JPS5938522B2 - liquid level detector - Google Patents

liquid level detector

Info

Publication number
JPS5938522B2
JPS5938522B2 JP15286280A JP15286280A JPS5938522B2 JP S5938522 B2 JPS5938522 B2 JP S5938522B2 JP 15286280 A JP15286280 A JP 15286280A JP 15286280 A JP15286280 A JP 15286280A JP S5938522 B2 JPS5938522 B2 JP S5938522B2
Authority
JP
Japan
Prior art keywords
liquid level
float
light
light receiving
level detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15286280A
Other languages
Japanese (ja)
Other versions
JPS5774618A (en
Inventor
康邦 山根
宣捷 賀好
英隆 新宅
一忠 東
忠二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15286280A priority Critical patent/JPS5938522B2/en
Publication of JPS5774618A publication Critical patent/JPS5774618A/en
Publication of JPS5938522B2 publication Critical patent/JPS5938522B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/68Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means
    • G01F23/686Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means using opto-electrically actuated indicating means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Level Indicators Using A Float (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 本発明は、特に温風暖房器の灯油タンク等において使用
するのに適した、光学的手段を用いた連続的液面レベル
検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous liquid level detector using optical means, particularly suitable for use in kerosene tanks of hot air heaters and the like.

従来の連続的液面レベル検出器としては、液面に浮かし
たフロートにより機械的にアームを動かし、このアーム
の動きを電気抵抗の変化に変換しその変化量に基づいて
液面レベルを検知する様にしたものや、超音波発信器を
用いて液面からの超音波の反射時間を測定し、その測定
値に基づいて液面レベルを検知する様にしたものが知ら
れている。
Conventional continuous liquid level detectors use a float floating on the liquid surface to mechanically move an arm, convert this movement of the arm into a change in electrical resistance, and detect the liquid level based on the amount of change. There are known devices in which the reflection time of ultrasonic waves from the liquid surface is measured using an ultrasonic transmitter, and the liquid level is detected based on the measured value.

しかしながら、これらの検出器は小型化が困難であると
共に近距離での測定が不可能な場合もあり、更に、耐久
性の面でも問題があつて、それ故に灯油タンク等の液面
レベル検出に用いるのは不適当であつた。
However, these detectors are difficult to miniaturize, may not be able to measure at close range, and have problems in terms of durability, so they are not suitable for detecting liquid levels in kerosene tanks, etc. It was inappropriate to use it.

本発明は上記の点に鑑みてなされたもので、小型で且つ
長寿命の連続的液面レベル検出器を提供することを目的
とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a continuous liquid level detector that is small in size and has a long life.

本発明を要約すれば、 長筒の一端に発光素子および指向性の異なる複数の受光
素子を設けるとともに、長筒内部にフロートを置き、受
光素子によりフロートからの反射光の光量を検出し、各
受光素子出力の相対値から被検出液面の位置を連続的に
検知する様にしたことを特徴とするものである。
To summarize the present invention, a light emitting element and a plurality of light receiving elements with different directivities are provided at one end of a long tube, a float is placed inside the long tube, and the amount of light reflected from the float is detected by the light receiving element. The present invention is characterized in that the position of the liquid level to be detected is continuously detected from the relative value of the output of the light receiving element.

以下、本発明の説明に当り、本出願人が先に出願した液
面レベル検出器をまず説明する。
In explaining the present invention, a liquid level detector previously filed by the present applicant will be described below.

第1図はその液面レベル検出器の構造図を示す。FIG. 1 shows a structural diagram of the liquid level detector.

’ 同図において、長筒1は断面が円形で、底部と上方
部に液および空気の出入口2a、2bを有し、また内壁
の反射率が均一である。この長筒1の内部には半球状の
フロート3力相由状態に置かれ、被検出液面Aの変位に
従つて長筒1内で上下動する様にされる。長筒1の上端
部には、赤外発光ダイオード4およびフオトトランジス
タ5が並列にフロート3に向かつて配置されている。
' In the figure, a long cylinder 1 has a circular cross section, has liquid and air inlets and outlets 2a and 2b at the bottom and upper part, and has a uniform reflectance on its inner wall. Inside this long tube 1, three hemispherical floats are placed in a state of mutual interaction, and are made to move up and down within the long tube 1 according to the displacement of the liquid level A to be detected. At the upper end of the long tube 1, an infrared light emitting diode 4 and a phototransistor 5 are arranged in parallel facing the float 3.

