat from various industries. being admired. In such systems, electricity is generated by circulating a low-boiling point medium and repeating evaporation and condensation, but in order to improve efficiency, it is necessary to improve the performance of the condenser and evaporator.
In particular, considering that there is a limit to improving the heat transfer coefficient on the water side because the pump power as internal power needs to be as small as possible, it is essential to improve the heat transfer coefficient on the working fluid side. technology. Conventionally, to improve the performance of condensing heat transfer, a fluted tube as shown in FIG. 6 has been considered, and the shape has been optimized. This full-tipped tube draws the condensate into the troughs a shown in Figure 7, and although the condensate film becomes thinner at the protrusions b, the condensate accumulates in the axial direction, resulting in a large liquid film distribution in the axial direction. The performance deteriorates as the length of the tube increases. In order to improve this, attempts have been made to attach a drain exclusion plate in the middle. Although this is effective to some extent, the manufacturing process is complicated,
In addition, the condensate that has been removed is likely to re-sprinkle into the pipe, which is not enough. In addition, various shapes of horizontal pipes have been proposed, such as high-in and low-in, but condensers used in low thermal drop power generation are larger, so condensed liquid falls from the horizontal pipe.
As it accumulates on the lower condensation heat transfer surface one after another,
This has the disadvantage that the overall performance deteriorates. Problems to be Solved by the Invention The present invention has been made in view of the problems of the prior art and to solve the problems. The purpose of the present invention is to provide a new high-performance vertical condensing heat exchanger tube having a structure that can perform the following tasks. Means for Solving the Problems In order to achieve this objective, the present invention develops inclined grooves cut deeper than the vertical grooves at an appropriate pitch in a heat transfer tube having fine vertical grooves, that is, a full-treaded tube. In addition, one or more drain gutters are provided to collectively discharge the condensate discharged along the inclined groove in the vertical direction, and further, on the downstream side of the inclined groove separated by the drain gutter, It is characterized in that a drain bar is provided along the side edge of the drain gutter. Embodiments Hereinafter, details of the present invention will be sequentially explained according to illustrated embodiments. In FIG. 1, a condensing heat exchanger tube 1 is composed of four elements. The first element is that it has fine vertical grooves 2 (flattened pipe), as shown in FIG. Second
The figure shows its cross section. The second element is that in order to eliminate the liquid film distribution in the axial direction, which is a major drawback of full-treaded pipes, the inclined grooves 3 are provided at an appropriate pitch p, and the condensed liquid condensed in the vertical groove portion 2 is quickly transferred to the inclined grooves. 3 to prevent the accumulation of a liquid film. Therefore, as shown in FIG.
It is necessary to dig the inclined groove 3 deeper than the depth of a.
It is desirable to have a structure that prevents the condensate from entering the vertical grooves 2 again, such as the cross-sectional shapes shown in FIGS. 3a and 3b. The third element is that a drain gutter 4 is provided to allow the condensate that has flowed into the inclined groove 3 to flow in the axial direction. The drain gutter 4 can be provided at one or multiple locations in the circumferential direction, but if more are provided, the heat transfer area will decrease, so the groove width l should be designed with this point in mind, as shown in Figure 2. There is a need to. The fourth element is that the drain bar 5 is provided along the side edge 4a of the drain gutter 4 on the downstream side of the inclined groove 3 divided by the drain gutter 4. Since the condensate flows into the drain gutter 5 from its inclined grooves 3, if it is used vertically, the liquid film will be considerably thicker in the lower part. Therefore, in order to prevent the condensate from flowing into the inclined groove 3 of the next pitch, the drain bar 5 is provided as described above. By appropriately selecting the width h and shape of the drain bar 5, the condensate can be efficiently drawn into the drain gutter 4, the width l of the drain gutter 4 can be reduced, and the effective area of the condensing heat exchanger tube 1 can be increased. In addition, the condensed liquid flows down along the drain bar 5 and plays the role of quickly separating the condensed liquid from the heat transfer tube 1. As the drain bar 5, a metal plate, a porous plate, a thin plate made of a polymeric material, etc. can be used. In consideration of the working fluid vapor flow, the drain bar 5 may have a shape that is narrow at the upper end and widened toward the lower end, for example. Effect of the invention Next, condensing heat exchanger tube 1 having the above basic structure
In order to explain the effect, an explanation will be given according to an experimental example. First, FIG. 4 shows a conceptual diagram of the experimental equipment system. In the figure, a vertical condenser 6 has an inner shell 7 therein, and has a structure in which steam is introduced from above. Condensing heat exchanger tube 1 of the present invention
is arranged at the center of the condenser 6 and can be connected to the outside of the condenser 6 so that the internal cooling fluid can flow in series. Here, 8 is a liquid storage tank, 9 is an evaporator, and 10 is a circulation pump. In this experimental device, working fluid vapor first flows into the condenser 6 from the line 11, and after the flow of the vapor is rectified by the inner shell 7, it is condensed on the surface of the condensing heat exchanger tube 1. The condensate is collected in a liquid storage tank 8 through a line 12, sent to an evaporator 9 through a line 13 by a circulation pump 10, and circulated again as vapor. A fluid whose temperature is lower than the steam temperature flows into the condensing heat transfer tube 1 from a line 14 and is returned to the outside of the system from a line 15. Here, the amount of exchanged heat of the condensing heat transfer tube 1 can be calculated from the flow rate, specific heat, and temperature difference between the inlet and outlet of the internal cooling fluid. In addition, the evaporator 9 uses a shell and tube type heat exchanger, and has a structure in which a fluid higher than the steam temperature flows through a line 16 and is discharged from a line 17.Similar to the condenser 6, the flow rate of the heated fluid is The amount of steam can be calculated from the specific heat and the temperature difference between the inlet and outlet. Now, using this experimental device, the condensing heat transfer performance of the condensing heat transfer tube of the present invention was measured. The test condensing heat exchanger tube is a condensing heat exchanger tube A of the present invention,
Measurements were made for three tubes: a full-treaded tube B and an ordinary bare (smooth) tube C with no surface treatment. The specifications of each tube A, B, and C are as follows, as an example.

