JPS5938507A - Controller for turbine driving feed pump - Google Patents

Controller for turbine driving feed pump

Info

Publication number
JPS5938507A
JPS5938507A JP14776382A JP14776382A JPS5938507A JP S5938507 A JPS5938507 A JP S5938507A JP 14776382 A JP14776382 A JP 14776382A JP 14776382 A JP14776382 A JP 14776382A JP S5938507 A JPS5938507 A JP S5938507A
Authority
JP
Japan
Prior art keywords
bfp
water supply
pressure
plant
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14776382A
Other languages
Japanese (ja)
Other versions
JPH0245086B2 (en
Inventor
義朗 本間
高久 和重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14776382A priority Critical patent/JPH0245086B2/en
Publication of JPS5938507A publication Critical patent/JPS5938507A/en
Publication of JPH0245086B2 publication Critical patent/JPH0245086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、火力・原子力発電所の主給水制御システムに
係り、特にボイラ給水ポンプ(以下、BFPと略す)を
タービンで駆動する給水制御設備に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a main water supply control system for a thermal or nuclear power plant, and particularly relates to a water supply control equipment in which a boiler feed water pump (hereinafter abbreviated as BFP) is driven by a turbine. .

〔発明の技術的背景〕[Technical background of the invention]

近年、大容量の原子力発電所の増加に伴い、原子発電所
をペースロード用として運用する反面、火力発電所のミ
ドル運用化が著しくなって来ている。ミドル運用化とは
、昼間等、電力需要が多い時には高負荷にて運転し、夜
間等電力需要が少ない時には低負荷にて運転するという
、負荷調整機能を持たぜることであり、火力発電所の低
負荷運転がより一層嵐視されるに至っている。
In recent years, with the increase in the number of large-capacity nuclear power plants, nuclear power plants are being operated for paceload purposes, while thermal power plants are being increasingly used for middle-class operations. Middle operation means that thermal power plants have a load adjustment function that allows them to operate at high loads when there is high demand for electricity, such as during the day, and at low loads when demand for electricity is low, such as at night. The low-load operation of automobiles is becoming more and more of a problem.

低負荷運転時、汽力発電設備のプラント熱効率が成る程
度低下することは、機器の特性上、止むを得ないが燃料
費高騰の折りから、極力良好なプラント熱効率で運転を
行なうことが熱鮭済上、重要になって来ている。
Due to the characteristics of the equipment, it is unavoidable that the plant thermal efficiency of steam power generation equipment decreases to a certain extent during low-load operation, but in light of rising fuel costs, it is best to operate the plant with as good a thermal efficiency as possible. Above, it is becoming important.

このような背景から、従来主タービン主蒸気圧力を全負
荷帯に渡って一定に保ち、加減弁により主タービン入口
の蒸気圧力を制御していたいわゆる定圧運転プラントに
対し、部分負m時主タービン加減弁開度を全開のまま主
蒸気圧力を下けることにより主タービン負荷を下げる変
圧運転プラントが採用されて来ており、この変圧運転プ
ラントの採用f二より、従来の定圧運転プラントに見ら
ノ1゜た土タービン加減弁による絞り損失が著しく減少
し、又、次に説明するようf二BFFの軸動力も著しく
減少されるなどの理由により、低力荷時のプラント熱効
率が著しく向上(7ている。
Against this background, in contrast to so-called constant-pressure operating plants in which the main turbine main steam pressure was kept constant over the entire load range and the steam pressure at the main turbine inlet was controlled using a regulating valve, the main turbine Variable pressure plants have been adopted that lower the main turbine load by lowering the main steam pressure while keeping the regulator valve fully open. As a result, the throttling loss caused by the soil turbine regulating valve has been significantly reduced, and as will be explained next, the shaft power of the f2 BFF has also been significantly reduced, resulting in a marked improvement in plant thermal efficiency during low force loads ( There are 7.

以下、第1図、第2図により従来の定圧運転プラントに
おける給水制御システムについて説明する○ 記1:ン1は給水制御l特性を示し、第2図は給水制御
システムを示す。
Hereinafter, a conventional water supply control system in a constant pressure operation plant will be explained with reference to FIGS. 1 and 2. Note 1: N1 shows the water supply control characteristics, and FIG. 2 shows the water supply control system.