この様な構成から、発光ダイオード4から発した光の一
部は、直接または長筒1の内壁での反射を経てフロート
3の上面で反射し、逆方向に進んでフオトトランジスタ
5に到達することになる。
Due to this configuration, a part of the light emitted from the light emitting diode 4 is reflected on the upper surface of the float 3 either directly or through reflection on the inner wall of the long tube 1, and travels in the opposite direction to reach the phototransistor 5. become.

この場合、フオトトランジスタ5に到達する光量は、光
ビームの拡りおよび長筒1の内壁での反射による減衰の
ために、フロート3の位置によつて変化する。従つて、
フオトトランジスタ5の出力から、フロート位置即ち被
測定液面の液面レベルを検出することができる。
In this case, the amount of light reaching the phototransistor 5 changes depending on the position of the float 3 due to the spread of the light beam and attenuation due to reflection on the inner wall of the long cylinder 1. Therefore,
From the output of the phototransistor 5, the float position, that is, the liquid level of the liquid to be measured can be detected.

なお、第1図には示していないが、赤外発光ダイオード
の駆動回路、およびフオトトランジスタ出力の増幅回路
、液面レベル表示回路等が別に設けられることはもちろ
んである。
Although not shown in FIG. 1, it goes without saying that an infrared light emitting diode drive circuit, a phototransistor output amplification circuit, a liquid level display circuit, etc. are separately provided.

上記の構成から明らかな様に、この液面レベル検出器で
は、長筒1の内壁で光が反射されるため発光ダイオード
4からの光を有効に利用できる上に、前記長筒断面方向
における光の強度分布が均一になるので、発光ダイオー
ド4およびフオトトランジスタ5の取付位置や角度に対
する精度の要求が緩和でき、その結果個々の検出器間の
性能のバラツキを小さくし得ることになる。
As is clear from the above configuration, in this liquid level detector, the light is reflected by the inner wall of the long cylinder 1, so the light from the light emitting diode 4 can be effectively used, and the light in the cross-sectional direction of the long cylinder 1 can be effectively used. Since the intensity distribution of the light emitting diode 4 and the phototransistor 5 become uniform, the requirement for accuracy regarding the mounting position and angle of the light emitting diode 4 and the phototransistor 5 can be relaxed, and as a result, variations in performance between individual detectors can be reduced.

更に、光の反射はフロート3により行わせているので、
液面からの直接の反射光に比べて強い反射光を得ること
ができ、また液面の揺動に感じにくくなるとともに、液
体が透明であるか否かに依存しにくなるという利点があ
る。
Furthermore, since the light is reflected by the float 3,
It has the advantage of being able to obtain stronger reflected light than direct reflected light from the liquid surface, being less sensitive to fluctuations in the liquid surface, and being less dependent on whether the liquid is transparent or not. .

しかしながら、上記の構成ではフロート3、フオトトラ
ンジスタ5等の汚れの影響を大きく受けるという欠点が
あつた。
However, the above configuration has a drawback in that the float 3, phototransistor 5, etc. are greatly affected by dirt.

これに対して第2図以下に示す本発明はこのような欠点
がないという利点を有する。
In contrast, the present invention shown in FIGS. 2 and below has the advantage of not having such drawbacks.

第2図において第1図と同一部分は同一符号を付したよ
うに本発明レベル検出器の大方の構成は第1図のものと
変らない。ただ、本発明においては第3図に示す如く長
筒1の上端部に、発光ダイオード4と2個のフオトトラ
ンジスタ6,Tが正三角の頂点に対応するような位置関
係で配置されている。このトランジスタ6,7は第4図
に示すように異なる指向性を有している。このような構
成であると、発光ダイオードから発光されフロート3に
て反射された光はほぼ等しい割合でフオトトランジスタ
6,7に入射することになるが、上記フオトトランジス
タ6,7が上述のように異なる指向性を有しているため
、フロート3の変位に対する各フオトトランジスタ6,
7の出力11,12は第5図の如くなる。
In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals, so that most of the configuration of the level detector of the present invention is the same as that in FIG. 1. However, in the present invention, as shown in FIG. 3, a light emitting diode 4 and two phototransistors 6, T are arranged at the upper end of the long tube 1 in a positional relationship that corresponds to the vertices of an equilateral triangle. The transistors 6 and 7 have different directivities as shown in FIG. With such a configuration, the light emitted from the light emitting diode and reflected by the float 3 will be incident on the phototransistors 6 and 7 at approximately equal rates; Since they have different directivities, each phototransistor 6,
The outputs 11 and 12 of 7 are as shown in FIG.

