JPS5938307A - Method for blending lump iron ore for blast furnace - Google Patents

Method for blending lump iron ore for blast furnace

Info

Publication number
JPS5938307A
JPS5938307A JP14621482A JP14621482A JPS5938307A JP S5938307 A JPS5938307 A JP S5938307A JP 14621482 A JP14621482 A JP 14621482A JP 14621482 A JP14621482 A JP 14621482A JP S5938307 A JPS5938307 A JP S5938307A
Authority
JP
Japan
Prior art keywords
ore
blending
rdi
blast furnace
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14621482A
Other languages
Japanese (ja)
Inventor
Hirohisa Hotta
堀田 裕久
Yojiro Yamaoka
山岡 洋次郎
Kazuo Tsutsumi
堤 一夫
Kunio Tanaka
田中 邦男
Kazutsugu Kitajima
北島 一嗣
Akira Maki
牧 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14621482A priority Critical patent/JPS5938307A/en
Publication of JPS5938307A publication Critical patent/JPS5938307A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To reduce the fuel ratio of a blast furnace and to stabilize the operation of the furnace by regulating the percentages of lump iron ores to be blended in accordance with a characteritic value of each of the ores estimated from the porosity. CONSTITUTION:Only the porosity of each of iron ores is measured to estimate one or more characteristic values of the ore such as the JIS reduction index RI, reduction powdering index RDI and tumbler strength TI. The physical properties (RI, RDI and TI) of a blended ore are estimated in accordance with the estimated characteristic values, and the percentages of the iron ores to be blended are regulated so as to provide the desired physical properties.

Description

【発明の詳細な説明】 高炉用塊鉄鉱石のJIS還元率(RI)、 還元ν化率
(RDI)およびタンブラ−強度(TI )を簡易に推
定せしめ、該推定値によってブレンデイング鉱としての
品質を制御することにより高炉内におけるガス利用率及
び通気性を改善し、高炉燃料比の低下を図ると共に高炉
操業の安定化を得しめようとするものである。
[Detailed description of the invention] The JIS reduction rate (RI), reduction ratio (RDI) and tumbler strength (TI) of blast furnace iron ore are easily estimated, and the quality as blending ore is determined by the estimated values. By controlling this, the gas utilization rate and air permeability in the blast furnace are improved, the blast furnace fuel ratio is lowered, and the blast furnace operation is stabilized.

近時における製銑技術は鉱石事前処理技術、複合送風技
術の各進歩や高炉の大型化、高圧化に伴う飛躍的発展な
どにより出銑比の大幅な向上および燃料比の急激な低下
をもたらしている。ところで今日における大型高炉の安
定操業を得しめているのは上記の中でも鉱石事情処理技
術の進歩であるとされ、この故に製銑技術者は高炉装入
用の焼結鉱、ペレットの品質向上、安定化に努力が払わ
れて来たが、鉄鉱石については主として整粒、ブレンデ
イング強化に力が注がれているとしても、実際の配合管
理上では熱割れ鉱石(例えばハマスレー、イタビラ鉱石
)の配合制限を除いては殆んど注目されず、単味鉱石或
いはブレンディング鉱石の物理性状(RISRDI、T
I)は配船又は需給まかせで野放し状態であり、可成り
大きく変化しているものと言わざるを得ない。
Recent advances in ironmaking technology, such as advances in ore pre-treatment technology and combined air blowing technology, as well as dramatic advances in the size and pressure of blast furnaces, have led to a significant increase in the pig iron production ratio and a sharp decline in the fuel ratio. There is. By the way, the stable operation of large blast furnaces today is said to be due to advances in ore processing technology, and for this reason, ironmaking engineers are working hard to improve and stabilize the quality of sintered ore and pellets for charging into blast furnaces. Efforts have been made to improve the quality of iron ore, but even though efforts have been focused mainly on sizing and strengthening blending, in actual blending management, it is difficult to Physical properties of single ore or blended ore (RISRDI, T
I) is left unchecked, depending on ship allocation or supply and demand, and it must be said that it has changed considerably.

