JPS5938318A - Bottom blowing furnace - Google Patents

Bottom blowing furnace

Info

Publication number
JPS5938318A
JPS5938318A JP14857782A JP14857782A JPS5938318A JP S5938318 A JPS5938318 A JP S5938318A JP 14857782 A JP14857782 A JP 14857782A JP 14857782 A JP14857782 A JP 14857782A JP S5938318 A JPS5938318 A JP S5938318A
Authority
JP
Japan
Prior art keywords
tuyere
refractory
brick
furnace
bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14857782A
Other languages
Japanese (ja)
Inventor
Yasumasa Ikehara
池原 康允
Tadashi Ito
正 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14857782A priority Critical patent/JPS5938318A/en
Publication of JPS5938318A publication Critical patent/JPS5938318A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To prolong the life of a bottom blowing furnace by interposing a refractory having specified heat conductivity and a specified coefft. of thermal expansion between a tuyere of the furnace and tuyere brick to prevent the cracking of the brick and to reduce considerably the wear rate. CONSTITUTION:A refractory 3 is interposed between the outer pipe 1B of a bottom tuyere 1 of an AOD furnace for decarburization refining and tuyere brick 2. The refractory 3 has lower heat conductivity and a lower coefft. of thermal expansion than the brick 2, and mullite (Al2O3-SiO2) is preferably used as the refractory 3. Mullite has much lower heat conductivity and a much lower coefft. of thermal expansion than magnesia-chrome brick.

Description

【発明の詳細な説明】[Detailed description of the invention]

