JPS5938524B2 - liquid level detector - Google Patents

liquid level detector

Info

Publication number
JPS5938524B2
JPS5938524B2 JP15286480A JP15286480A JPS5938524B2 JP S5938524 B2 JPS5938524 B2 JP S5938524B2 JP 15286480 A JP15286480 A JP 15286480A JP 15286480 A JP15286480 A JP 15286480A JP S5938524 B2 JPS5938524 B2 JP S5938524B2
Authority
JP
Japan
Prior art keywords
float
liquid level
light
light emitting
level detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15286480A
Other languages
Japanese (ja)
Other versions
JPS5774620A (en
Inventor
康邦 山根
宣捷 賀好
英隆 新宅
一忠 東
忠二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15286480A priority Critical patent/JPS5938524B2/en
Publication of JPS5774620A publication Critical patent/JPS5774620A/en
Publication of JPS5938524B2 publication Critical patent/JPS5938524B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/68Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means
    • G01F23/686Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means using opto-electrically actuated indicating means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Level Indicators Using A Float (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 本発明は、特に温風暖房器の灯油タンク等において使用
するのに適した、光学的手段を用いた連続的液面レベル
検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous liquid level detector using optical means, particularly suitable for use in kerosene tanks of hot air heaters and the like.

従来の連続的液面レベル検出器としては、液面に浮かし
たフロートにより機械的にアームを動かし、このアーム
の動きを電気抵抗の変化に変換しその変化量に基づいて
液面レベルを検知する様にしたものや、超音波発信器を
用いて液面からの超音波の反射時間を測定し、その測定
値に基づいて液面レベルを検知する様にしたものが知ら
れている。
Conventional continuous liquid level detectors use a float floating on the liquid surface to mechanically move an arm, convert this movement of the arm into a change in electrical resistance, and detect the liquid level based on the amount of change. There are known devices in which the reflection time of ultrasonic waves from the liquid surface is measured using an ultrasonic transmitter, and the liquid level is detected based on the measured value.

しかしながら、これらの検出器は小型化が困難であると
共に近距離での測定が不可能な場合もあり、更に、耐久
性の面でも問題がさつて、それ故に灯油タンク等の液面
レベル検出に用いるのは不適当であつた。
However, these detectors are difficult to miniaturize and may not be able to measure at short distances, and they also have problems in terms of durability, so they are not used to detect liquid levels in kerosene tanks, etc. It was inappropriate.

本発明は上記の点に鑑みてなされたもので、小型で且つ
長寿命の連続的液面レベル検出器を提供することを目的
とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a continuous liquid level detector that is small in size and has a long life.

本発明を要約すれば、 長筒の一端に発光素子および指向性の異なる複数の受光
素子を設けるとともに、長筒内部にフロートを置き、受
光素子によりフロートからの反射光の光量を検出し、各
受光素子出力の相対値から被検出液面の位置を連続的に
検知する様にしたことを特徴とするものである。
To summarize the present invention, a light emitting element and a plurality of light receiving elements with different directivities are provided at one end of a long tube, a float is placed inside the long tube, and the amount of light reflected from the float is detected by the light receiving element. The present invention is characterized in that the position of the liquid level to be detected is continuously detected from the relative value of the output of the light receiving element.

以下、本発明の説明に当り、本出願人が先に出願した液
面レベル検出器をまず説明する。
In explaining the present invention, a liquid level detector previously filed by the present applicant will be described below.

第1図は液面レベル検出器の構造図を示す。FIG. 1 shows a structural diagram of a liquid level detector.

同図において、長筒1は断面が円形で、底部と上方部に
液および空気の出入口2a、2bを有し、また内壁の反
射率が均一である。この長筒1の内部には半球状のフロ
ート3が自由状態に置かれ、被検出液面Aの変位に従つ
て長筒1内で上下動する様にされる。長筒1の上端部に
は、赤外発光ダイオード4およびフオトトランジスタ5
が並列にフロート3に向かつて配置されている。
In the figure, a long cylinder 1 has a circular cross section, has liquid and air inlets and outlets 2a and 2b at the bottom and upper part, and has a uniform reflectance on its inner wall. A hemispherical float 3 is placed in a free state inside the long tube 1, and is made to move up and down within the long tube 1 according to the displacement of the liquid level A to be detected. An infrared light emitting diode 4 and a phototransistor 5 are arranged at the upper end of the long tube 1.
are arranged in parallel facing the float 3.