即ち単銘柄鉱石の物理性状(RISRDI、TI)は入
船ロンド毎にばらつきがあることを避けられず、これを
各入船毎にそれぞれ測定することは余りに多くの労力と
費用を必要とし、又ブレンディング鉱石の前記のような
各物理性状実測に関しても代表的なサンプルの採取方法
が難しく実測値のばらつきが極めて大きいことなどの理
由からして実操業での配合管理へ適用することは相当に
困難とされ、上記のよ5に野放し状態とせざるを得ない
実情である。然して高炉操業においては高生産性、低燃
料比で如何に銑鉄を安定して供給できるかということが
常に問題となり、このような考え方に基づいて、ガス流
分布制御などの高炉操業面あるいは焼結鉱・ベレットの
原料性状面から如何にして高炉内での通気性を確保しガ
ス利用率を向上させるかという提案は数多くなされてい
るけれども、上記のようにブレンディング鉱(又は高炉
使用の鉄鉱石)の前記したような各物理性状を制御する
ことに関して好ましい手法が存しないことから実際の高
炉操業においてはときどき原因不明の不調に陥るような
事態を発生することは現場的に知られている通りである
In other words, it is unavoidable that the physical properties (RISRDI, TI) of a single brand of ore vary depending on the arrival of the ship, and measuring this individually for each arrival requires too much labor and expense. Regarding the actual measurement of each physical property as mentioned above, it is considered to be quite difficult to apply it to blend management in actual operations due to the difficulty of collecting representative samples and the extremely large dispersion of the actual measured values. As mentioned in 5 above, the situation is such that it has no choice but to be left unchecked. However, in blast furnace operation, it is always a question of how to stably supply pig iron with high productivity and a low fuel ratio. Many proposals have been made on how to improve gas utilization by ensuring air permeability in the blast furnace from the raw material properties of ore and pellets. It is well known in the field that, because there is no preferred method for controlling the various physical properties mentioned above, in actual blast furnace operation, situations sometimes occur with unknown causes. be.

本発明は上記したような実情に鑑み検討な重ねて創案さ
れたものであって、鉄鉱石単味の気孔率のみを測定する
ことにより、夫々のRI (JIS還元率)、RDI 
(M元粉化率)、TI(タンブラ−強度)を推定し更に
ブレンディング鉱の物理性状(RISRDISTI)を
も予測し、予め定めた目標物理性状つまりRI≧50%
、RDI≦20%および480%になるが如く、使用し
ている鉄鉱石の銘柄変更あるいはその配合率を調整する
ことを提案するものである。即ちこのような本発明につ
いて更に説明すると、本発明者等は上記のような各入船
ロンド毎の単銘柄鉱石に関しその各物理性状(RI、R
DI、TI)を測定することの不利性に鑑み、これらを
簡易に、しかも精度高く求めることに関して糧々の方法
を検討し、実地検討した結果、鉱石の全気孔率〔1−(
見掛比重/真比重)〕が、第1図においてそれぞれ要約
して示されるように、RIに関してはγm=Q、9Q、
RDIに関してはγ”=Q、86、TIに関し℃もγ”
 =Q、85と夫々高度に推定し評価し得るものである
ことを発見した。つまり単味鉱石の物理性状は表面構造
、脈石鉱物量、賦存状態などよりも前記全気孔率の影響
を最も大きく受けるため、殆んどの銘柄についての物理
性状がその全気孔率のみによって推定できるものと考え
られ、しかもこのような鉱石の気孔率は例えば水銀中に
鉱石を装入するような簡易な方法で測定し得る。又ブレ
ンディング鉱の物理性状が、上記したようにして得られ
る単銘柄鉱石の物理性状とその配合率から推定し得るも
のであるかどうかについて、実際の測定値と単味鉱石か
らの推定値(割嘗値)について比較検訓した結果は夫々
要約して第2図に示す通りであって、相当に精度よく一
致し加成性力3成立つことを確認した。
The present invention was developed after repeated studies in view of the above-mentioned circumstances, and by measuring only the porosity of iron ore alone, the RI (JIS reduction rate) and RDI of each iron ore can be measured.
(M source powdering rate) and TI (tumbler strength) are estimated, and the physical properties (RISRDISTI) of the blending ore are also predicted to achieve the predetermined target physical properties, that is, RI≧50%.
, it is proposed to change the brand of iron ore used or adjust its blending ratio so that RDI≦20% and 480%. That is, to further explain the present invention, the present inventors have determined the physical properties (RI, R
Considering the disadvantages of measuring DI, TI), we investigated various methods to easily and accurately determine these values, and as a result of practical examination, we found that the total porosity of ore [1-(
Apparent specific gravity/true specific gravity)] As summarized in Figure 1, for RI, γm=Q, 9Q,
Regarding RDI, γ"=Q, 86, and regarding TI, ℃ is also γ"
=Q, 85, which can be highly estimated and evaluated. In other words, the physical properties of single ore are most influenced by the total porosity rather than the surface structure, amount of gangue minerals, endowment status, etc., so the physical properties of most brands can be estimated only by the total porosity. Moreover, the porosity of such ores can be measured by a simple method such as charging the ore into mercury. In addition, whether the physical properties of the blended ore can be estimated from the physical properties of the single brand ore obtained as described above and its blending ratio can be determined by comparing the actual measured values and the estimated value from the single brand ore (by percentage). The results of the comparison and inspection of the values (1) are summarized as shown in Figure 2, and it was confirmed that they matched fairly accurately and that the additive force 3 was established.

