JPS5938371A - Production of photoreceptor - Google Patents

Production of photoreceptor

Info

Publication number
JPS5938371A
JPS5938371A JP14678982A JP14678982A JPS5938371A JP S5938371 A JPS5938371 A JP S5938371A JP 14678982 A JP14678982 A JP 14678982A JP 14678982 A JP14678982 A JP 14678982A JP S5938371 A JPS5938371 A JP S5938371A
Authority
JP
Japan
Prior art keywords
gas
photosensitive layer
photoreceptor
conductive support
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14678982A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kageyama
喜之 影山
Yukio Ide
井手 由起雄
Koichi Ooshima
大嶋 孝一
Itaru Fujimura
藤村 格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP14678982A priority Critical patent/JPS5938371A/en
Publication of JPS5938371A publication Critical patent/JPS5938371A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To form efficiently a stable photosensitive layer on the surface of a conductive substrate in the stage of producing the photoreceptor by photochemical reaction, by supplying a gaseous medium toward the surface of the substrate while moving the substrate at a prescribed speed. CONSTITUTION:A substrate 5 is rotated at a prescribed speed in a reactor 2 and electricity is conducted to a sheathed heater 17 to maintain the prescribed temp. on the lateral circumferential part of the substrate 5. A reacting gas is ejected from the ejection port 8a of an introducing pipe 7a under irradiation of UV light from a light source 15 toward the substrate 5 in the reactor 2. On the other hand, a carrier gas is admitted into a bomb 14 in which mercury vapor is stored to carry the mercury. The gaseous medium thus produced is ejected from the ejection ports 8b of the 2nd introducing pipe 7b. The UV light is irradiated to the position where the reacting gas and the gaseous medium coexist to induce photochemical reaction and the activated silicon molecules deposit on the surface of the lateral circumferential part of the substrate 5. An amorphous silicon film, etc. are uniformly formed by this method.

Description

【発明の詳細な説明】 本発明は、光化学反応による感光体の製造方法に関する
もので、特に光化学反応による感光層の形成箇所を制御
すること番こより効率良(良好な感光体が製造可能とな
る方法を提案するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a photoreceptor by a photochemical reaction, and in particular, by controlling the location where a photosensitive layer is formed by the photochemical reaction, it is possible to manufacture a photoreceptor more efficiently (a good photoreceptor can be manufactured). This paper proposes a method.

従来、光CVD(chemical  vapor d
eposition)法と称される方法による薄膜半導
体の製造方法はよく知られている。この方法は、例えば
、水銀を導入したチャンバ内にシランガス(S iH4
)全供給し、低圧水銀ランプ(波長237・5 nm 
)を照射してチャンバ内に配設された基板上にアモルフ
ァスシリコン膜を付着形成させるものである。
Conventionally, optical CVD (chemical vapor d)
A method for manufacturing thin film semiconductors using a method called a deposition method is well known. In this method, for example, silane gas (S iH4
), low-pressure mercury lamp (wavelength 237.5 nm)
) to deposit and form an amorphous silicon film on a substrate disposed within a chamber.

然るlこ、上記方法は、光化学反応中lこアモルファス
シリコンが水銀ランプやチャンバの壁等の不要な箇所に
付着するだけでなく、水銀ランプの光が付着したアモル
フスシリコンに遮られて基板上まで透過しなくなって基
板上へのアモルファスシリコンの付着速度も低下し、材
料面及び時間面の双方でアモルファスシリコン膜の製造
効率が低下するという欠点を有していた。
However, in the above method, not only does the amorphous silicon adhere to unnecessary parts such as the mercury lamp and the walls of the chamber during the photochemical reaction, but also the light from the mercury lamp is blocked by the amorphous silicon attached to the substrate. This has the disadvantage that the amorphous silicon film cannot be transmitted to the top and the rate of deposition of the amorphous silicon onto the substrate is reduced, resulting in a reduction in the manufacturing efficiency of the amorphous silicon film both in terms of materials and time.