この様な構成から、発光ダイオード4から発した光の一
部は、直接または長筒1の内壁での反射を経てフロート
3の上面で反射し、逆方向に進んでフオトトランジスタ
5に到達することになる。
Due to this configuration, a part of the light emitted from the light emitting diode 4 is reflected on the upper surface of the float 3 either directly or through reflection on the inner wall of the long tube 1, and travels in the opposite direction to reach the phototransistor 5. become.

この場合、フオトトランジスタ5に到達する光量は、光
ビームの拡りおよび長筒1の内壁での反射による減衰の
ために、フロート3の位置によつて変化する。従つて、
フオトトランジスタ5の出力から、フロート位置即ち被
測定液面の液面レベルを検出することができる。
In this case, the amount of light reaching the phototransistor 5 changes depending on the position of the float 3 due to the spread of the light beam and attenuation due to reflection on the inner wall of the long cylinder 1. Therefore,
From the output of the phototransistor 5, the float position, that is, the liquid level of the liquid to be measured can be detected.

なお、第1図には示していないが、赤外発光ダイオード
の駆動回路、およびフオトトランジスタ出力の増幅回路
、液面レベル表示回路等が別に設けられることはもちろ
んである。
Although not shown in FIG. 1, it goes without saying that an infrared light emitting diode drive circuit, a phototransistor output amplification circuit, a liquid level display circuit, etc. are separately provided.

上記の構成から明らかな様に、この液面レベル検出器で
は、長筒1の内壁で光が反射されるため発光ダイオード
4からの光を有効に利用できる上に、前記長筒断面方向
における光の強度分布が均一になるので、発光ダイオー
ド4およびフオトトランジスタ5の取付位置や角度に対
する精度の要求が緩和でき、その結果個々の検出器間の
性能のバラツキを小さくし得ることになる。
As is clear from the above configuration, in this liquid level detector, the light is reflected by the inner wall of the long cylinder 1, so the light from the light emitting diode 4 can be effectively used, and the light in the cross-sectional direction of the long cylinder 1 can be effectively used. Since the intensity distribution of the light emitting diode 4 and the phototransistor 5 become uniform, the requirement for accuracy regarding the mounting position and angle of the light emitting diode 4 and the phototransistor 5 can be relaxed, and as a result, variations in performance between individual detectors can be reduced.

更に、光の反射はフロート3により行わせているので、
液面からの直接の反射発に比べて強い反射光を得ること
ができ、また液面の揺動に感じにくくなるとともに、液
体が透明であるか否かに依存しなくなるという利点があ
る。
Furthermore, since the light is reflected by the float 3,
This method has the advantage of being able to obtain stronger reflected light than direct reflection from the liquid surface, being less sensitive to fluctuations in the liquid surface, and not depending on whether the liquid is transparent or not.

しかしながら、上記の構成ではフロート3、フオトトラ
ンジスタ5等の汚れの影響を大きく受けるという欠点が
あつた。
However, the above configuration has a drawback in that the float 3, phototransistor 5, etc. are greatly affected by dirt.

これに対して第2図以下に示す本発明はこのような欠点
がないという利点を有する。
In contrast, the present invention shown in FIGS. 2 and below has the advantage of not having such drawbacks.

第2図において第1図と同一部分は同一符号を付したよ
うに本発明レベル検出器の大方の構成は第1図のものと
変らない。ただ、本発明においては第3図に示す如く長
筒1の上端部に、発光ダイオード4と2個のフオトトラ
ンジスタ6,7が正三角の頂点に対応するような位置関
係で配置されている。このトランジスタ6,7は第4図
に示すように異なる指向性を有している。このような構
成であると、発光ダイオードから発光されフロート3に
て反射された光はほぼ等しい割合でフオトトランジスタ
6,7に入射することになるが、上記フオトトランジス
タ6,7が上述のように異なる指向性を有しているため
、フロート3の変位に対する各フオトトランジスタ6,
7の出力11,12は第5図の如くなる。
In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals, so that most of the configuration of the level detector of the present invention is the same as that in FIG. 1. However, in the present invention, as shown in FIG. 3, a light emitting diode 4 and two phototransistors 6 and 7 are arranged at the upper end of the long tube 1 in a positional relationship that corresponds to the vertices of an equilateral triangle. The transistors 6 and 7 have different directivities as shown in FIG. With such a configuration, the light emitted from the light emitting diode and reflected by the float 3 will be incident on the phototransistors 6 and 7 at approximately equal rates; Since they have different directivities, each phototransistor 6,
The outputs 11 and 12 of 7 are as shown in FIG.