下にカスを吹込み精錬を行う下吹炉(C関するもの素ガ
スを吹込み、脱炭精錬を行う下吹炉FI7)例を示し、
この羽口には、従来、一般に第2図に示す4′1″X造
の2重管羽口が用いられている。この2重管羽口は羽口
煉瓦2に挿着され、そして、内管1Aの通路11vcは
脱炭精錬に必要な酸素ガス又は及び不活性ガ2を多量に
流し、外管IBと内管IAとの間隙12にはこの内管の
損耗を防止する為に冷却用として不活性ガス( Ar 
、N2等)又はO nHm(プロノξン)等の分解吸熱
を行うカ゛スを流している。 羽口煉瓦2の炉内側端面S近傍の外周部分は、1 60
0℃以上の炉内の鋼浴と接する該炉内側端面Sからの熱
伝導により非常な高温(!:なるが一方外管IBと接触
する羽口煉瓦2の内周部分は外宮IB7)−らの抜,情
VCより、温度が該外周部分よりも非常に低くなる。従
って第2図に示すような外周の1点に相対する内周の1
点、a−b,c−d。 e−f,g−hのそれぞれの点と点間で大きな温度差を
生じ、この温度差によって羽口煉瓦21・よ、他の鋼浴
のみに接する煉瓦に較べて大きな熱負荷を受け、熱的ス
ポーリングによる亀裂4(第2 1YIに示す)を生じ
、又、チャージ当りの損耗率が犬き(しばしば炉体寿命
を延長する上でのネックとなっている。これらの対策と
して羽口煉瓦そのものの品質向上及び、長尺fヒ等の種
々の対策が取られているが決定的な対策VCするし′こ
至っていない。 本発明の目的はこの羽目煉瓦の亀裂発生を防虫し、損耗
率を大幅に縮小し炉体寿命を延長させ、この両者(4C
jクコスト的に大きなメリットをあげることにあり、本
発明は羽口煉瓦に挿着された羽口全具備している下吹炉
において、羽口と羽口煉瓦の間に該羽口煉瓦よりも熱伝
導率および熱膨張沖 郡の低い耐火かを介在させたことを特徴とするT吹炉で
ある。 以下本発明の詳細をステンレスの脱炭N’# k1!!
に用いられるAOD炉に例を取って具体的に説明する。 第3図はA、 OD炉を示し、二重前羽口lが炉F′の
底R近傍の側壁に取付けられている。従来は第2図に示
す従来の二重前羽口が用いら扛ていて、外管lBと内R
IAの間隙12VCはアルゴン等の不活性ガスを冷却材
とI−で流していて、その間隙12は一般的には約11
)間であり、又外管IBにはステンレスが用いられその
肉厚tは約1. Q mmである。間隙12を流れるガ
スは羽口1本当り、60〜1 (’l ONm” /h
r程肝である。羽口煉瓦2としては一般的にマグクロ煉
瓦(Mgo 60〜7))%、C!r20320〜30
%)が用いられている。 下記の本発明の実知例に対する比較例として、脱炭精錬
中Vここの煉瓦を用い第2図の構成の従来羽口金剛いた
場合の羽口煉瓦2の測定可能な各部の温度を測定1し、
外管IBと接触する羽口煉瓦2の内周の”+c+etg
点とこれらの各点にそれぞれ対応する羽目かま瓦2の外
周りb 、 d 、 f 、 b点間の、即ちaとbの
間、Cとdの間、eとfの間、gとhの間のそれぞれの
温度分布を推定すると第5図の○印で示すようになる。 この場合、羽口たに瓦の厚さ〃は45間mあり、第5図
の横軸0朋は煉瓦と外管とが接している面、即ち煉瓦の
内面のところであり、45filKは煉瓦の外面のとこ
ろである。 この回り・ら明らかな如(@浴と接触する羽口煉瓦の炉
内側端面S近傍にある内面のa点と外面のb点(a−b
)間ではほとんど温度差はないが炉内側端面Sから5朋
内部に入った内面のd点と外面のd点(c−d )間で
は温度差は約1150℃であり10閂内部のe−f間で
は約1350℃、15mm内部のg−h間では約】25
0℃の温度差が生じていることが判った。 次に本発明の実jrilj例を第4図により説明する。 第4図は本発明の羽口金倉む部分の断面図で外管IBと
羽口煉瓦20間に羽口煉瓦、Cりも熱伝導率と熱膨張率
の低い耐火物3を介在させである。この耐火物3として
はムライ・F”f’f (AIaO3−S i 02系
)のものが好ましく、ムライト質はマグクロ煉瓦(wJ
して熱伝導率及び熱膨張率が格段に低い耐火物である。 この耐火物3と
An example of a bottom blowing furnace FI7 that performs refining by injecting waste into the bottom (bottom blowing furnace FI7 that performs decarburization refining by injecting C-related raw gas) is shown,
Conventionally, a double pipe tuyere of 4'1"X structure as shown in FIG. A large amount of oxygen gas or inert gas 2 necessary for decarburization refining flows through the passage 11vc of the inner pipe 1A, and cooling is carried out in the gap 12 between the outer pipe IB and the inner pipe IA to prevent wear and tear on the inner pipe. Inert gas (Ar
, N2, etc.) or a gas that performs decomposition endotherm such as OnHm (pronone). The outer peripheral portion of the tuyere brick 2 near the furnace inner end surface S is 160
Due to heat conduction from the inner end surface S of the furnace in contact with the steel bath in the furnace at 0°C or higher, the inner peripheral part of the tuyere brick 2 in contact with the outer tube IB reaches a very high temperature (!). However, due to the VC, the temperature is much lower than that of the outer peripheral portion. Therefore, as shown in Figure 2, one point on the inner circumference is opposite to one point on the outer circumference.
Points, a-b, c-d. A large temperature difference occurs between each point e-f and g-h, and due to this temperature difference, the tuyere brick 21 is subjected to a large heat load compared to other bricks that are in contact only with the steel bath, and the heat Cracks 4 (shown in 2nd 1YI) occur due to surface spalling, and the wear rate per charge is high (often a bottleneck in extending the life of the furnace body. Various measures have been taken, such as improving the quality of the bricks and reducing the length of the bricks, but no definitive countermeasures have been taken. By significantly reducing the