つまり、指向性の狭いフオトトランジスタ6のフロート
3までの距離Lに対する出力11の変化率と、指向性の
広いフオトトランジスタ7のフロート3までの距離に対
する出力12の変化率とは明瞭に異なつている。なお、
フオトトランジスタ6,7の出力の絶対値は素子の種類
に依存しており、指向性とは関係がない。各トランジス
タ6,7の指向性はフロート3の変位に対する出力の変
化率として如実に表われるわけである。上述の如く2個
のトランジスタ6,7のフロート3の変位に対する出力
の変化率が異なれば、これらの相対値を取ることにより
、フロート3までの距離を知ることができるはずである
In other words, the rate of change of the output 11 with respect to the distance L to the float 3 of the phototransistor 6 with narrow directivity is clearly different from the rate of change of the output 12 with respect to the distance of the phototransistor 7 with wide directivity with respect to the distance to the float 3. . In addition,
The absolute value of the output of the phototransistors 6 and 7 depends on the type of element and has nothing to do with directivity. The directivity of each transistor 6, 7 is clearly expressed as the rate of change of the output with respect to the displacement of the float 3. As mentioned above, if the rates of change in the outputs of the two transistors 6 and 7 with respect to the displacement of the float 3 are different, then the distance to the float 3 should be known by taking these relative values.

そこで出力比1,/12とフロート3までの距離Lとの
関係をとつた処、第6図の如きほぼ直線的に変化する特
性が得られた。従つて、フオトトランジスタ6,7の出
力比1,/2を得れば第6図からフロート3の位置すな
わち液面のレベルを知ることができる。次にフオトトラ
ンジスタ6,7の出力比を得る回路の1例を第7図に示
す。
Therefore, when we determined the relationship between the output ratio 1,/12 and the distance L to the float 3, we obtained a characteristic that changes almost linearly as shown in FIG. Therefore, if the output ratio of the phototransistors 6 and 7 is 1 and /2, the position of the float 3, that is, the liquid level can be determined from FIG. Next, an example of a circuit for obtaining the output ratio of phototransistors 6 and 7 is shown in FIG.

同図において、8,9は公知の対数増幅器、10は上記
増幅器8,9の出力10g11,10g12の比をとる
ための差動増幅器、11はこの増幅器10の出力10g
,/12を11/12に変換する反射数増幅器である。
この回路において対数増幅器8,9を用いたのは液面レ
ベルが上位と下位とではフオトトランジスタ6,7の出
力範囲が1桁〜3桁と非常に広いためである。なお出力
範囲が広くなるような不都合をなくすためには液面レベ
ルに応じて発光ダイオード4の出力を適宜増加させても
よい。又、各フオトトランジスタ6,7の出力11,1
2をそのまま除算回路に導入してその比をとるようにし
てもよいO上述の如き構成であれば、液面のレベルは2
個のフオトトランジスタ6,7の出力間の比として得ら
れ、第1図の検出器の如くフオトトランジスタ出力の絶
対値に依存しないから、フロート3等に汚れがあつても
その影響をほとんど受けることがない。
In the figure, 8 and 9 are known logarithmic amplifiers, 10 is a differential amplifier for taking the ratio of the outputs 10g11 and 10g12 of the amplifiers 8 and 9, and 11 is the output 10g of this amplifier 10.
, /12 to 11/12.
The reason why logarithmic amplifiers 8 and 9 are used in this circuit is that the output range of phototransistors 6 and 7 is extremely wide, ranging from one to three digits, depending on whether the liquid level is high or low. Note that in order to eliminate the inconvenience of widening the output range, the output of the light emitting diode 4 may be increased as appropriate depending on the liquid level. Moreover, the outputs 11, 1 of each phototransistor 6, 7
2 may be directly introduced into the division circuit and the ratio taken.O With the above configuration, the liquid level is 2.
It is obtained as the ratio between the outputs of the phototransistors 6 and 7, and does not depend on the absolute value of the phototransistor outputs like the detector shown in Figure 1, so even if there is dirt on the float 3, etc., it will hardly be affected. There is no.

このことはフロート3の反射面を黒く塗つた場合と、そ
うでない場合との出力比11/2とLとの関係を示す第
8図から明白である。本実施例の検出器では上述した利
点の他に、構成の一部の変更または付加により以下に述
べるような好ましい変形例を容易に実現することが可能
である。第一に、光学系およびフロートを長筒内に置い
ているので、液体の出入口の部分にフイルタを設置する
だけでゴミ等の侵入を防止し内部を汚れにくい構造とす
ることができる。
This is clear from FIG. 8, which shows the relationship between the output ratio 11/2 and L when the reflective surface of the float 3 is painted black and when it is not. In addition to the above-described advantages, the detector of this embodiment can easily realize preferred modifications as described below by partially changing or adding the structure. First, since the optical system and float are placed inside a long cylinder, simply installing a filter at the liquid entrance and exit port prevents the intrusion of dust and the like, making the interior less likely to get dirty.