【表】 実験は、作動蒸気流体として、フロン22(R
―22)を用い、凝縮器冷却流体5〜10℃の冷水
を、蒸発器加熱流体は28〜35℃の温水を用いて実
験した。 実験結果を第5図に示す。同図において、横軸
は実表面積規準(凸部、凹部の面積を計算する)
のヒートフラツクス(Kca/m2h)で、たて軸は
実表面積規準の凝縮熱伝達率αc(Kcal//m2
℃)を示したものである。 この結果、本発明の凝縮伝熱管Aに於いては、
平滑管Cに対し、4〜5倍の熱伝達率を達成し
た。また、該伝熱管Aは平滑管Cの約1.9倍の表
面積を有しているので、平滑管C規準では実に8
〜10倍近い性能があると考えられる。また、フル
テツド管Bに於いて、ヒートフラツクスの低い領
域では凝縮熱伝達率αcは高いものの、1本当りの
凝縮量が増える10000Kcal/m2h以上の領域(実
際の利用範囲)で、急速に熱伝達率αcが低下し、
軸方向に大きな液膜分布が形成されていることが
推定される。従つて、4m以上の長尺管になると
その影響が大きく現われるため採用がむづかし
い。 その点、本発明の凝縮伝熱管Aは高いヒートフ
ラツクスに於いても、高い伝熱性能の維持がみら
れ、長尺管でも十分性能が発揮できるものと考え
られる。なお、フルテツド管の凸凹部形状、ドレ
ンガターの巾、傾斜溝の巾、形状、ドレンバーの
高さ、形状は温度、熱流束等の条件に適合した最
適形状を選ぶことができる。 本発明によつて、高性能な凝縮熱伝達が得られ
るから、伝熱管の本数を減らすことができ、例え
ば、海洋温度差発電のように低温度差発電システ
ムでは、凝縮伝熱管を平滑管の2/1以下にするこ
とが可能で、配管のひきまわし、格納容器の寸法
の減少など全体システムコストの低減化にも大き
く貢献できる。
[Table] The experiment was conducted using Freon 22 (R
-22), the experiment was conducted using cold water at 5-10℃ as the condenser cooling fluid and hot water at 28-35℃ as the evaporator heating fluid. The experimental results are shown in Figure 5. In the figure, the horizontal axis is the actual surface area standard (calculate the area of convex and concave parts)
heat flux (Kca/m 2 h), and the vertical axis is the condensation heat transfer coefficient α c (Kcal//m 2 h) based on the real surface area.
°C). As a result, in the condensing heat exchanger tube A of the present invention,
A heat transfer coefficient of 4 to 5 times that of smooth tube C was achieved. In addition, since the heat exchanger tube A has a surface area approximately 1.9 times that of the smooth tube C, it is actually 80% according to the smooth tube C standard.
It is thought that the performance is approximately 10 times higher. In addition, in the full-treaded tube B, although the condensation heat transfer coefficient α c is high in the region of low heat flux, in the region of 10,000 Kcal/m 2 h or more (actual usage range) where the amount of condensation per tube increases, The heat transfer coefficient α c rapidly decreases,
It is estimated that a large liquid film distribution is formed in the axial direction. Therefore, it is difficult to adopt long pipes of 4 m or more because the effect becomes significant. In this respect, the condensing heat transfer tube A of the present invention maintains high heat transfer performance even under high heat flux, and it is considered that even a long tube can exhibit sufficient performance. Note that the shape of the uneven portion of the full-treaded pipe, the width of the drain gutter, the width and shape of the inclined groove, and the height and shape of the drain bar can be selected to be the optimal shape that suits the conditions such as temperature and heat flux. Since the present invention provides high-performance condensing heat transfer, the number of heat transfer tubes can be reduced. For example, in low temperature difference power generation systems such as ocean temperature difference power generation, condensing heat transfer tubes are replaced with smooth tubes. It can be reduced to less than 2/1, and can greatly contribute to reducing the overall system cost by reducing piping and containment vessel dimensions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の凝縮伝熱管の正面図、第2図
は第1図の―線断面図、第3図a及びbは第
1図の―線縦断拡大図、第4図は同上凝縮伝
熱管の実験装置系統概念図、第5図は実験結果を
ヒートフラツクスと凝縮熱伝達率との関係で表し
たグラフ、第6図は従来の凝縮伝熱管の正面図、
第7図は第6図の―線断面図である。 1……凝縮伝熱管、2……たて溝、3……傾斜
溝、4……ドレンガター、5……ドレンバー。
Fig. 1 is a front view of the condensing heat exchanger tube of the present invention, Fig. 2 is a sectional view taken along the line - - of Fig. 1, Fig. 3 a and b are enlarged longitudinal sectional views taken along the line - - of Fig. 1, and Fig. 4 is a condensing tube of the same. A conceptual diagram of the experimental equipment system for heat exchanger tubes. Figure 5 is a graph showing the experimental results in terms of the relationship between heat flux and condensing heat transfer coefficient. Figure 6 is a front view of a conventional condensing heat exchanger tube.
FIG. 7 is a sectional view taken along the line -- in FIG. 6. 1... Condensing heat transfer tube, 2... Vertical groove, 3... Inclined groove, 4... Drain gutter, 5... Drain bar.