第1図において、縦軸はボイラ所智給水圧力を示シ4、
横軸はプラント出力に対応する給水離開−を示す。曲線
1..2,3,4.5仁1それぞれBFPの任意の回転
数nl+ n2+ n8+ n4+ n5 (nl >
 nz > n8>n+>n5)l二おけるB F P
 Ly:′)Q、 −Hl’t!j性曲糾であり、又直
線6は王タービン主蒸気圧力、曲線7けボイラ所要圧力
即ち、BFP出口圧力を示す。
In Figure 1, the vertical axis indicates the boiler local water supply pressure.
The horizontal axis shows the water supply separation corresponding to the plant output. Curve 1. .. Arbitrary rotation speed of BFP for 2, 3, 4.5 cylinders 1 each nl+ n2+ n8+ n4+ n5 (nl >
nz > n8 > n + > n5) B F P in l2
Ly:') Q, -Hl't! In addition, the straight line 6 shows the main turbine steam pressure, and the curve 7 shows the boiler required pressure, that is, the BFP outlet pressure.

第2図において、従来の給水制御システムな説ボイラ給
水流敞制御装誼(図示せず)よりの所要給水流僻イき号
(以下給水指令という)IOは、給水ポンプ駆動用ター
ビン(以下BFP−Tという)副部1 !F装1に入力
さir、、p、yp吐出系に設けられ、かつ紗り弁2:
3の出1−1側にある給水流知検出器12よりの給水実
流釦(A号1;3と比較さil、る。そしてBFP−T
制御装置i<7.11に1給水指令10と給水実流量1
8号13の偏差がなくなるよう(二、  BFP−Ti
tt制御匍号14を出力する。
In Fig. 2, the required feed water flow number (hereinafter referred to as water supply command) IO from the boiler feed water flow control system (not shown) in the conventional water supply control system is the feed water pump driving turbine (hereinafter referred to as BFP). -T) Subpart 1! The ir, p, yp input to the F system 1 is provided in the discharge system, and the gauze valve 2:
Actual water supply flow button from the water supply flow detection detector 12 on the output 1-1 side of 3 (compared with No. A 1; 3). And BFP-T
1 water supply command 10 and actual water supply flow rate 1 for control device i<7.11
To eliminate the deviation of No. 8 and 13 (2. BFP-Ti
tt control signal No. 14 is output.

BFP−T副部1信号14けBP’P−T低圧加減弁1
5及びBFP−T高圧加減弁16の開度を制御すること
によりRFP−T17の回転数を制御する。BFP−T
17の回転数の変化に応じ、BypJ8の吐出f4も変
化し、給水流に検出器12こより検出され、給水実流晴
儒号13がBFP−T制御装fiV−13+−フィード
バックされ、前述の如く、給水指令10との偏差がなく
なるように制御さ〕1ている。
BFP-T sub section 1 signal 14 BP'P-T low pressure regulator valve 1
5 and the opening degree of the BFP-T high pressure regulating valve 16, the rotation speed of the RFP-T 17 is controlled. BFP-T
17, the discharge f4 of BypJ8 also changes, which is detected by the detector 12 in the water supply flow, and the actual water flow 13 is fed back to the BFP-T control system fiV-13+-, as described above. , the water supply command 10 is controlled so that there is no deviation from the water supply command 10.

なお、BFP−T駆動用蒸気と【7ては、逆常運転中に
供給される低圧蒸気と低圧蒸気のみでは蒸気量が不足す
る場合1r、バックアップ用として供給されるとも圧萎
気の2つの系統を設けるのが一般的に採用されている。
In addition, the BFP-T drive steam and [7] low pressure steam supplied during reverse normal operation, and pressure atrophy, which is supplied as backup if the amount of steam is insufficient with only low pressure steam. It is generally adopted to establish a system.