The purpose of the present invention is to provide a great advantage in terms of cost, and in a bottom blowing furnace which is fully equipped with tuyeres inserted into the tuyere bricks, the present invention has a structure in which there is a space between the tuyeres and the tuyere bricks, which This is a T-blowing furnace characterized by interposing a refractory material with low thermal conductivity and thermal expansion. The details of the present invention are as follows: Decarburization of stainless steel N'# k1! !
A specific explanation will be given by taking an example of an AOD furnace used for. FIG. 3 shows the A, OD furnace, in which a double front tuyere l is attached to the side wall near the bottom R of the furnace F'. Conventionally, the conventional double front tuyere shown in Fig. 2 was not used, and the outer pipe lB and inner R
The gap 12VC of IA allows an inert gas such as argon to flow between the coolant and I-, and the gap 12 is generally about 11V.
), and stainless steel is used for the outer tube IB, and its wall thickness t is approximately 1. Q mm. The gas flowing through the gap 12 is 60 to 1 ('l ONm"/h) per tuyere.
It is very important. The tuyere brick 2 is generally a maguro brick (Mgo 60-7)%, C! r20320~30
%) is used. As a comparative example to the known example of the present invention described below, the temperature of each measurable part of the tuyere brick 2 was measured using the brick shown here during decarburization refining with a conventional tuyere brick 2 having the configuration shown in FIG. 2. death,
"+c+etg" on the inner periphery of the tuyere brick 2 in contact with the outer pipe IB
points and the outer periphery of the paneled roof tile 2 corresponding to each of these points b, d, f, between points b, that is, between a and b, between C and d, between e and f, between g and h Estimating the respective temperature distributions between the two, the results are as shown by the circles in FIG. In this case, the thickness of the tuyere tiles is 45 m, and the horizontal axis 0 in Fig. 5 is the surface where the bricks and the outer tube are in contact, that is, the inner surface of the bricks, and 45 filK is the thickness of the bricks. It's on the outside. It is clear from this circuit (@ point a on the inner surface near the end surface S of the tuyere brick inside the furnace that comes into contact with the bath, and point b on the outer surface (a-b
), but there is a temperature difference of about 1150°C between point d on the inner surface, which is 5 meters from the furnace inner end surface S, and point d on the outer surface (c-d), and there is a temperature difference of about 1150℃, Approximately 1350℃ between f and approximately ]25 between g and h inside 15mm
It was found that there was a temperature difference of 0°C. Next, a practical example of the present invention will be explained with reference to FIG. FIG. 4 is a cross-sectional view of the tuyere metal housing part of the present invention, in which a refractory 3 with low thermal conductivity and thermal expansion coefficient is interposed between the outer tube IB and the tuyere brick 20. . As this refractory material 3, it is preferable to use Murai F''f'f (AIaO3-S i 02 series), and the mullite material is maguro brick (wJ
It is a refractory with extremely low thermal conductivity and coefficient of thermal expansion. This refractory 3