次に第二に、液体の出入口を外光が入りにくい構造にす
ることにより、タンタ内だけでなく通常の明るい場所で
の使用を可能にすることができる。
Second, by making the liquid entrance and exit structure difficult for outside light to enter, it is possible to use the device not only inside the tantalum but also in normal bright places.

このことは検出器の用途の広範囲化をもたらすこととな
る。また、第三には、2個のフオトトランジスタの指向
角度の差を変えることにより、第9図に示すように液面
レベルの変化に対するフオトトランジスタの出力比の変
化率を変えることができる。
This will lead to a wider range of uses for the detector. Thirdly, by changing the difference in the directivity angles of the two phototransistors, it is possible to change the rate of change in the output ratio of the phototransistors with respect to changes in the liquid level, as shown in FIG.

同図において、aはフオトトランジスタ6の指向角が±
10て、フオトトランジスタ7の指向角が±30にの場
合の出力比1,/12の変化曲線である。又bは各フオ
トトランジスタ6,7の指向角がそれぞれ±1σ,±2
0ジの場合の出力比11/12の変化曲線である。従つ
て、液面の変化に対してフオトトランジスタの出力比の
変化率を急峻にしたい場合、2つのフオトトランジスタ
の指向角度の相違を大きくすればよい。このようにすれ
ば、少しの液面レベルの変位に対して出力比が大きく変
動するから、液面の微少な変位を正確に検出することが
できる。叙上のように本発明の液面レベル検出器は次の
ような利点を有する。
In the figure, a indicates that the directivity angle of the phototransistor 6 is ±
10 is a change curve of the output ratio 1,/12 when the directivity angle of the phototransistor 7 is ±30. Also, b indicates that the directivity angles of the phototransistors 6 and 7 are ±1σ and ±2, respectively.
This is a change curve for an output ratio of 11/12 when the power is 0. Therefore, if it is desired to make the rate of change of the output ratio of the phototransistor steeper with respect to a change in the liquid level, it is sufficient to increase the difference in the directivity angles of the two phototransistors. In this way, the output ratio changes greatly for a small change in the liquid level, so it is possible to accurately detect a small change in the liquid level. As mentioned above, the liquid level detector of the present invention has the following advantages.

1発光素子の発光強度の変化の影響をほとんど受けない
ので電圧変動や当該発光素子の温度特性を無視すること
ができる。
Since it is hardly affected by changes in the emission intensity of one light emitting element, voltage fluctuations and temperature characteristics of the light emitting element can be ignored.

2フロートの反射面の汚れによる反射率の変化の影響を
受けにくい。
2. Less susceptible to changes in reflectance due to dirt on the reflective surface of the float.

従つて液面を常に正確に検出することができる。Therefore, the liquid level can always be detected accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:従来の液面レベル検出器の構造図、第2図:本
発明の液面レベル検出器の構造図、第3図:第2図の上
面図、第4図:フオトトランジスタの指向特性を示す図
、第5図:液面レベルとフオトトランジスタ6,7の出
力との関係を示す特性図、第6図:液面レベルとフオト
トランジスタ6,7の出力比11/12との関係を示す
特性図、第7図:フオトトランジスタ6,7の出力11
,12から11/12を得る回路の一例を示すプロツク
図、第8図ニフロート3の反射面が汚れている場合と、
黒く塗つた場合における液面レベルとフオトトランジス
タ6,7の出力比11/12との関係を示す特性図、第
9図:フオトトランジスタ6,7の指向角度の差を変え
た場合の液面レベルと出力比11/2との関係を示す特
性図。 符号、4:赤外発光ダイオード、6,7:フオトトラン
ジスタ。
Fig. 1: Structural diagram of a conventional liquid level detector, Fig. 2: Structural diagram of a liquid level detector of the present invention, Fig. 3: Top view of Fig. 2, Fig. 4: Orientation of phototransistor. Diagram showing the characteristics, Figure 5: Characteristic diagram showing the relationship between the liquid level and the outputs of the phototransistors 6 and 7, Figure 6: Relationship between the liquid level and the output ratio of phototransistors 6 and 7, 11/12 Characteristic diagram showing Fig. 7: Output 11 of phototransistors 6 and 7
, 12 is a block diagram showing an example of a circuit for obtaining 11/12 from Fig. 8. When the reflective surface of the Nifloat 3 is dirty,
Characteristic diagram showing the relationship between the liquid level and the output ratio of phototransistors 6 and 7 of 11/12 when painted black, Figure 9: Liquid level when changing the difference in directivity angle of phototransistors 6 and 7 FIG. 3 is a characteristic diagram showing the relationship between and an output ratio of 11/2. Symbol, 4: infrared light emitting diode, 6, 7: phototransistor.