本発明は、以上の点【こ鑑みてなされたものであって、
光化学反応により効率良く感光層を形成可能な感光体の
、fi!′I造方法を提供することを目的とする。本願
の第1の発明の特徴とするところは、導電性支持体を収
納した容器内に感光層を構成する物jj!iを成分とし
て含有する反応ガスと光化学反応を促進する媒介ガスを
外部から導入し、前配導箱性支持体表面に所定領域の波
長を有する光を照射して感光層を構成する前記物質の成
分を活性化させ、前記4電性支持体表面に前記物質を付
着させ感光層を形成する感光体の製造方法において、前
記導電性支持体を所定速度で反復移11+さぜつつ、導
入した前記媒介ガスを前記導電性支持体表面に向けて供
給する点である。又、第2の発明の特畝とするところは
、導電性支持体を収納した容器内に感光層を構成する物
質を成分として含有する反応ガスと光化学反応を促進す
る媒介ガスを外部から導入し、前記導電性支持体表面に
所定領域の波長を有する光を照射して感光層を構成する
前記物質を活性化させ、前記導電性支持体表面に前記物
質を付着させて感光層を形成する感光体の製造方法にお
いで、前記導電性支持体を所定速度で反復移動させつつ
、前記媒介ガスを加熱して前記容器内に導入し前記導電
性支持体表面に向けて供給する点である。
The present invention has been made in view of the above points,
fi! is a photoreceptor that can efficiently form a photosensitive layer through photochemical reactions. 'The purpose is to provide a manufacturing method. The first invention of the present application is characterized in that a photosensitive layer is formed in a container containing a conductive support. A reactive gas containing i as a component and a mediating gas that promotes the photochemical reaction are introduced from the outside, and the surface of the pre-distribution box support is irradiated with light having a wavelength in a predetermined range to form the photosensitive layer. In the method for producing a photoreceptor, which comprises activating a component and adhering the substance to the surface of the tetraelectric support to form a photosensitive layer, the above-mentioned component is introduced while repeatedly transferring and stirring the conductive support at a predetermined speed. The point is that the mediating gas is supplied toward the surface of the conductive support. Further, the special feature of the second invention is that a reactive gas containing a substance constituting the photosensitive layer as a component and a mediating gas that promotes a photochemical reaction are introduced from the outside into the container containing the conductive support. , a photosensitive method in which the surface of the conductive support is irradiated with light having a wavelength in a predetermined range to activate the substance constituting the photosensitive layer, and the substance is adhered to the surface of the conductive support to form a photosensitive layer. In the method for producing a body, the medium gas is heated, introduced into the container, and supplied toward the surface of the conductive support while repeatedly moving the conductive support at a predetermined speed.

第1図は本発明方法によるアモルファスシリコン膜の生
成原理を説明する模式図である。諸創のガスを導入可能
に構成した容器(不図示)内に導市、性の支持体1を設
置、シ、この支持体1の表面近傍に反応ガスとして硅化
水素、特に5it(、を含有するガスを導入し、光化学
反応を促進させる為1こ水銀(Hg)蒸気を供給する。
FIG. 1 is a schematic diagram illustrating the principle of producing an amorphous silicon film by the method of the present invention. A reactive support 1 is placed in a container (not shown) configured to allow the introduction of various gases, and hydrogen silicide, especially 5IT (containing 5it), is placed near the surface of the support 1 as a reactive gas. mercury (Hg) vapor is supplied to promote the photochemical reaction.

そして、支持体1の表面近傍における反応ガスに周波数
νの紫外光を照射する。そうすると、下記(1)式1こ
て示す如<、Hg蒸気が光励起される。
Then, the reactive gas near the surface of the support 1 is irradiated with ultraviolet light at a frequency ν. Then, Hg vapor is photoexcited as shown in equation (1) below.

Hg + hν →Hg*−−−−     −−−−
(1)世しs Hg*:光励起された水(目原子次いで
、この光励起されたHg*と反応ガス中のSiH4とが
下記(2)式の如く反応して、支持体1の表面近傍に活
性化した硅化水軍分子が生成する。
Hg + hν →Hg*−−−− −−−−
(1) Hg*: Photoexcited water (atom) Next, this photoexcited Hg* and SiH4 in the reaction gas react as shown in the following formula (2), and the water near the surface of the support 1 Activated silicide molecules are generated.

但し、・sin、、  ・SiH,・H:夫々活性化し
たSiH3,5il(、Hの分子又は原子即ち、Hg*
とSiH4との反応により、・SiH3゜・SiH,・
H等の活性化した分子又は原子からなる活性状伸が支持
体1の表面近傍に形成される。
However, ・sin, ・SiH, ・H: activated SiH3,5il (, H molecule or atom, that is, Hg*
By the reaction between and SiH4, ・SiH3゜・SiH,・
An activated chain consisting of activated molecules or atoms such as H is formed near the surface of the support 1.

そして、この活性化分子・S iH3又は−8iH等が
支持体1の表面に付着し、アモルファスシリコン膜が支
持体lの表面fこ形成される。このようにして、反応促
進手段としてのHg蒸気を媒介としてStH,ガスと紫
外光とが光化学反応を起し、アモルファスシリコン膜が
支持体1の表面に形成される。
Then, these activated molecules such as SiH3 or -8iH adhere to the surface of the support 1, and an amorphous silicon film is formed on the surface of the support 1. In this way, a photochemical reaction occurs between the StH gas and the ultraviolet light using Hg vapor as a reaction promoting means, and an amorphous silicon film is formed on the surface of the support 1.

次に、第1の発明の具体的な実施例について、添付の図
面に基づき説明する。まず、本発明の感光体の製造方法
を実施するその装置の1実施例について説明する。第2
(a)図及び第2(b)図は、本発明方法による感光体
の製造装置を示す模式的平面図と模式的正面図である。
Next, specific embodiments of the first invention will be described based on the attached drawings. First, an embodiment of an apparatus for carrying out the method of manufacturing a photoreceptor of the present invention will be described. Second
FIG. 2(a) and FIG. 2(b) are a schematic plan view and a schematic front view showing an apparatus for manufacturing a photoreceptor according to the method of the present invention.