【−で5酬厚のムライト質の耐火物を用
いた場合の該耐火物および羽目煉瓦の温度分布を前記比
較例の場合と同じ方法で測定した。 これを第5図にx印で示す。 このX印で示した温度分布と前記比較例の温度分布(○
印)と対比すると外′#IBと接触している耐火物3の
内面、即ち横軸のQ ramのところのa。 c+erg点の温度はあまり変らない。次に111火′
物3(υ外周と羽口煉瓦2の内周の接触面即ち横軸の5
 #Imσ〕ところについては、最も炉内側の1点では
変らないがj点、k点、j点と炉外方向すこ進むにつれ
て斗°れぞれの点の温度は比較例の場合V?−比べて約
100℃、約150℃、約150℃と上昇している。又
、5朋厚さの耐火物3を挿入したために羽口煉瓦2の内
、外周間の熱的負荷、即ち、比較例のc−d間で約11
50℃でありた温度差が、X印で示す本発明冥軸例のj
−d間では約350℃となり、又e−f間では約】35
0℃であった温度差かに−f間で約600℃、またg−
り間の約1250 ’CがA−h間で約600℃と大幅
に減少していることが判った。 一方ムライト質の耐火物3の温rxtMはa−i間では
ほとんど変°らないがc−j間で約800℃、e−に間
でも約800℃、g−j間で約650℃と著しい熱負荷
を受けていることが第5図力)ら判る。 しかしムライト質の耐火物の熱膨張率がマグ・クロ煉瓦
より格段に低いので、熱負荷により生じる膨張又は歪が
煉瓦エリも小さく、従って、耐火物3が煉瓦に与える影
響1dl この耐火物3の部分が煉瓦である比較例の場
合よりも小さい。 本実施例では第2図に4で示すような亀裂を全く生じな
かった。その原因は上記煉瓦における温度差が小さくな
りかつ耐火物からクツ影響が小さいためと推定される。 そして、ムライト質の耐火物3で全(亀裂の発生は見ら
nなかった。 上記実施例の場合には、上記した通り亀裂の発生がなか
ったが、しかし本発明者の実験にょYしは耐人物の厚み
はi nIn未満では効果が小さく、・10mmを超え
る耐火物の層を設けた場合は該耐火物に亀裂が生じる場
合があることが判った。 耐火物3としてはムライト質の他にコーヂライト等種々
のものがあり、これら耐火物の具備すべき条件は熱伝導
率、熱膨張率が煉瓦より低いことであり、各々の値が羽
口煉瓦の値の1/2 以下であることが好ましく、また
溶鋼に対する耐溶接性を備えていることが望ましいっ また耐火物3の厚みは羽口煉瓦2内の温度格差を縮小す
る為に厚い方が良い。しかし耐火物3は第5図の通り温
度差が大きくなるため強要、11熱衝撃性を考慮すると
簿い方が望ましい。 耐火物を羽口と羽口煉瓦の間に介在させるための手段と
しては例えばムライト預−ヒラミックチューブを製作し
て羽口とともに羽口煉瓦に挿入°Tる方法あるいは耐火
物を羽口の外周に吹付けるなどによってイ」着させる方
法が好適であるがその他種々の手段が適用される。本例
では羽目として二重管羽口の例をあげたが他の形式の羽
口にも適用可能である。 次に表1に示す特性を有σる羽口す、j瓦(マグクロ煉
瓦)と羽口との間に表1に示すムライト質からなる厚さ
5酬の耐火物を介在させた本発明の実施例の羽口煉瓦の
消耗率と、従来例による羽口煉瓦の消耗率を表2に示す
。本発明の実姉例の消耗率は従来例の273 であるこ
とを示している。 本発明は羽口煉瓦損耗の主原因であるわ(シ瓦内の羽口
に直交する方向の前記c−d、e−f、間等の温度差が
外管近傍において犬であるととを見出し、これに基づき
なされたもので、本発明によれば、下吹炉の羽口と羽口
煉瓦の間に該羽口煉瓦エリも熱伝導率及び熱膨張率が羽
口煉瓦よりも低い耐火物を介在させたので羽口による羽
口煉瓦の抜熱冷却が抑制されて羽目煉瓦の内周と外周と
の間の温度差が城少し、さら咥該耐火物に熱伝導と熱膨
張率が低い材料を用いたので、その熱伝導が低いために
上記温度差の減少を確保でき、熱膨張率が低Gので煉瓦
に与える影響が少なく、従って煉瓦に亀裂が生ぜず、消
耗率も低いとい9効果を生じた。 表    1 一一 表     2
The temperature distribution of the refractory and the siding bricks was measured using the same method as in the comparative example above when a mullite refractory with a thickness of - and 5 thick was used. This is indicated by an x in FIG. The temperature distribution shown by this X mark and the temperature distribution of the comparative example (○
The inner surface of the refractory 3 that is in contact with the outside #IB, that is, the point a at Q ram on the horizontal axis. The temperature at point c+erg does not change much. Next 111 Tu'
Object 3 (υ contact surface between the outer periphery and the inner periphery of the tuyere brick 2, i.e. 5 on the horizontal axis)
Regarding #Imσ], the temperature does not change at one point on the innermost side of the furnace, but as it moves further toward the outside of the furnace from point J, point K, and point J, the temperature at each point becomes V in the case of the comparative example. - The temperature has increased by about 100°C, about 150°C, and about 150°C. In addition, because the refractory 3 with a thickness of 5 mm was inserted, the thermal load between the inner and outer periphery of the tuyere brick 2 was approximately 11 mm between c and d in the comparative example.
The temperature difference, which was 50°C, is indicated by the
-d is approximately 350℃, and e-f is approximately ]35
The temperature difference between 0℃ and 600℃ between −f and g−
It was found that the temperature of about 1250'C during the interval was significantly reduced to about 600'C between A and h. On the other hand, the temperature rxtM of the mullite refractory 3 hardly changes between a and i, but it is remarkable at about 800℃ between c and j, about 800℃ between e-, and about 650℃ between g and j. It can be seen from Figure 5 that it is under heat load. However, since the coefficient of thermal expansion of mullite refractories is much lower than that of mag-black bricks, the expansion or distortion caused by thermal load has a small brick area. smaller than in the comparative example where the part is brick. In this example, no cracks as shown at 4 in FIG. 2 were generated. The reason for this is