低圧蒸気けBFP−T低圧蒸気管19よりBFP−T低
圧加減弁■5を紅で、又高圧蒸気はB F’P −T高
圧蒸気管20よりBFP−T高圧加減弁16を経て、そ
れぞれBFP−T17に供給される。BFP−T17で
仕事をした蒸気は排気管21.排気弁22を経て排気さ
れる。そして、一般には低圧蒸気源としては、王タービ
ン抽気が又、高圧蒸気源としては主タービン主蒸気が用
いられることが多く、起動時又はFOB運転時等の極低
負荷時等、主タービン抽気が充分とれない場合Cユ、高
圧蒸気が供給される。
Low-pressure steam is supplied from the BFP-T low-pressure steam pipe 19 to the BFP-T low-pressure regulating valve ■5 in red, and high-pressure steam is supplied from the BFP-T high-pressure steam pipe 20 to the BFP-T high-pressure regulating valve 16, respectively, to the BFP. - supplied to T17. The steam worked by BFP-T17 is sent to the exhaust pipe 21. It is exhausted through the exhaust valve 22. In general, the main turbine extraction air is often used as the low-pressure steam source, and the main turbine main steam is often used as the high-pressure steam source. If sufficient steam is not available, high pressure steam is supplied.

PCB運転とけ所内単独運転とも言われ、火力発tN、
所としては伺ら異常々〈系N側の要求負荷にy合った運
転が可能にも拘ず、送′亀系粕側の事故等が原因で送電
不能になった場合、当該プラントを停止させることなく
、発電所内単独で極低負荷で運転し、系統側の事故の復
旧後、速かに負荷を所定の負荷まで上昇させ送電を再開
出来るよう待機することである。火力発電所はその(飯
能上、一旦プラントを停止すると次の起動に際し、起動
損失が大きいため、系統側の不fri11の事故1時等
1ニブラントを停止することなく、極低負荷にて安全に
運転を継続出来る。いわゆるFOB運転機能を持たせる
ことは前述の変圧運転の採用ととも1ニブラントの熱経
済上、特に重壁になって来ている。
PCB operation is also called isolated operation within the plant, thermal power generation tN,
However, if the power transmission becomes impossible due to an accident on the lees side, the plant will be stopped. The idea is to operate the power plant alone at an extremely low load, and then stand by so that the load can be quickly increased to a predetermined level and power transmission can be restarted after the fault on the grid side is restored. Thermal power plants (Hanno) have a problem with thermal power plants (Hanno), because once a plant is stopped, there is a large startup loss when it is restarted. Providing the so-called FOB operation function has become particularly difficult in terms of the thermo-economics of a single nibrant, along with the adoption of the variable voltage operation mentioned above.

第3図に変圧運転プラントの給水制御特性を示す。第1
図と同一部分(二ついては同一番号を付して説明する。
Figure 3 shows the water supply control characteristics of a variable pressure operating plant. 1st
Parts that are the same as those in the figure (two parts will be described using the same numbers).

縦軸、横軸は第1図と同様である。The vertical and horizontal axes are the same as in FIG.

曲線1.2,3,4.5は第1図と同様、それぞれ、R
FPの任意の回転数nl+ n2+ n9+ n++ 
n5 (nl >n2 > n8> n+ > n+ 
)におけるBFPのQ−H%性を示し、曲線8は、主タ
ービン主蒸気圧ツバ曲線9はボイラ所要圧力即ちBFP
出口圧力を示す○給水制御システムは変圧運転プラント
でも、第2図に示(、た従来の定圧運転プラントにおけ
る方式と大略同一である。
Curves 1.2, 3, and 4.5 are similar to FIG.
Arbitrary rotation speed of FP nl+ n2+ n9+ n++
n5 (nl > n2 > n8 > n+ > n+
), curve 8 shows the main turbine main steam pressure brim curve 9 shows the boiler required pressure, that is, BFP
The water supply control system indicating the outlet pressure is almost the same in a variable pressure plant as shown in Fig. 2 and in a conventional constant pressure plant.

第1図と第3図より明らかなように、定圧運転プラント
に比較し、変圧運転プラントでは、部分負荷時、即ち給
水流量が少い・時給水ポンプ吐出圧力が著しく低くなる
。このことにより、第4図に示すように足圧運転プラン
ト(二おけるBvp#l動力即ちBFP−T出力(曲a
41)に対し、変圧運転プラントのそれ(曲線42 )
 it低負荷に々f″Lはなるほど、着しく低下するこ
とが分る。
As is clear from FIGS. 1 and 3, compared to a constant pressure plant, in a variable pressure plant, the water pump discharge pressure is significantly lower at partial load, that is, when the feed water flow rate is low. As a result, as shown in FIG.
41), that of a variable voltage operation plant (curve 42)
It can be seen that the lower the load, the more f''L decreases.