円筒状の石英製反応器2が、その内部を真空化できるよ
うに、図中右側部から2本の配管3,3′を延出させパ
ルプ4,4′を介してロータリポンプ等(不図示)の真
空排気装置に接続されている。この反応器2の内部には
、感光体の導電性支持体となる円筒状のアルミニウム製
支持体5が、夫々の長手軸方向が平行となるべく、反応
器2の1方の乾1部2alこ回転自在に軸支される取付
軸6にその1端部が取付けられ、セットされている。そ
して、取付軸6の反応器2の外方に突出する他端部はモ
ータ(不図示)等の駆動手段に連結されており、従って
、この駆動手段によって前r;己支持体5は、その長手
軸を9心として所定の速度て円滑1こ回転される。
In order to vacuum the inside of the cylindrical quartz reactor 2, two pipes 3 and 3' extend from the right side of the figure and are connected to a rotary pump or the like (not shown) through the pulp 4 and 4'. ) is connected to the vacuum exhaust system. Inside this reactor 2, a cylindrical aluminum support 5 serving as a conductive support for the photoreceptor is placed in one dry part 2al of the reactor 2 so that the longitudinal axes of the supports 5 are parallel to each other. One end thereof is attached and set to a rotatably supported attachment shaft 6. The other end of the mounting shaft 6 that protrudes outward from the reactor 2 is connected to a driving means such as a motor (not shown), and therefore, the self-supporting body 5 is moved by this driving means. It is smoothly rotated once at a predetermined speed with nine centers around the longitudinal axis.

一方、支持体5の側周部内面には、その略全域1こ亘っ
て均等にノーズヒータ17が装着され、更に、熱電対1
8が反応器2内部に導入され、その先端は取付軸6に当
接されている。そして、これらシーズヒータ17と熱電
対18は、夫々反応器2の外部に配設されている温度制
御回路1(Hこ接続され、この温度制御回路19が#1
.電対18が検知した取付軸6の表面温度に応じてシー
ズヒータ17への通電を側脚し、取伺軸6の表面温度と
一定の相関関係にある支持体5の側周部の温度を光化学
反応の最適温度に保持する本々成となっている。
On the other hand, nose heaters 17 are evenly mounted on the inner surface of the side circumferential portion of the support body 5 over substantially the entire area thereof, and thermocouples 1
8 is introduced into the reactor 2, and its tip is brought into contact with the mounting shaft 6. These sheathed heaters 17 and thermocouples 18 are connected to a temperature control circuit 1 (H) disposed outside the reactor 2, and this temperature control circuit 19 is connected to #1.
.. The power supply to the sheathed heater 17 is controlled according to the surface temperature of the mounting shaft 6 detected by the couple 18, and the temperature of the side circumference of the support body 5, which has a certain correlation with the surface temperature of the mounting shaft 6, is controlled. The main feature is to maintain the optimum temperature for photochemical reactions.

而して、後述する反応ガスと混合ガスを一括して導入す
る第1導入管7aと光化学反応を促進する媒介ガスを導
入する第2導入管7aが、夫々の長手軸方向が支持体5
の長手軸方向に平行番こ、かつ支持体5の側周面に夫々
が同程度近接しで配設されている。夫々の導入管7a、
7bの表面には、多Vのガス噴出口8a、8bが夫々支
持体2表面gこ向けて適長離隔して穿設されている。こ
の場合、第2(a)図に示される如く、第1導入管7a
iこ設けられた噴出口8aの開口方向と、第2導入管7
bの噴出口8bの開口方向か、略々支持体5表面で交わ
るようlこ、夫々の噴出口8a、8bの開口方向が設定
されていることが望ましい。このように噴出口8a、8
bの開口方向を設定し、さらに光化学反応における光の
照射箇所を支持体2表面の上記交叉箇所に設定すること
により、より効率の良い光化学反応を得ることができる
Thus, a first introduction pipe 7a for introducing a reaction gas and a mixed gas, which will be described later, all at once, and a second introduction pipe 7a for introducing a medium gas for promoting a photochemical reaction, have their respective longitudinal axes aligned with the support 5.
They are arranged parallel to each other in the longitudinal axis direction and close to the side peripheral surface of the support body 5 to the same extent. Each inlet pipe 7a,
On the surface of 7b, multi-V gas ejection ports 8a and 8b are respectively formed at an appropriate distance apart from each other toward the surface g of the support 2. In this case, as shown in FIG. 2(a), the first introduction pipe 7a
The opening direction of the provided jet ports 8a and the second introduction pipe 7
It is desirable that the opening directions of the respective jet ports 8a and 8b are set so that they substantially intersect at the surface of the support 5. In this way, the spout ports 8a, 8
A more efficient photochemical reaction can be obtained by setting the opening direction of b and further setting the irradiation location of light in the photochemical reaction to the above-mentioned intersection location on the surface of the support 2.

2本の第1.第2導入管7a、7bは、反応器2の端部
2aを貫通して外部で夫々のガスボンベに接続されてい
る。即ち、第1導入管7aは、外部でパルプ9aを介し
た後に2方の配管10a。
The first of two. The second introduction pipes 7a, 7b pass through the end 2a of the reactor 2 and are externally connected to respective gas cylinders. That is, the first introduction pipe 7a passes through the pulp 9a externally and then connects to the two pipes 10a.