更に焼結鉱性状およびその配合率が略一定(70〜80
%)の条件下でブレンディング鉱の銘柄、即ち物理性状
(RI、RDISTI)が変動したときに高炉操業がど
のように変動しているか、について詳細な検討をなした
結果、次の(I) (It) (m)のように相当の相
関関係を肩することが確認された。
Furthermore, the properties of the sintered ore and its blending ratio are approximately constant (70 to 80
As a result of a detailed study on how the blast furnace operation changes when the brand of blending ore, that is, the physical properties (RI, RDISTI) changes under the conditions of (I) ( It was confirmed that there is a considerable correlation as shown in (m).

(1)  RI 焼結鉱のR1がほぼ一定な時期な選んでブレンディング
鉱の推定RIとカス利用率について調査したところ、第
3図に示すようにかなりのバラツキはあるが、ブレンデ
ィング鉱のRIの向上とともにガス利用率が徐々に改善
されている。しかしRI = 1チ以上においては横ば
いとなり明瞭な傾向は見られなくなっている。
(1) RI When we investigated the estimated RI and waste utilization rate of blending ore by selecting a period when the R1 of sintered ore was almost constant, we found that although there was considerable variation as shown in Figure 3, the RI of blending ore was Along with this improvement, the gas utilization rate is gradually improving. However, when RI = 1 inch or more, it remains flat and no clear trend can be seen.

(II)  RDI 同様に炉、結鉱のRDIがほぼ−・定な時期を選んで使
用鉱石の銘柄変更を行い、使用鉱石の推定犯均RDIと
シャフト圧損について叢円査したところ、第4図に示す
ように鉱石のRDIが20チリ、上ではあ寸り明瞭では
ないが、20%以−[−ではシャフト圧損が徐々に増加
しシャフト部での通気性が悪化する傾向がある。
(II) RDI Similarly, we selected a period when the RDI of the furnace and condensation was almost constant, changed the brand of ore used, and conducted a thorough investigation of the estimated average RDI and shaft pressure loss of the ore used, as shown in Figure 4. As shown in Fig. 1, it is not so obvious when the RDI of the ore is 20% or above, but when it is 20% or more, the shaft pressure loss gradually increases and the air permeability in the shaft tends to deteriorate.

@)  TI 同様に焼結鉱のTIがl’j、 lτ一定な時期を選ん
で使用鉱石の銘柄変更を行い使用鉱石の推定平均TIと
η、(通気d)につ(・て調査したところ、第5図に示
すようにかなりのパラツー8はあイ)が、使用鉱石のT
Iの商工“とともに%pが徐々に改釈されている。
@) TI Similarly, when the TI of sintered ore was l'j, lτ, the brand of ore used was changed, and the estimated average TI and η, (ventilation d) of the ore used were investigated. , as shown in Fig. 5, there is a considerable amount of Para28
%p has been gradually revised with the I's Commerce and Industry.