〔背景技術の問題点〕[Problems with background technology]

これまで述べてきたように変圧運転プラントは定圧運転
プラン)lニルべ熱経済上、大きな利得があるが、変圧
運転プラントでは次のような問題が発生して来ている。
As mentioned above, variable pressure operating plants have a large advantage in terms of thermal economy than constant pressure operating plans, but the following problems have arisen in variable pressure operating plants.

即ち、低負荷時及びFOB運転時等において、BFP−
T出力が少なくて済むことから、EFP−T排気温度が
上昇し、運転が継続出来なくなるということである。
In other words, during low load and FOB operation, BFP-
Since the T output can be reduced, the EFP-T exhaust temperature rises, making it impossible to continue operation.

RFP−Tはその機械特性上、定格出力C対し1、部分
出力になるに従い、第7図に示すように、内部効率が低
下する。又、部分出力のため、RFP−T駆動蒸気量も
少なくなる。この結果として、段落流弾が減少し1回転
摩擦損失が増大し、排気温度が上列するものである。特
に極低負荷時等は、一般に低圧主蒸気がとれなくなる傾
向にあり、従って高圧蒸気が供給される。高圧蒸気は温
度も、低圧生蒸気に比べて旨いため、排気温度上列傾向
は著しい。
Due to its mechanical characteristics, the internal efficiency of RFP-T decreases as the output becomes a partial output of 1 for the rated output C, as shown in FIG. Furthermore, because of the partial output, the amount of steam required to drive the RFP-T is also reduced. As a result, the number of droplets decreases, the friction loss per revolution increases, and the exhaust temperature rises. Especially when the load is extremely low, there is a tendency that low-pressure main steam cannot be obtained, so high-pressure steam is supplied. Since high-pressure steam has a higher temperature than low-pressure raw steam, the exhaust temperature tends to be higher than that of low-pressure raw steam.

との抽気温度上昇は、制限値を超えると、 RFP−T
排気弁を損傷するたけでなく、排気管の熱膨張により、
BFP−Tアライメントの変化を米たし、RFP−Tの
振動増加という現象が見られ、最終的には、BFP−T
を停止せざるを倚なくなるーこの場合、一般に別に設け
られている電動機駆動BFPにより対処するが、このこ
とはプラント効率の低下を来た[−7,熱経済上の利得
を損なうことになり、又、低負荷特等C二RFP−Tを
運転出来ないことはプラント運用上、大きな制限となり
、前記排気温良上昇は早急f二解決すべき間絵である。
If the bleed air temperature rise exceeds the limit value, RFP-T
This will not only damage the exhaust valve, but also cause thermal expansion of the exhaust pipe.
As a result of changes in BFP-T alignment, a phenomenon of increased vibration of RFP-T was observed, and finally, BFP-T
- In this case, a separately provided electric motor-driven BFP is generally used to deal with the problem, but this results in a decrease in plant efficiency [-7, which results in loss of thermoeconomic gain. Moreover, the inability to operate the low-load special C2 RFP-T is a major restriction on plant operation, and the above-mentioned increase in exhaust gas temperature is a problem that must be resolved as soon as possible.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点に鑑みなされたもので、低負荷に
おいて、排気温度が制限値を趙えること々く、T、−B
FP及びBFP−Tを安全にかつ広範囲の負荷帯に渡っ
て運転し、熱経済上の利得を最大限に得ることを目的と
している。
The present invention has been made in view of the above-mentioned problems, and is designed to prevent the exhaust temperature from exceeding the limit value at low loads, and to prevent T, -B
The purpose is to operate FP and BFP-T safely over a wide range of load bands and to maximize thermoeconomic gain.

〔発明の概要〕[Summary of the invention]

本発明l二よれば、タービン躯即j給水ポンプにおいて
、前8汀給水ポンプ吐出側に設けた絞り弁と、前記E3
FP−T排気温度が成る値以上になった時、排気〃、^
屍検出器出力信号f二より前記絞り弁を制御することを
特徴とするタービン駆動給水ポンプ制HIA屑が提供を
tする。
According to the second aspect of the present invention, in the turbine body water supply pump, the throttle valve provided on the front 8 side water supply pump discharge side and the E3
When the FP-T exhaust temperature exceeds the value, the exhaust
A turbine-driven water pump control HIA waste is provided, characterized in that the throttle valve is controlled by the corpse detector output signal f2.