10′aに分岐し、一方の配管10aは流量調節装置1
1a及びパルプ12aを介して反応ガスに相当するシラ
ン(SiH4)ガスが貯留されているボンベしてドーピ
ングガス等を含む混合ガスが貯留されているボンベ13
′aに接続されている。尚、ドーピングガスとして本例
ではチッソガスを使用した。一方、第2導入管7bは、
外部でパルプ9bを介した後に水剣蒸気を貯留するボン
ベ14に接続され、さらに、このボンベ14を経て配管
10bにより、流量調節装置11bとパルプ12bを介
して、キャリアガスとしてのアルゴン’J4?留するボ
ンベ13bに接続されている。
10′a, one pipe 10a is connected to the flow rate regulator 1
A cylinder 13 in which silane (SiH4) gas corresponding to a reaction gas is stored via 1a and pulp 12a, and a mixed gas including doping gas etc. is stored.
'a. Note that nitrogen gas was used as the doping gas in this example. On the other hand, the second introduction pipe 7b is
After passing through the pulp 9b externally, it is connected to a cylinder 14 for storing water vapor, and further, through this cylinder 14, through a pipe 10b, argon 'J4? The cylinder 13b is connected to the cylinder 13b.

そして、反応器2の真空排気用配管3.3’カ設けられ
ている側部の略反対側の光が透過可能に形成された」り
部の表面から適長離隔した位置には、紫外′″I+f:
を反応器2内の支持体5に向けて照射する光源15が配
設されている。尚、光源15の配設位置は、勿論上記位
置には限定されない。この光源15は、棒状を成し、反
応器2の長手軸方向に平行に配置されており、例えば主
波長が253.7nmの紫外光を発光する500 W低
圧水釧ランプ等を使用して、その長手方向に沿って帯状
の光線全支持体2の側周面の幅の略全域1こ亘って均等
に照射する。又、光源15の反応器2と対向する側とは
反対の背面側には、反射fi16が配設されており、光
源15からこの背面側へ発射された光も反射鏡16で反
射させて反応器2内へ導入し、光を有効に利用できる構
成となっている。この場合、光化学反応を効率良く促進
させる為に、前述した如く、2本のガス導入管7a、7
bの噴出口8a、8bの開口方向が交叉する支持体5の
表面上の位置に光の照射箇所も略一致するように、光源
15や反射錦16の配置を設定することが望ましい。
The ultraviolet ray ″I+f:
A light source 15 is provided which irradiates the support body 5 within the reactor 2 with light. Note that the arrangement position of the light source 15 is, of course, not limited to the above-mentioned position. The light source 15 has a rod shape and is arranged parallel to the longitudinal axis of the reactor 2, and uses, for example, a 500 W low-pressure water lamp that emits ultraviolet light with a main wavelength of 253.7 nm. The light rays are uniformly irradiated over substantially the entire width of the side circumferential surface of the entire band-shaped support 2 along its longitudinal direction. Further, a reflection fi 16 is disposed on the back side of the light source 15 opposite to the side facing the reactor 2, and the light emitted from the light source 15 to this back side is also reflected by the reflecting mirror 16 and reacts. The structure is such that the light can be introduced into the vessel 2 and used effectively. In this case, in order to efficiently promote the photochemical reaction, two gas introduction pipes 7a, 7 are provided as described above.
It is desirable to set the arrangement of the light source 15 and the reflective brocade 16 so that the light irradiation location substantially coincides with the position on the surface of the support body 5 where the opening directions of the jet ports 8a and 8b intersect.

斜上の如く構成された感光体の製造装置によって感光体
を製造するプロセスを、以下に詳述する。まず、真空排
気装買としてのロータリポンプ(不図示)を駆動して、
反応器2内部を、例えば10”5Torr程度の真空状
態にする。次に、取付軸61こ連結されたモータ(不図
示)を駆動し、支持体5を所定速度で回転させると共に
、シーズヒータ17に通電を開始する。そして、熱畢、
対18か検知する取付軸6の表面温度に応じて温度制御
回路19がその通電、を制量し、支持体5の側局部の温
度を、例えば200℃程度に保持する。
A process for manufacturing a photoreceptor using a photoreceptor manufacturing apparatus configured in a diagonal manner will be described in detail below. First, drive a rotary pump (not shown) as vacuum evacuation equipment,
The inside of the reactor 2 is brought into a vacuum state of, for example, about 10"5 Torr. Next, a motor (not shown) connected to the mounting shaft 61 is driven to rotate the support 5 at a predetermined speed, and the sheathed heater 17 is rotated. Start energizing.Then, it heats up.
The temperature control circuit 19 controls the energization according to the surface temperature of the mounting shaft 6 detected by the pair 18, and maintains the temperature of the side local portion of the support body 5 at, for example, about 200°C.

次いで、上記のような状態の反応器2内部に、光源15
から、例えば波長が253.7nmの紫外光を支持体5
の側周部表面に向けて照射しつつ、3個のボンベ13a
、 13’ a、  13bを開き夫々の貯留ガスのシ
ランガス、ドーピングガス及び水仙蒸気を含むアルゴン
ガスを反応器2内の2本の導入管7a、7bから回転す
る支持体5表面に向けて噴出させる。即ち、反応ガスの
シランガスとドーピングガスを含む混合ガスとしてのチ
ッソガスが、夫々ボンベ13a、 13’aから配管1
0a。
Next, a light source 15 is placed inside the reactor 2 in the above state.
For example, ultraviolet light with a wavelength of 253.7 nm is applied to the support 5.
While irradiating the side surface of the three cylinders 13a,
, 13'a, 13b are opened, and argon gas containing silane gas, doping gas, and daffodil vapor in the respective stored gases is jetted from the two inlet pipes 7a, 7b in the reactor 2 toward the surface of the rotating support 5. . That is, nitrogen gas as a mixed gas containing silane gas as a reaction gas and doping gas is passed from cylinders 13a and 13'a to pipe 1, respectively.
0a.