しかし、H=so%以上におい又は明瞭な傾向は見られ
なくなつ−Cいる。
However, when H=so% or higher, no clear tendency was observed.

すなわち、焼結鉱性状が?1に一定の粂件下で、高炉内
でのガス利用率を筒めシャフト圧損及び炉内での通気性
を改@1−るためには、ブレンディング鉱あるいは使用
している鉱石の平均RIを50チ以上、平均RDIを2
0%以下、平均TIを80%以上に制御することが重要
である。即ち本発明においてはこれらの関係を考慮して
ブレンディング鉱、或いは使用している鉄鉱石の平均物
理性状を平均RI≧50%、平均RDI≦20チ、平均
TI≧80%になるが如く鉄鉱石の銘柄変更あるいはそ
の配合率を調整するものである。即ち従来技術では、既
述のように鉄鉱石の物理性状は配船・需給まかせて野放
しの状態にありかなり大きく変化していて、とてもその
物理性状を制御し得ない状況であったのに対し、本発明
では鉱石の全気孔率から物理性状(RI、RDI、TI
)を推定し、それを用いてブレンディング鉱石又は使用
している鉄鉱石の物理性状(RI、RDI、TI)を推
定して、銘柄変更又はその配合率l!I整を行い、その
平均物理性状を制御して、高炉内でのガス利用率及び通
気性の改善をはかり高炉燃料比の低重及び高炉操業の安
定化を得しめる。
In other words, what are the properties of the sintered ore? 1. Under certain conditions, in order to improve the gas utilization rate in the blast furnace, the shaft pressure drop, and the permeability in the furnace, the average RI of the blending ore or the ore used must be 50 inches or more, average RDI of 2
It is important to control the average TI to 0% or less and 80% or more. That is, in the present invention, in consideration of these relationships, the average physical properties of the blending ore or the iron ore used are determined such that the average RI≧50%, the average RDI≦20%, and the average TI≧80%. The purpose is to change the brand or adjust the blending ratio. In other words, with the conventional technology, as mentioned above, the physical properties of iron ore are left unchecked, depending on ship allocation and supply and demand, and thus change considerably, making it impossible to control the physical properties. , in the present invention, the physical properties (RI, RDI, TI
) and use it to estimate the physical properties (RI, RDI, TI) of the blending ore or the iron ore used, and change the brand or its blending ratio l! By controlling the average physical properties, the gas utilization rate and air permeability in the blast furnace are improved, and the blast furnace fuel ratio is lowered and the blast furnace operation is stabilized.

本発明によるものの具体的な実施例について説明すると
以下の通りである。
Specific examples according to the present invention will be described below.

実施例H,(RI副制御場合) 通常操業の場名における代表的な事例は次の第1表に示
す通りであって、還元性σ)よい鉱石ASDの配合が多
い1#狗1σ)場合にはフレンデインク°鉱の平均RI
が;54,9%と高く、又事例3の場合においても51
.7%と稍々高目であるが、これとは反対に還元性の悪
い鉱石B、Cが多い事例12の場合にはその平均RIは
44.3 LIJと低く大きく変動している。
Example H, (RI sub-control case) Typical examples in the field name of normal operation are shown in Table 1 below. is the average RI of Frendenink° ore.
; high at 54.9%, and in case 3 it was also 51.
.. The average RI is 7%, which is somewhat high, but on the other hand, in Case 12, where there are many ores B and C with poor reducibility, the average RI is as low as 44.3 LIJ and fluctuates widely.

第  1  表 そこでこのような事例の場合において本発明に従い鉱石
の気孔率からRIを推定し、ブレンディング鉱の平均R
Iを予測して次の第2表において示すように50%以上
に制御した配合をそれらの各事例に対して行ったところ
、高炉内でのガス利用率ηeoは50.4%、5Q、8
%および6G、1%と高位に安定し、燃料比の低減と安
定操業を適切に得しめることができた。
Table 1 Therefore, in such a case, according to the present invention, RI is estimated from the porosity of the ore, and the average R of the blended ore is calculated.
When I was predicted and the mixture was controlled to 50% or more as shown in Table 2 below for each case, the gas utilization rate ηeo in the blast furnace was 50.4%, 5Q, 8
%, 6G, and 1%, making it possible to appropriately reduce the fuel ratio and achieve stable operation.