presumed to be that the temperature difference among the bricks is small and the effect of the refractory material on the shoes is small. In the case of mullite refractory 3, no cracks were observed. In the case of the above example, no cracks were observed as described above, but according to the inventor's experiment, It has been found that if the thickness of the refractory is less than iInIn, the effect is small, and if a layer of refractory exceeding 10 mm is provided, cracks may occur in the refractory.As the refractory 3, mullite and other materials may be used. There are various types of refractories, such as cordierite, and the conditions that these refractories must meet are that the thermal conductivity and thermal expansion coefficient are lower than that of bricks, and each value must be less than half of the value of tuyere bricks. It is preferable that the refractory material 3 has a welding resistance against molten steel.The thickness of the refractory material 3 is preferably thicker in order to reduce the temperature difference within the tuyere bricks 2. However, it is preferable to use a mullite-filled hiramic tube as a means to interpose a refractory between the tuyeres and the tuyere bricks. It is preferable to fabricate the tuyere and insert it into the tuyere brick together with the tuyere, or to attach it by spraying a refractory onto the outer periphery of the tuyere, but various other methods are also applicable.In this example, Although we have given an example of a double pipe tuyere as a tuyer, it is also applicable to other types of tuyeres. Table 2 shows the wear rate of the tuyere brick of the embodiment of the present invention in which a refractory of 5 thicknesses made of mullite shown in Table 1 is interposed between the tuyere brick and the conventional example. The wear rate of the sister example of the present invention is 273 of that of the conventional example. This invention was made based on the discovery that the temperature difference between -d, e-f, etc. is large in the vicinity of the outer pipe.According to the present invention, the temperature difference between Since the tuyere brick area is also interposed with a refractory material whose thermal conductivity and thermal expansion coefficient are lower than that of the tuyere bricks, heat removal cooling of the tuyere bricks by the tuyere is suppressed, and the inner and outer peripheries of the tuyere bricks are suppressed. Since the temperature difference between the refractory is made of a material with low heat conduction and low coefficient of thermal expansion, it is possible to ensure a reduction in the temperature difference due to its low heat conduction, and the coefficient of thermal expansion is low. Since it has a low G, it has little effect on the bricks, so there are no cracks in the bricks, and the wear rate is low.Table 1-1 Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼浴面下よりガスを吹込む下吹炉を示す図、第
2図は従来の羽口と羽口煉瓦の組合せを示す図、第3図
はAOD炉を示す図、第4図は、本発明の下吹炉に具備
される羽1コと羽口煉瓦の組合せを示す図、第5図は本
発明の実軸例と従来例さにおける羽目煉瓦の内周と外周
面の温度差を示すグラフである。 1°°・二重管羽口、IA・・・羽口の内管、IB・・
・羽口の外管、2・・・羽口煉瓦、3・・・耐火物。 代理人 弁理士  秋 沢 政 光 外2名 オl1lfl        fF3図第5図
Figure 1 shows a bottom blowing furnace that blows gas from below the surface of the steel bath, Figure 2 shows a combination of a conventional tuyere and tuyere bricks, Figure 3 shows an AOD furnace, and Figure 4 shows an AOD furnace. The figure shows a combination of one blade and tuyere bricks provided in the bottom blowing furnace of the present invention, and Fig. 5 shows the inner and outer circumferential surfaces of the tuyere bricks in the real shaft example of the present invention and the conventional example. It is a graph showing a temperature difference. 1°°・Double pipe tuyere, IA...Inner pipe of tuyere, IB...
- Outer pipe of tuyere, 2... tuyere brick, 3... refractory. Agent: Patent Attorney Masaaki Akizawa, 2 Mitsugai, 11lfl, fF3, Figure 5