10′aで夫々別個にパルプ12a、12′aを経て流
量調節装置11a、 Il’alこより所定の流量Jこ
調整されて円滑に流された後、合流して混合され、再度
パルプ9aを絆で第1導入管7aの噴出口8aから支持
体5の表面に向って噴出される。一方、キャリアガスと
してのアルゴンガスは、ボンベ13bから配管10b 
lこよりパルプ12bを経て流量調節装置11bにより
所定の流量に調整されて水鍜蒸包が貯留されているボン
ベ141こ流入し、ここで水蛯ヲ和って光化学反応を促
進させる媒介ガスと成り、パルプ9bを経て第2導入管
7bの噴出口8bから所定の方向に噴出され、前記第1
導入管7aから噴出されたガスと銘々回転する支持体5
の表面近傍で衝突して混り合う。
At 10'a, the pulps 12a and 12'a are individually adjusted to a predetermined flow rate by the flow rate regulator 11a and Il'al and flowed smoothly, and then they are combined and mixed, and the pulp 9a is bonded again. The water is ejected toward the surface of the support 5 from the ejection port 8a of the first introduction pipe 7a. On the other hand, argon gas as a carrier gas is supplied from the cylinder 13b to the pipe 10b.
From there, the water lobster is adjusted to a predetermined flow rate by the flow rate regulator 11b through the pulp 12b, and flows into the cylinder 141 in which the water lobster is stored, where the water lobster is softened and becomes a mediating gas that promotes photochemical reactions. , the pulp 9b is ejected from the ejection port 8b of the second introduction pipe 7b in a predetermined direction, and the first
The support body 5 rotates with the gas ejected from the introduction pipe 7a.
They collide and mix near the surface.

そして、この反応ガスと媒介ガス等が混在する位置に、
前述の紫外光が照射され、前記(1)式及び(2)式で
表わされる光化学反応が起り、活性化したシリコン分子
、72+1ち・SjH,・5iH5等、が支持体5の側
周部表面に付着する。このシリコン分子の付着期間中支
持体5は所定の回転速度で回転している為、光化学反応
の生成物であるシリコン分子か支持体表面に対し限定的
に設定された位置、即ち上記の光化学反応が起C−って
いる位16、のみから付着されても、支持体5の側周面
jこは均一にアモルファスシリコン膜が形成される。又
、原料ガス噴出位置と光の照射位置を略一致させシリコ
ン分子の生成可能なゾーンを特定した為、従来技術の如
く反応器2内の不要な箇所に付着することがなく、効率
良く安定的に所望のアモルファスシリコン膜を形成する
ことができる。
Then, in the position where this reaction gas and mediate gas etc. are mixed,
When the above-mentioned ultraviolet light is irradiated, the photochemical reactions represented by the above-mentioned formulas (1) and (2) occur, and the activated silicon molecules, 72+1-SjH, 5iH5, etc., form on the side peripheral surface of the support 5. Attach to. Since the support 5 is rotating at a predetermined rotational speed during the adhesion period of the silicon molecules, the silicon molecules, which are the products of the photochemical reaction, are located at a limited position on the support surface, that is, the photochemical reaction described above. Even if the amorphous silicon film is deposited only from the position 16 where C is generated, an amorphous silicon film is uniformly formed on the side peripheral surface of the support 5. In addition, since the raw material gas ejection position and the light irradiation position are approximately aligned to identify the zone where silicon molecules can be generated, they do not adhere to unnecessary locations in the reactor 2 as in the conventional technology, resulting in efficient and stable production. A desired amorphous silicon film can be formed.

尚、本実施例においては、光源15の水仙ランプを反応
器2の外部に設置したが、反応器2の内部の適所に設置
しても良い。この場合lこ」6イテモ、本発明方法lこ
より、光化学反応が起こりその生成物が付着するゾーン
を特定する為、不用意に水銀ランプ表面に生成物が付着
して照射光が辿られ光化学反応の速度が低下する不都合
が解消される。又、上記の諸種のガスを1本の導入管に
まとめて導入し、支持体表面(こ噴出する構成としても
良い。
In this example, the daffodil lamp of the light source 15 is installed outside the reactor 2, but it may be installed at an appropriate position inside the reactor 2. In this case, in order to identify the zone where a photochemical reaction occurs and the product adheres, the method of the present invention inadvertently attaches the product to the surface of the mercury lamp and the irradiated light traces the photochemical reaction. This eliminates the inconvenience of slowing down. Alternatively, the above-mentioned various gases may be collectively introduced into one introduction pipe and ejected from the surface of the support.