Claims (1)

【特許請求の範囲】[Claims] 1 微細なたて溝を有する伝熱管即ちフルテツド
管に、該たて溝より深くカツトした傾斜溝を適当
なピツチで開設し、かつ、該傾斜溝に沿つて排除
された凝縮液をまとめて鉛直方向に排除するドレ
ンガターを1乃至複数個開設し、さらに、該ドレ
ンガターによつて分断されている前記傾斜溝の下
流側に当る該ドレンガターの側縁に沿つてドレン
バーを設けて構成した凝縮伝熱管。
1. In a heat transfer tube having fine vertical grooves, that is, a full-treaded tube, inclined grooves are cut deeper than the vertical grooves at an appropriate pitch, and the condensate removed along the inclined grooves is collected and collected vertically. A condensing heat exchanger tube configured by having one or more drain gutters for discharging in the direction, and further providing a drain bar along the side edge of the drain gutter on the downstream side of the inclined groove divided by the drain gutter.
JP5415585A 1985-03-20 1985-03-20 Condensing thermal transfer pipe Granted JPS61213492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5415585A JPS61213492A (en) 1985-03-20 1985-03-20 Condensing thermal transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5415585A JPS61213492A (en) 1985-03-20 1985-03-20 Condensing thermal transfer pipe

Publications (2)

Publication Number Publication Date
JPS61213492A JPS61213492A (en) 1986-09-22
JPH02638B2 true JPH02638B2 (en) 1990-01-08

Family

ID=12962655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5415585A Granted JPS61213492A (en) 1985-03-20 1985-03-20 Condensing thermal transfer pipe

Country Status (1)

Country Link
JP (1) JPS61213492A (en)

Also Published As

Publication number Publication date
JPS61213492A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
US3675710A (en) High efficiency vapor condenser and method
US3256704A (en) Plate condenser evaporator
US5960870A (en) Heat transfer tube for absorber
WO2022068555A1 (en) Dual-channel heat exchange unit having combined enhanced heat transfer functions and heat exchanger thereof
JPH037877B2 (en)
CN106382836A (en) Separation type heat pipe bathing wastewater waste heat recovery system and method
JPH02638B2 (en)
RU2674816C1 (en) Horizontal vapour-liquid heat exchanger
CN206235218U (en) Outer ripple heat exchange of heat pipe and sea water desalinating unit
US20030037909A1 (en) Method of action of the plastic heat exchanger and its constructions
CN206208080U (en) Separate heat pipe shower waste water residual heat recovery system
CN106288896B (en) Outer ripple heat exchange of heat pipe and desalination plant
JPS5818094A (en) Evaporator
JP2005090798A (en) Heat transfer pipe for condenser
CN112082403B (en) Novel multistage heat exchange condenser
CN213901973U (en) Shell-tube type water condenser
KR200349474Y1 (en) Thermosiphon Heat Pipe Type Heat Exchanger
JPS58200995A (en) Condensing heat transfer pipe
JPS6218839B2 (en)
CN211120141U (en) Tube array type condenser for chemical industry
JPS60110388A (en) Seawater desalting apparatus
JPS6027909B2 (en) condensing heat transfer tube
CN217058416U (en) Novel high-efficient condenser
JPS6314293Y2 (en)
CN214308221U (en) Horizontal condenser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term