つまり、指向性の狭いフオトトランジスタ6のフロート
3までの距離Lに対する出力11の変化率と、指向性の
広いフオトトランジスタ7のフロート3までの距離に対
する出力12の変化率とは明瞭に異なつている。なお、
フオトトランジスタ6,7の出力の絶対値は素子の種類
に依存しており、指向性とは関係がない。各トランジス
タ6,7の指向性はフロート3の変位に対する出力の変
化率として如実に表われるわけである。上述の如く2個
のトランジスタ6,7のフロート3の変位に対する出力
の変化率が異なれば、これらの相対値を取ることにより
、フロート3までの距離を知ることができるはずである
In other words, the rate of change of the output 11 with respect to the distance L to the float 3 of the phototransistor 6 with narrow directivity is clearly different from the rate of change of the output 12 with respect to the distance of the phototransistor 7 with wide directivity with respect to the distance to the float 3. . In addition,
The absolute value of the output of the phototransistors 6 and 7 depends on the type of element and has nothing to do with directivity. The directivity of each transistor 6, 7 is clearly expressed as the rate of change of the output with respect to the displacement of the float 3. As mentioned above, if the rates of change in the outputs of the two transistors 6 and 7 with respect to the displacement of the float 3 are different, then the distance to the float 3 should be known by taking these relative values.

そこで出力比11/12とフロート3までの距離Lとの
関係をとつた処、第6図の如きほぼ直線的に変化する特
性が得られた。従つて、フオトトランジスタ6,7の出
力比11/12を得れば第6図からフロート3の位置す
なわち液面のレベルを知ることができる。次にフオトト
ランジスタ6,7の出力比を得る回路の1例を第7図に
示す。
Therefore, when we determined the relationship between the output ratio 11/12 and the distance L to the float 3, we obtained a characteristic that changes almost linearly as shown in FIG. 6. Therefore, if the output ratio of the phototransistors 6 and 7 is 11/12, the position of the float 3, that is, the liquid level can be determined from FIG. Next, an example of a circuit for obtaining the output ratio of phototransistors 6 and 7 is shown in FIG.

同図において、8,9は公知の対数増幅器、10は上記
増幅器8,9の出力10gI,,10g12の比をとる
ための差動増幅器、11はこの増幅器10の出力10g
11/I2を11/12に変換する反対数増幅器である
。この回路において対数増幅器8,9を用いたのは液面
レベルが上位と下位とではフオトトランジスタ6,7の
出力範囲が1桁〜3桁と非常に広いためである。なお、
出力範囲が広くなるような不都合をなくすためには液面
レベルに応じて発光ダイオード4の出力を適宜増加させ
てもよい。又、各フオトトランジスタ6,7の出力1,
12をそのまま除算回路に導入してその比をとるように
してもよい。上述の如き構成であれば、液面のレベルは
2個のフオトトランジスタ6,7の出力間の比として得
られ、第1図の検出器の如くフオトトランジス夕出力の
絶対値に依存しないから、フロート3等に汚れがあつて
もその影響をほとんど受けることがない。このことはフ
ロート3の反射面を黒く塗つた場合と、そうでない場合
との出力比11/12とLとの関係を示す第8図から明
白である。しかしながら、上記の液面レベル検出器にお
いては、液面レベルに関する情報をフロート面からの反
射光から得ている。従つてフロート面での反射光以外の
光が受光素子6,7に到達すれば、これは雑音光となる
。特に問題となるのは、発光素子4からの光が長筒内壁
で乱反射して直接受光素子6,7に到達する場合であり
、この光はフロート3が発受光素子4から遠方になれば
、フロート3からの反射光量が小さくなるため無視でき
なくなる。従つて第6図に示したようにLが大きくなる
と出力比11/12は飽和して変化しなくなる。そこで
本発明においては、この測定可能距離をできるだけ大き
くとれるように、特に発受光素子6,7近辺の長筒内壁
の反射率を他の内壁部分の反射率より小さくしている。
こうすることによつて得られた効果を第9図に示す。同
図において、点線が第6図と同様長筒内壁が均一な反射
率の場合、実線が発受光素子近辺の内壁の反射率を小さ
くした場合である。本実施例の検出器では土述した利点
の他に、構成の一部の変更または付加により以下に述べ
るような好ましい変形例を容易に実現することが可能で
ある。
In the figure, 8 and 9 are known logarithmic amplifiers, 10 is a differential amplifier for taking the ratio of the outputs 10gI, 10g12 of the amplifiers 8 and 9, and 11 is the output 10g of this amplifier 10.
It is an inverse amplifier that converts 11/I2 to 11/12. The reason why logarithmic amplifiers 8 and 9 are used in this circuit is that the output range of phototransistors 6 and 7 is extremely wide, ranging from one to three digits, depending on whether the liquid level is high or low. In addition,
In order to eliminate the disadvantage of widening the output range, the output of the light emitting diode 4 may be increased as appropriate depending on the liquid level. Moreover, the output 1 of each phototransistor 6, 7,
12 may be directly introduced into the division circuit and the ratio thereof may be calculated. With the above configuration, the liquid level can be obtained as the ratio between the outputs of the two phototransistors 6 and 7, and does not depend on the absolute value of the phototransistor outputs like the detector shown in FIG. Even if the float 3 etc. is dirty, it will hardly be affected by it. This is clear from FIG. 8, which shows the relationship between the output ratio 11/12 and L when the reflective surface of the float 3 is painted black and when it is not painted black. However, in the liquid level detector described above, information regarding the liquid level is obtained from the reflected light from the float surface. Therefore, if light other than the reflected light from the float surface reaches the light receiving elements 6 and 7, this becomes noise light. A particular problem arises when the light from the light emitting element 4 is diffusely reflected on the inner wall of the long tube and directly reaches the light receiving elements 6 and 7. Since the amount of reflected light from the float 3 becomes small, it cannot be ignored. Therefore, as shown in FIG. 6, when L becomes large, the output ratio 11/12 becomes saturated and does not change. Therefore, in the present invention, in order to make this measurable distance as large as possible, the reflectance of the inner wall of the long cylinder especially near the light emitting/receiving elements 6 and 7 is made smaller than the reflectance of other inner wall portions.
The effect obtained by doing this is shown in FIG. In the figure, the dotted line indicates a case where the inner wall of the long cylinder has a uniform reflectance as in FIG. 6, and the solid line indicates a case where the reflectance of the inner wall near the light emitting/receiving element is reduced. In addition to the above-mentioned advantages, the detector of this embodiment can easily realize preferred modifications as described below by partially changing or adding the structure.