ここで、本発明方法の効果を確認する為に本願発明者等
が実施し′た本発明方法lこよる感光体の試作試験につ
いて説明する。試作lこ際して設定した諸条件は下記の
辿りである。
Here, a trial production test of a photoreceptor using the method of the present invention, which was carried out by the inventors of the present invention in order to confirm the effects of the method of the present invention, will be explained. The conditions set for the trial production are as follows.

4市、性支持体仕様:外径80mmX長さ300mmの
アルミニウム身4ドラム 尤i:500W低圧水銀ランプ(主波長253.7nm
) 反応ガス:SiH4ガス、流量20mt/9混合ガス:
チッソガス、流i 30 ml/’;)キャリアガス:
アルゴンガス、流z 150 mt、、i分支持体の回
転数: 10 r、 p、m。
Support specifications: 4 drums with an aluminum body of 80 mm outer diameter and 300 mm length. 500 W low-pressure mercury lamp (main wavelength 253.7 nm).
) Reaction gas: SiH4 gas, flow rate 20mt/9 mixed gas:
Nisso gas, flow i 30 ml/';) Carrier gas:
Argon gas, flow z 150 mt, i min. Number of rotations of the support: 10 r, p, m.

支持体の加熱温度:170℃ 反応器内ガス圧カニ 2torr このような条件下でアモルファスシリコン膜を15μm
形成した結果、そのアモルファスシリコン膜の付着速度
は約3μm/時と速かった。又、反応器内部で側壁等の
不要な箇所へのアモルファスシリコン膜の付着は、無視
できる程度であった。又、本試験で製造されたアモルフ
ァスシリコン膜の膜質は、電子写真技術に使用される感
光体の感光層として極めて良好であった。また、上記製
造作業を繰返し行なったが、極めて再現性が高く高安定
度で感光体を製造することができた。更lこ、光化学反
応は全般的にマイルドであるので、支持体表面を損傷す
ることもなかった。
Heating temperature of support: 170°C Gas pressure inside the reactor: 2 torr Under these conditions, an amorphous silicon film with a thickness of 15 μm was formed.
As a result of the formation, the deposition rate of the amorphous silicon film was as fast as about 3 μm/hour. Further, the adhesion of the amorphous silicon film to unnecessary parts such as the side walls inside the reactor was negligible. Furthermore, the film quality of the amorphous silicon film produced in this test was extremely good as a photosensitive layer of a photoreceptor used in electrophotography. Further, the above manufacturing operation was repeated, and the photoreceptor could be manufactured with extremely high reproducibility and high stability. Moreover, since the photochemical reaction was generally mild, the surface of the support was not damaged.

次に、本願の第2の発明の具体的な実施例について、以
下に説明する。この第2の発明の感光体の製造方法を実
施する装置は、@3(a)図。
Next, a specific example of the second invention of the present application will be described below. An apparatus for carrying out the method for manufacturing a photoreceptor according to the second invention is shown in Figure 3(a).

第3(b)図の模式図番こ示されている。この装置の構
成は、前記第1の発明を実施する装置と略々同一であり
、同一構成要素には同一の参照番号を付して説明を省略
する。相違する点は、第3(a)図に示される如く、光
化学反応を促進する媒介ガスを送給する経路において、
水銀蒸気を貯留するボンベ14から第24入管7bに至
る部分の配管表面に略均等にシーズヒータ2oが装着さ
れ、かつこの部分の表面温度を検知する熱m対21と、
この熱電対21と前記シーズヒータ20か夫々接Mぎれ
る温度制御装flf 22が配設され、熱市1対21の
検知する表面温度に応じてシーズヒータ20への通電を
温度制脚装@22で制御し、水銀蒸気を含む媒介ガスの
送給配管を所定の温度に加熱する構成とした点である。
The schematic number of FIG. 3(b) is shown. The configuration of this device is almost the same as that of the device implementing the first invention, and the same reference numerals are given to the same components, and the description thereof will be omitted. The difference is that, as shown in Figure 3(a), in the route for delivering the mediating gas that promotes the photochemical reaction,
Sheathed heaters 2o are installed approximately evenly on the surface of the pipe from the cylinder 14 that stores mercury vapor to the 24th inlet pipe 7b, and a heat pair 21 that detects the surface temperature of this part;
A temperature control device flf 22 is provided which connects this thermocouple 21 to the sheathed heater 20, respectively, and controls the energization to the sheathed heater 20 according to the surface temperature detected by the thermocouple 21. The main point is that the system is configured to control the mercury vapor and heat the medium gas supply pipe containing mercury vapor to a predetermined temperature.

上記の如く構成された與造装竜によって感光体を製造す
る場合、媒介ガスの温度が適切に制御される為、尤fヒ
学反応に供される水銀量をより最適に制御可能となる。
When a photoreceptor is manufactured using the above-described structure, the temperature of the medium gas is appropriately controlled, so that it is possible to more optimally control the amount of mercury used in the chemical reaction.