Claims (1)

【特許請求の範囲】 1 下部に液の出入口部を有する長筒と、該長筒内に自
由状態に置かれ被検出液面の変位に従つて上下動するフ
ロートと、上記長筒の上部に前記フロートに向かつて配
置された発光素子および指向性の異なる複数個の受光素
子とを備え、前記発光素子からの光を上記フロートで反
射させ、前記複数個の受光素子により上記フロートから
の反射光の光量をそれぞれ検出し、各受光素子の出力間
の相対値から被検出液面の位置を連続的に検知する様に
した液面レベル検出器。 2 上記受光素子間の指向角度の相違を大きくすること
により、液面の変化に対する上記受光素子間の出力比の
変化率を急岐にしたことを特徴とする特許請求の範囲第
1項記載の液面レベル検出器。
[Scope of Claims] 1. A long cylinder having a liquid inlet/outlet at its lower part, a float placed in the long cylinder in a free state and moving up and down according to the displacement of the liquid surface to be detected, and a float in the upper part of the long cylinder. A light emitting element and a plurality of light receiving elements having different directivities are arranged facing the float, the light from the light emitting element is reflected by the float, and the light reflected from the float is reflected by the plurality of light receiving elements. A liquid level detector that detects the light intensity of each light receiving element and continuously detects the position of the detected liquid level from the relative value between the outputs of each light receiving element. 2. The device according to claim 1, characterized in that the rate of change in the output ratio between the light receiving elements with respect to a change in the liquid level is made sharp by increasing the difference in directivity angle between the light receiving elements. Liquid level detector.
JP15286280A 1980-10-28 1980-10-28 liquid level detector Expired JPS5938522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15286280A JPS5938522B2 (en) 1980-10-28 1980-10-28 liquid level detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15286280A JPS5938522B2 (en) 1980-10-28 1980-10-28 liquid level detector

Publications (2)

Publication Number Publication Date
JPS5774618A JPS5774618A (en) 1982-05-10
JPS5938522B2 true JPS5938522B2 (en) 1984-09-18

Family

ID=15549740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15286280A Expired JPS5938522B2 (en) 1980-10-28 1980-10-28 liquid level detector

Country Status (1)

Country Link
JP (1) JPS5938522B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773265A (en) * 1980-11-20 1988-09-27 Atlantic Richfield Company Method for detecting leaks
SE435000B (en) * 1983-01-12 1984-08-27 Flygt Ab DEVICE FOR INDICATING THE MIXTURE OF THE WATER IN THE OIL HOUSE IN A SOILABLE WORKING MACHINE, EXAMPLE, A PUMP OR A TURBINE
US5743135A (en) * 1993-08-27 1998-04-28 Vlsi Technology, Inc. Optical-fiber liquid-level monitor
KR100730063B1 (en) * 1999-12-30 2007-06-20 엘지.필립스 엘시디 주식회사 liquid surface level stabilizer

Also Published As

Publication number Publication date
JPS5774618A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
US3683196A (en) Differential fluid level detector
US4590680A (en) Electronic inclination sensing device
US6872933B2 (en) Optical transducer
US4540887A (en) High contrast ratio paper sensor
CA1232154A (en) Fluid flowmeter
US4803470A (en) Substance detector device
US5101570A (en) Inclination angle detector
US7140262B1 (en) Precision variable area flowmeter apparatus
US5773819A (en) Single element light detector
EP0596982B1 (en) System for determining the direction of incident optical radiation
US4654535A (en) Meniscus position detector with detector at the focal plane of the lens formed by tube and liquid
JPS57104809A (en) Range finder
JPS5938522B2 (en) liquid level detector
US4314760A (en) Optical sensing device
JPS5938523B2 (en) liquid level detector
US4761551A (en) Optical transducer with movable filter
JPS5938524B2 (en) liquid level detector
JPS6044611B2 (en) liquid level detector
JPS6026963B2 (en) displacement meter
GB2357835A (en) Detecting the incident angle of an optical light beam
JPS5821037Y2 (en) Dust cover for radiation sensor
JP3015634B2 (en) Scattered light smoke detector
JP2721788B2 (en) Scattered light smoke detector
SU1270566A1 (en) Hydrostatic level measuring head
JP3015635B2 (en) Scattered light smoke detector