Claims (1)

【特許請求の範囲】 (1)  羽口煉瓦に挿着された羽口を具備している下
吹炉tておいて、羽口と羽口煉瓦の間に該別(2)  
耐火物の熱伝導不および熱膨張率がそれぞれ羽口煉瓦の
値の1/2 以下である特許請求の範囲第1項記載の下
吹炉。 (3)耐火物の厚みがl催以上”1Qax以下である特
許請求の範囲第1項又は第2項記載(Q下吹炉。
[Scope of Claims] (1) A lower blowing furnace equipped with a tuyere inserted into the tuyere brick is provided, and the said part (2) is provided between the tuyere and the tuyere brick.
2. The bottom blowing furnace according to claim 1, wherein the heat conductivity and thermal expansion coefficient of the refractory are each 1/2 or less of the value of the tuyere brick. (3) The thickness of the refractory is not less than 1Qax and not more than 1Qax (Q lower blowing furnace).
JP14857782A 1982-08-27 1982-08-27 Bottom blowing furnace Pending JPS5938318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14857782A JPS5938318A (en) 1982-08-27 1982-08-27 Bottom blowing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14857782A JPS5938318A (en) 1982-08-27 1982-08-27 Bottom blowing furnace

Publications (1)

Publication Number Publication Date
JPS5938318A true JPS5938318A (en) 1984-03-02

Family

ID=15455851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14857782A Pending JPS5938318A (en) 1982-08-27 1982-08-27 Bottom blowing furnace

Country Status (1)

Country Link
JP (1) JPS5938318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119700A (en) * 1984-11-16 1986-06-06 Toppan Printing Co Ltd Recovering method of gold plating liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119700A (en) * 1984-11-16 1986-06-06 Toppan Printing Co Ltd Recovering method of gold plating liquid
JPH0355560B2 (en) * 1984-11-16 1991-08-23

Similar Documents

Publication Publication Date Title
WO2013161721A1 (en) Molten steel container
Goto et al. Progress and perspective of refractory technology
JPS5938318A (en) Bottom blowing furnace
JP3448339B2 (en) Refractory lining of molten metal container
JPS59150657A (en) Vessel for molten metal
JPH04270037A (en) Nozzle for continuous casting
US2631836A (en) Refractory lining
CN212174981U (en) Lower tank lining structure of RH vacuum degassing device
JP2020098088A (en) Cooling structure of tapping port section of melting furnace and manufacturing method of metallic plate block used therefor
US3370840A (en) Basic oxygen furnace construction
JPH0216982Y2 (en)
JP2000256718A (en) METHOD FOR PREVENTING WEAR OF SiC-CONTAINING MONOLITHIC REFRACTORY IN MAIN RUNNER
JPS63299853A (en) Lining construction in molten steel ladle
KR0135317B1 (en) Magnesia chrome based refractory
KR100229909B1 (en) Ladle structure
JPS639908B2 (en)
JPS6234994Y2 (en)
Sakulin et al. Facilities for the refining of metals: Design and performance
SU870433A1 (en) Tuyere of blast furnace
GB2064079A (en) Surface coated copper furnace components
JPH09279212A (en) Main iron trough of blast furnace
JPS62207817A (en) Tuyere for steel making having excellent durability
JPS5848344Y2 (en) hot metal trough
Taddeo Improvement in torpedo ladle lining life by the use of insulating board
JP2009084605A (en) Tuyere for blast furnace