〔発明の実施例〕[Embodiments of the invention]

以下、第5図により1本発明の一実施例を説明する。第
2図と同一部分(二ついては同一番号を付し7て説明す
る。
An embodiment of the present invention will be described below with reference to FIG. The same parts as in FIG. 2 (two parts are given the same numbers and will be described as 7).

第5図は、排気温度検出器51 、排気温度信号52コ
ントローラ53.排気温度設定器54.給水絞り弁55
.コントローラ出力信号56を第1図に対し付加した本
発明によるところのタービン駆動給水ポンプ給水制御シ
ステムを示す。
FIG. 5 shows an exhaust temperature detector 51, an exhaust temperature signal 52, a controller 53. Exhaust temperature setting device 54. Water supply throttle valve 55
.. 2 shows a turbine-driven feedwater pump feedwater control system in accordance with the present invention with a controller output signal 56 added to FIG. 1;

プラントが鳥負荷時等、BFP−T排気温度が運転制限
値よりも低い場合は、従来と同じ方式でRFPは制御さ
れる。
When the BFP-T exhaust temperature is lower than the operating limit value, such as when the plant is under heavy load, the RFP is controlled using the same method as before.

低負荷時又はFOB時等におい°Cはボイラ給水所要獣
は少なくなるため、給水指令10が少なくなる。従って
、給水実流量を給水指令値に合わせるべく、RFP−T
制御装置11からのBFP−T制御信号14により、B
 F P =T低圧(高圧)加減弁15 (,16)け
BFII8の回転数を減するべく動作し、この結果、B
FP−Tの出力は減じ、給水実流14には給水指令値(
−見合った量に制御される。
At times of low load or FOB, etc., the boiler water requirement is reduced, so the number of water supply commands 10 is reduced. Therefore, in order to match the actual water supply flow rate with the water supply command value, RFP-T
By the BFP-T control signal 14 from the control device 11, B
F P =T low pressure (high pressure) regulating valve 15 (, 16) operates to reduce the rotation speed of BFII8, and as a result, B
The output of FP-T is reduced, and the actual water supply flow 14 is changed to the water supply command value (
- Controlled to a proportionate amount.

このような状態では、匍述の如(RFP−T排気温度が
上列する。
In such a state, the RFP-T exhaust temperature rises as described above.

BFP−T排気管21に設けた排気洛(度検出器51よ
りの排気温度信号52はコントローラ53へ入力さiす
る。コントローラ531d:、 BFP−Tが運転用り
にな抽気温度に設定された排気温度設定器54よりの排
気温度設定信号57と前記排気温度信号52を比較し、
RFP−T排気温度が設定温度を超えた場合に設定温度
に近−55くように給水絞り弁制御信号56を出力する
The exhaust gas temperature signal 52 from the exhaust temperature detector 51 provided in the BFP-T exhaust pipe 21 is input to the controller 53. Controller 531d: The BFP-T is set to the extraction temperature for operation. Compare the exhaust temperature setting signal 57 from the exhaust temperature setting device 54 and the exhaust temperature signal 52,
When the RFP-T exhaust temperature exceeds the set temperature, the water supply throttle valve control signal 56 is outputted so that the temperature approaches the set temperature by -55.

給水絞り弁55は前記絞り弁制御信号56を受けて、閉
側に動作する。この動作によりBFP吐出流量は一時的
C減少するが、減少した流量は給水流弾検出器12じよ
り検出され、給水実流負信号13と(2てBFP−T制
御装置11で給水指令10と比較され、BFP−T制御
装部、11は給水指令値に見合う給水量を出すべく、B
FP−T制御信号14とし、て、B F’P −T出力
増指令を出す。
The water supply throttle valve 55 receives the throttle valve control signal 56 and operates toward the closing side. Due to this operation, the BFP discharge flow rate is temporarily reduced by C, but the decreased flow rate is detected by the feed water bullet detector 12, and the actual feed water flow negative signal 13 (2) is output as the water supply command 10 by the BFP-T control device 11. After comparison, the BFP-T control unit 11 outputs the water supply amount corresponding to the water supply command value.
A B F'P-T output increase command is issued as the FP-T control signal 14.