即ち、アルゴンガスの流量を調節して水銀蒸気の供給計
を制御するだけでなく、液化しやすい水銀蒸気の温度も
制御することにより、より緻密に水銀の供給量を制御で
きる。従って、第1の発明の方法により得られた有用な
効果に加えて、さらに、光化学反応の最適化が容易とな
り、より効率良く安定して良質な感光体を製造すること
も可能となる。
That is, by not only controlling the mercury vapor supply meter by adjusting the flow rate of argon gas, but also controlling the temperature of mercury vapor, which is easily liquefied, the amount of mercury supplied can be controlled more precisely. Therefore, in addition to the useful effects obtained by the method of the first invention, it becomes easier to optimize the photochemical reaction, and it becomes possible to more efficiently, stably, and produce high-quality photoreceptors.

ここで、上述した第2の発明の製造方法によって感光体
を試作した試験結果について説明する。試作に際して設
定した諸条件で、水銀温度を40℃に制御した点以外は
、前記第1の発明の方法による試験の場合と同一条件に
設定した。
Here, the test results of a photoreceptor produced as a prototype using the manufacturing method of the second invention described above will be explained. The conditions set for the trial production were the same as those for the test according to the method of the first invention, except that the mercury temperature was controlled at 40°C.

このような条件下でアモルファスシリコン膜を15μm
形成した結果、そのアモルファスシリコン膜の付着速度
は約6μm/時とより速くなった。
Under these conditions, an amorphous silicon film with a thickness of 15 μm was formed.
As a result, the deposition rate of the amorphous silicon film was faster at approximately 6 μm/hour.

又、アモルファスシリコン膜の付着箇所や付着具合とそ
の再現性及びその膜質等についても、前記第1の発明方
法によった場合と同様な良好な結果が得られた。
In addition, good results similar to those obtained by the first method of the invention were obtained with respect to the location and condition of adhesion of the amorphous silicon film, its reproducibility, and its film quality.

以上詳述した如く、本発明によれば、光化学反応が起こ
る場所を制御することにより、光化学反応の生成物とし
ての感光層を、短時間で効率良くかつ安定的に静電気的
に良好な品質で形成可能となる。又、光化学反応を促進
させる媒介ガスを緻密に温度制菌して供給することによ
り、更に効率良く高速度で安定的lこ良質な感光層を形
成することかで1きる。尚、本発明は上記の特定の実施
例に限定されるべきものではな(、本発明の技術的範囲
において種々の変形が可能であることは勿論である。例
えば、3称類以上のガスを3方以上から1点で合流する
ように噴出させても良い。又、支持体が平板状のもので
あれば直線往復移動させる等、支持体表面に均一に感光
層が形成される様に、その形状に応じて適切に支持体を
反復移動させる構成とすれば良い。
As detailed above, according to the present invention, by controlling the location where the photochemical reaction occurs, the photosensitive layer as a product of the photochemical reaction can be efficiently and stably produced with good electrostatic quality in a short time. It becomes possible to form. Furthermore, by supplying the mediating gas that promotes the photochemical reaction under precise temperature control, it is possible to form a high-quality photosensitive layer more efficiently, rapidly, and stably. It should be noted that the present invention is not limited to the above-mentioned specific examples (it goes without saying that various modifications can be made within the technical scope of the present invention. It may be ejected from three or more directions so as to merge at one point.Alternatively, if the support is a flat plate, it may be moved back and forth in a straight line, etc., so that the photosensitive layer is uniformly formed on the surface of the support. The structure may be such that the support is repeatedly moved appropriately depending on the shape.

【図面の簡単な説明】[Brief explanation of drawings]

相1図は本発明方法の基本となる光化学反応の原理を示
す川、四回、第2(a)図、第2(b)図は第1の発明
の具体的な1実施例を示す感光体製造装置の模式的平面
図と模式的正面図、第3(a)図。 第3(b)図は第2の発明の具体的な1実施例を示す感
光体製造装置の模式的平面図と模式的正面図である。 (符号の説明) 1,5:支持体    2:反応器 7a:第1導入管   7b:第2導入管8a、8b:
噴出口  14:水銀ポンベ15:光 源      
17.20  :シーズヒータ特許出願人  株式会社
 リ コ − 第1図 hν
Phase 1 diagram shows the principle of the photochemical reaction that is the basis of the method of the present invention, and Figures 2 (a) and 2 (b) are photosensitive diagrams showing a specific example of the first invention. FIG. 3A is a schematic plan view and a schematic front view of the body manufacturing apparatus; FIG. FIG. 3(b) is a schematic plan view and a schematic front view of a photoreceptor manufacturing apparatus showing a specific embodiment of the second invention. (Explanation of symbols) 1, 5: Support 2: Reactor 7a: First introduction pipe 7b: Second introduction pipe 8a, 8b:
Spout 14: Mercury pombe 15: Light source
17.20: Sheathed heater patent applicant Rico Co., Ltd. - Figure 1 hν

Claims (1)