第一に、光学系およびフロートを長筒内に置いているの
で、液体の出入口の部分にフイルタを設置するだけでゴ
ミ等の侵入を防止し内部を汚れにくい構造とすることが
できる。
First, since the optical system and float are placed inside a long cylinder, simply installing a filter at the liquid entrance and exit port prevents the intrusion of dust and the like, making the interior less likely to get dirty.

次に第二に、液体の出入口を外光が入りにくい構造にす
ることにより、タンク内だけでなく通常の明るい場所で
の使用を可能にすることができる。
Second, by making the liquid entrance and exit structure difficult for outside light to enter, it is possible to use the device not only inside the tank but also in normal bright places.

このことは検出器の用途の広範囲化をもたらすこととな
る。叙上のように本発明の液面レベル検出器は次のよう
な利点を有する。
This will lead to a wider range of uses for the detector. As mentioned above, the liquid level detector of the present invention has the following advantages.

1発光素子の発光強度の変化の影響をほとんど受けない
ので電圧変動や当該発光素子の温度特性を無視すること
ができる。
Since it is hardly affected by changes in the emission intensity of one light emitting element, voltage fluctuations and temperature characteristics of the light emitting element can be ignored.

2フロートの反射面の汚れによる反射率の変化の影響を
受けにくく、且つ測定可能範囲を大きくすることができ
る。
2.It is less susceptible to changes in reflectance due to dirt on the reflective surface of the float, and the measurable range can be increased.

従つて液面を常に正確に且つ広範囲に亘つて検出するこ
とができる。
Therefore, the liquid level can always be detected accurately and over a wide range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:従来の液面レベル検出器の構造図、第2図:本
発明の液面レベル検出器の構造図、第3図:第2図の上
面図、第4図:フオトトランジスタの指向特性を示す図
、第5図:液面レベルとフオトトランジスタ6,7の出
力との関係を示す特性図、第6図:液面レベルとフオト
トランジスタ6,7の出力比1/12との関係を示す特
性図、第7図:フオトトランジスタ6,7の出力1,,
12から11/2を得る回路の一例を示すプロツク図、
第8図:フロート3の反射面が汚れている場合と、黒く
塗つた場合における液面レベルとフオトトランジスタ6
,7の出力比11/12との関係を示す特性図、第9図
:発光ダイオード4、フオトトランジスタ6,7近傍の
反射率を変えた場合の液面レベルと出p比1/2との関
係を示す特性図。
Fig. 1: Structural diagram of a conventional liquid level detector, Fig. 2: Structural diagram of a liquid level detector of the present invention, Fig. 3: Top view of Fig. 2, Fig. 4: Orientation of phototransistor. Diagram showing the characteristics, Figure 5: Characteristic diagram showing the relationship between the liquid level and the outputs of the phototransistors 6 and 7, Figure 6: Relationship between the liquid level and the output ratio of phototransistors 6 and 7 of 1/12 Characteristic diagram showing Fig. 7: Outputs 1, , of phototransistors 6 and 7.
A block diagram showing an example of a circuit for obtaining 11/2 from 12,
Figure 8: Liquid level and phototransistor 6 when the reflective surface of float 3 is dirty and painted black
, 7, and the output ratio 11/12. Figure 9: The relationship between the liquid level and the output p ratio 1/2 when the reflectance near the light emitting diode 4 and phototransistors 6 and 7 is changed. Characteristic diagram showing the relationship.