この指令によりBFP−Tけ出力を増し、適正な給水量
が送水されるとともに%  BFP  T排気温度は、
設定温度に保1これる〇 このようにBFP−T出力を増加させることにより、排
気温度が低下する一由を第6図により説明する。
With this command, the BFP-T output is increased, an appropriate amount of water is delivered, and the BFP-T exhaust temperature is
The reason why the exhaust gas temperature decreases by increasing the BFP-T output in this way will be explained with reference to FIG. 6.

第6しIにおいてs  PMSはRFP−T主蒸気圧ツ
バPRXはBFP−T排気圧力、AFl!は理論断熱熱
落差、UFi、UP’はそれぞれ膨張線61.62の場
合の有効断熱熱落差%TIT’けそれぞれ膨張線61.
62の場合の排気温度を示す。
In the 6th I, s PMS is RFP-T main steam pressure, PRX is BFP-T exhaust pressure, AFl! is the theoretical adiabatic thermal drop, UFi, UP' is the effective adiabatic thermal drop %TIT' when the expansion line is 61.62, respectively.
62 is shown.

ここでAFl、 UEt、 UEt:’とBFP−T内
部効率η、η′(η〈η′)の間には次の関係がある。
Here, the following relationship exists between AFl, UEt, UEt:' and the BFP-T internal efficiency η, η'(η<η').

(η、η′はそれぞれ、BFP−T出力り、L’時の内
部効率を示す)UF!=AFiX’7   1    
UB=AE  × 1なお、第7図により%BFP−T
内部効率は、BFP−Tの機械特性上、出力が増加する
C二つれて向上することは既(二述べた。
(η and η' indicate the internal efficiency at BFP-T output and L', respectively) UF! =AFiX'7 1
UB=AE × 1 In addition, according to Figure 7, %BFP-T
As already mentioned, the internal efficiency improves as the output increases due to the mechanical properties of BFP-T.

従って、RFP−Tの出力をLよりL′へ増加させるこ
とは、内部効率をηよりη′へ向上させることになり、
このことは理論断熱熱落差(二対するRFP−Tの有効
断熱熱落差を大きくすることになり、社の結果と(6,
て、BF’P−’r排気温#LはTよりT′へと低下す
る。
Therefore, increasing the output of RFP-T from L to L' will improve the internal efficiency from η to η',
This increases the effective adiabatic heat drop of RFP-T compared to the theoretical adiabatic heat drop (2,
Therefore, BF'P-'r exhaust temperature #L decreases from T to T'.

〔発明の効果〕〔Effect of the invention〕

このように、本発す」によれば、足格角荷から、FOR
運転等の極低負荷までの広範、囲な負荷帯に渡り、ター
ビン駆動給水ボ/プの運転がOf能であり、FOR運転
を容易に成功せしめ、プラント停止による停止、起動損
失を皆無にすると同時1二、低負荷運転においても安全
にT−BFPによりプラントを運転出来る等、熱経済上
、大きな利得を得ることが出来る。
In this way, according to 'honshusu', from the foot of the foot, FOR
It is possible to operate the turbine-driven water supply valve over a wide range of load ranges, including extremely low loads such as operation, making it easy to succeed in FOR operation, and eliminating stoppages and startup losses due to plant stoppages. At the same time, it is possible to safely operate the plant with T-BFP even in low-load operation, and a large gain in terms of thermoeconomics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は定圧運転プラントの給水制御特性を示す図、第
2図は従来の給水制御システムを示す概略系統図、第3
図は変圧運転プラントの給水制御特性を示す図、第4図
はBFP軸動力特性を示す図、@5図は本発明によると
ころの給水制御システムを示す概略系統図、第6図はB
FP−T膨張線壺示す図、第7図はBFP−T内部効率
特性を示す図。 10・・・給水指令    11・・・BFP−T制御
装置12・・・給水流弾検出器 17・・・BFP−T
■8・・・B F P      21・・・BFP−
T排気管51・・BFP−T排気温晟検出器 53・・コントローラ 54・・BFP−T排気温度設定器 55・・船水絞り弁 (7317)代理人 弁理士 則 近 憲 佑 (雌か
1名)W42図 第  5 図
Figure 1 is a diagram showing the water supply control characteristics of a constant pressure operation plant, Figure 2 is a schematic system diagram showing a conventional water supply control system, and Figure 3 is a diagram showing the water supply control characteristics of a constant pressure operation plant.
Figure 4 shows the water supply control characteristics of a variable pressure operation plant, Figure 4 shows the BFP shaft power characteristics, Figure @5 is a schematic system diagram showing the water supply control system according to the present invention, and Figure 6 shows the BFP shaft power characteristics.
FIG. 7 is a diagram showing an FP-T expansion line bottle, and FIG. 7 is a diagram showing BFP-T internal efficiency characteristics. 10...Water supply command 11...BFP-T control device 12...Water supply bullet detector 17...BFP-T
■8...BFP 21...BFP-
T exhaust pipe 51...BFP-T exhaust temperature detector 53...Controller 54...BFP-T exhaust temperature setting device 55...Ship water throttle valve (7317) Agent Patent attorney Noriyuki Chika (Female 1) name) W42 Figure 5