【特許請求の範囲】 1、 導電性支持体を収納した容器内に感光層を構成す
る物質を成分として含有する反応ガスさ光化学反応を促
進する媒介ガスを外部から導入し、前記導電性支持体表
面に所定領域の波長を有する九を照射して感光層を41
々成する前記物質の成分を活性化させ、前記導電性支持
体表面に前記物質を付着させ感光層を形成する感光体の
製造方法(こおいて、前記導電性支持体を所定速度で移
動させつス導入した前記媒介ガスを前記導電性支持体表
面に向けて供給することを特徴とする感光体の製造方法
。 2、上記第1項1こおいて、前記反応ガスは硅化水素を
含有し、前記媒介ガスは水銀を含有し、前記感光層の少
なくとも一部はアモルファスシリコンであることを特徴
とする感光体の製造方法。 3、 導電性支持体を収納した容器内に感光層を構成す
る物質を成分として含有する反応ガスと光化学反応を促
進する媒介ガスを外部から導入し、前記導電性支持体表
面lこ所定領域の波長を有する光を照射して感光層を構
成する前記物質を活性化させ、前記導電性支持体表面に
前記物質を付着させて感光層を形成する感う℃休の製造
方法において、前記導電性支持体を所定速度で$!、動
させつつ、前記媒介ガスヲDI定の温度に加熱して前記
容器内盛こ導入し前記導′ik性支持体表面に向けて供
給することを特徴とする感光体の製造方法。 4、上tte 第3 、lにおいて、前記反応ガスは硅
化水素を含有し、前記媒介ガスは水銀を含有し、前記感
光層の少なくとも一部はアモルファスシリコンであるこ
とを特徴とする感光体の製造方法。
[Scope of Claims] 1. A mediating gas that promotes a photochemical reaction of a reactive gas containing a substance constituting a photosensitive layer as a component is introduced from the outside into a container containing a conductive support, and the conductive support is The surface of the photosensitive layer is irradiated with 9 rays having a wavelength in a predetermined range to form a photosensitive layer of 41
A method for manufacturing a photoreceptor, which comprises activating the components of the substance that forms the substance and depositing the substance on the surface of the conductive support to form a photosensitive layer (in this method, the conductive support is moved at a predetermined speed). A method for producing a photoreceptor, characterized in that the medium gas introduced into the reactor gas is supplied toward the surface of the conductive support. 2. In the above item 1, the reaction gas contains hydrogen silicide. A method for producing a photoreceptor, characterized in that the medium gas contains mercury, and at least a portion of the photosensitive layer is amorphous silicon. 3. The photosensitive layer is formed in a container containing a conductive support. A reaction gas containing the substance as a component and a mediating gas that promotes a photochemical reaction are introduced from the outside, and the surface of the conductive support is irradiated with light having a wavelength in a predetermined region to activate the substance constituting the photosensitive layer. In the above-described manufacturing method in which the material is attached to the surface of the conductive support to form a photosensitive layer, the conductive support is moved at a predetermined speed while the medium gas is A method for producing a photoreceptor, characterized in that the photoreceptor is heated to a certain temperature, introduced into the container, and supplied toward the surface of the conductive support. A method for producing a photoreceptor, wherein the gas contains hydrogen silicide, the medium gas contains mercury, and at least a portion of the photosensitive layer is amorphous silicon.
JP14678982A 1982-08-26 1982-08-26 Production of photoreceptor Pending JPS5938371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14678982A JPS5938371A (en) 1982-08-26 1982-08-26 Production of photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14678982A JPS5938371A (en) 1982-08-26 1982-08-26 Production of photoreceptor

Publications (1)

Publication Number Publication Date
JPS5938371A true JPS5938371A (en) 1984-03-02

Family

ID=15415570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14678982A Pending JPS5938371A (en) 1982-08-26 1982-08-26 Production of photoreceptor

Country Status (1)

Country Link
JP (1) JPS5938371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209247A (en) * 1984-04-02 1985-10-21 Ushio Inc Photochemical reaction device
JPS6274080A (en) * 1985-09-25 1987-04-04 Applied Materials Japan Kk Vapor growth device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209247A (en) * 1984-04-02 1985-10-21 Ushio Inc Photochemical reaction device
JPS6274080A (en) * 1985-09-25 1987-04-04 Applied Materials Japan Kk Vapor growth device

Similar Documents

Publication Publication Date Title
US4957061A (en) Plurality of beam producing means disposed in different longitudinal and lateral directions from each other with respect to a substrate
JP5124760B2 (en) Film forming method and film forming apparatus
JPS606540B2 (en) Photochemical vapor deposition apparatus and method
WO1991017285A1 (en) Microwave plasma assisted gas jet deposition of thin film materials
JPH0346437B2 (en)
JPS5938371A (en) Production of photoreceptor
US4848272A (en) Apparatus for forming thin films
US4908292A (en) Method of making an electrophotographic inorganic photosensitive element using ultraviolet radiation
JPH0547669A (en) Vapor growth apparatus
JPS63270394A (en) Flow type method for synthesizing diamond and apparatus therefor
JPS6338430B2 (en)
JPH0285368A (en) Formation of amorphous silicon film
JPS62155934A (en) Vapor phase exciter
JPS6338581A (en) Functional deposited film forming device
EP0330708A1 (en) Apparatus for forming thin films
JPH0544818B2 (en)
JPH0341723A (en) Thin-film manufacture apparatus
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPH0818905B2 (en) Diamond synthesizing method and synthesizing apparatus
JPS6320483A (en) Fine particle spraying device
JPS61117824A (en) Vapor phase reaction container
SU1347504A2 (en) Device for applying coating from gas phase
JPS6150148B2 (en)
JPS62179719A (en) Deposited film forming apparatus
JPH0333094A (en) Synthesizing method of diamond