Claims (1)

【特許請求の範囲】[Claims] 1 下部に液の出入口部を有する長筒と、該長筒内に自
由状態に置かれ被検出液面の変位に従つて上下動するフ
ロートと、上記長筒の上部に前記フロートに向かつて配
置された発光素子および指向性の異なる複数個の受光素
子とを備え、上記発光素子からの光を上記フロートで反
射させ、上記複数個の受光素子により上記フロートから
の反射光の光量をそれぞれ検出し、各受光素子の出力間
の相対値から被検出液面の位置を連続的に検知するよう
にした液面レベル検出器において、上記発光素子及び受
光素子周辺の長筒内壁の反射率を小さくしたことを特徴
とする液面レベル検出器。
1. A long cylinder having a liquid entrance/exit part at the bottom, a float placed in the long cylinder in a free state and moving up and down according to the displacement of the liquid surface to be detected, and a part facing the float arranged at the top of the long cylinder. a light emitting element and a plurality of light receiving elements having different directivity, the light from the light emitting element is reflected by the float, and the quantity of light reflected from the float is detected by each of the plurality of light receiving elements. In a liquid level detector that continuously detects the position of the liquid surface to be detected from the relative value between the outputs of each light receiving element, the reflectance of the inner wall of the long cylinder around the light emitting element and the light receiving element is reduced. A liquid level detector characterized by:
JP15286480A 1980-10-28 1980-10-28 liquid level detector Expired JPS5938524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15286480A JPS5938524B2 (en) 1980-10-28 1980-10-28 liquid level detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15286480A JPS5938524B2 (en) 1980-10-28 1980-10-28 liquid level detector

Publications (2)

Publication Number Publication Date
JPS5774620A JPS5774620A (en) 1982-05-10
JPS5938524B2 true JPS5938524B2 (en) 1984-09-18

Family

ID=15549782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15286480A Expired JPS5938524B2 (en) 1980-10-28 1980-10-28 liquid level detector

Country Status (1)

Country Link
JP (1) JPS5938524B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102581262B1 (en) * 2021-07-28 2023-09-22 한라아이엠에스 주식회사 Fluid Level Measuring System Using Buoyancy Body

Also Published As

Publication number Publication date
JPS5774620A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
US3683196A (en) Differential fluid level detector
US4593191A (en) Pressure and optical sensitive device with deformable protrusions
US5877490A (en) Quadrant light detector
CA1232154A (en) Fluid flowmeter
US6872933B2 (en) Optical transducer
US4803470A (en) Substance detector device
US7330241B2 (en) Optical distance measuring sensor, self-propelled cleaner, and air conditioner
US5773819A (en) Single element light detector
US5761818A (en) Digital inclinometer
GB2270157A (en) Light scattering type smoke detector
US4325633A (en) Apparatus for determining of angle of incidence of electromagnetic energy
US5587580A (en) Optoelectronic sensor for measuring the intensity and the direction of incidence of a light beam
US4436418A (en) Distance detector device
JPS57104809A (en) Range finder
GB2147697A (en) Level measurement method and apparatus
JPS5938522B2 (en) liquid level detector
JPS5938524B2 (en) liquid level detector
JPS5938523B2 (en) liquid level detector
JPS6044611B2 (en) liquid level detector
WO2001020361A1 (en) Optical angle sensor for use in a position and/or attitude determination system
JPS6026963B2 (en) displacement meter
WO2024053381A1 (en) Optical sensor
TW201925823A (en) Distance sensor
CN111045218B (en) Photosensitive element
JP2668948B2 (en) Light sensor