Claims (1)

【特許請求の範囲】 給水指令信号とポンプ出口の実流量信号とを突合せ、偏
差信号を演算してタービン入口に設けた加減弁の開度を
制御するものにおいて、タービンの排気温度を検出し、
この実温度信号と設定器からの予じめ定められた信号と
突合せ、その偏差信号を演舞するコントローラを設け、
コントローラの出力をポンプ出口の給水絞り弁に印加ぜ
しめ、前記給水絞り弁の開度を制御すること(二上って
極也 外食荷時、タービン排気温度を抑制しようとすることを
特徴とするタービン駆動給水ポンプの制御装置、。
[Scope of Claims] In a device that compares a water supply command signal with an actual flow rate signal at a pump outlet and calculates a deviation signal to control the opening degree of a control valve provided at a turbine inlet, the exhaust temperature of the turbine is detected,
A controller is installed to match this actual temperature signal with a predetermined signal from the setting device and to play with the deviation signal.
The output of the controller is applied to a water supply throttle valve at the pump outlet to control the opening degree of the water supply throttle valve. Control device for turbine-driven water pumps,.
JP14776382A 1982-08-27 1982-08-27 TAABINKUDOKYUSUIHONPUNOSEIGYOSOCHI Expired - Lifetime JPH0245086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14776382A JPH0245086B2 (en) 1982-08-27 1982-08-27 TAABINKUDOKYUSUIHONPUNOSEIGYOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14776382A JPH0245086B2 (en) 1982-08-27 1982-08-27 TAABINKUDOKYUSUIHONPUNOSEIGYOSOCHI

Publications (2)

Publication Number Publication Date
JPS5938507A true JPS5938507A (en) 1984-03-02
JPH0245086B2 JPH0245086B2 (en) 1990-10-08

Family

ID=15437612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14776382A Expired - Lifetime JPH0245086B2 (en) 1982-08-27 1982-08-27 TAABINKUDOKYUSUIHONPUNOSEIGYOSOCHI

Country Status (1)

Country Link
JP (1) JPH0245086B2 (en)

Also Published As

Publication number Publication date
JPH0245086B2 (en) 1990-10-08

Similar Documents

Publication Publication Date Title
US20230366349A1 (en) Heat engine with steam supply device
RU2506440C2 (en) Device for starting steam turbine at rated pressure
JP3800384B2 (en) Combined power generation equipment
JP4343427B2 (en) Steam power plant output adjustment method and its steam power plant
US20040131138A1 (en) Brayton cycle nuclear power plant and a method of starting the brayton cycle
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
US20050013402A1 (en) Method of operating a nuclear power plant
CN110242374B (en) Power generation system and control method of power generation system
JPH01117903A (en) Output regulator for combined gas-steam turbine-generating set
JPS5938507A (en) Controller for turbine driving feed pump
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
US4862692A (en) Supercritical pressure once-through boiler
US11578653B2 (en) Steam injection into the exhaust gas recirculation line of a gas and steam turbine power plant
JPS5820363B2 (en) steam turbine equipment
JP2918743B2 (en) Steam cycle controller
Bammert et al. Operation and Control of the 50-MW Closed-Cycle Helium Turbine Oberhausen
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
GB2176248A (en) Turbine control
CN218644350U (en) ORC power generation system working medium pump automatic protection control system
JPS58217709A (en) Composite cycle power generating plant
JPS6280492A (en) Condensate recirculating device
JPH0565804A (en) Control method for two-stage gas mixing type turbo-generator
JP2632147B2 (en) Combined cycle plant
CN113623638A (en) RB-capable boiler deoxygenation water supply system with single 100% steam-driven water supply pump and control method