第   2   表 実施例2(RDI制御の場合) 通常操業において還元粉化性の良好な鉱石B、Cの配合
が多い事例2のときに次の第3表に示すようにブレンデ
ィング鉱の平均RDIは12.2%と極め℃低く、シャ
フト圧損もα22と低いがこれとは反対に還元粉化性の
悪い鉱石A、Dの配合が多い事例1のときにはブレンデ
ィング鉱の平均RDIは24,4%と相当に高く、シャ
フト圧損もQ、31と高いもので、その間の変動は頗る
太きい。
Table 2 Example 2 (RDI control case) In case 2, in which ores B and C, which have good reduction and powderability, are often blended in normal operation, the average RDI of the blended ore is as shown in Table 3 below. The temperature is extremely low at 12.2%, and the shaft pressure loss is low at α22, but on the contrary, in case 1, where ores A and D, which have poor reduction and powdering properties, are mixed, the average RDI of the blended ore is 24.4%. It is quite high, and the shaft pressure loss is also high at Q, 31, and the fluctuations between them are extremely large.

第   3   表 然してこのような事例の場合において、本発明に従い鉱
石の気孔率からRDIを推定してブレンディング鉱の平
均RDIを予測し、これを20%以下となるように制御
した事例は前記第3表の各事例1〜3に対応せしめて次
の第4表に示す通りであり、このように制御することに
より高炉シャフト部の圧力損失をα28驚、α24驚 
或いはへ26驚と低位に安定させることができ、又それ
によって高炉内での通気性を改善し、ガス流れを安定化
して好ましい操業をなすことができた・ 第  4  表 実施例3 (TIを制御した場合) 通常操業において常温強度の旨い鉱石A1Bの配合が多
い場合は次の第5表における事例2又は3のようにブレ
ンディグ鉱の平均TIは85.lチ又は83.7チのよ
うに高く、高炉の通気性(■24、p)も3.47又は
&46と高い。こイ″しに対し常温強度の低い鉱石り、
 Eが多く配合された事例工の場合はプレンデインク鉱
の平均TIが76.1%とか1.cり低く、高炉通気性
(V/4p)もυ8と低いものでその間の変動幅も大き
い。
Part 3 Obviously, in such a case, the example in which the average RDI of the blended ore is predicted by estimating the RDI from the porosity of the ore according to the present invention and is controlled to be 20% or less is as described in Part 3 above. The following Table 4 corresponds to cases 1 to 3 in the table, and by controlling in this way, the pressure loss in the blast furnace shaft can be reduced by α28 and α24.
Alternatively, it was possible to stabilize the TI at an extremely low level, thereby improving the ventilation inside the blast furnace and stabilizing the gas flow to achieve favorable operation.Table 4 Example 3 (TI (When controlled) In normal operation, if there is a large proportion of ore A1B with good room temperature strength, the average TI of the blended ore will be 85. The air permeability of the blast furnace (■24, p) is as high as 3.47 or &46. Ore with low strength at room temperature compared to koi
In the case of a sample containing a large amount of E, the average TI of prendink ore is 76.1% or 1. The blast furnace air permeability (V/4p) is as low as υ8, and the range of variation between them is large.

第5表 そこでこれらの事例に即して木兄ゆ1に従(・、鉱石の
気孔率からTIな推定すると共にブレンディング鉱の平
均TIを予測し、これを80%以上に制御するように配
合を調整したものは次の第6表洗示す改善例の如くであ
り、このようにすることによって高炉内の通気性(V、
@ p )を3.42、λ45又は&40のように高位
に安定させることができ、又高炉のガス流れを安定化す
ると共に高炉燃料比を低減せしめ、該高炉の好贅しい安
定操業を適切に図ることができた。
Table 5 Therefore, based on these cases, according to Kinoe Yu 1 (・Estimating TI from the porosity of the ore, predicting the average TI of the blended ore, and blending to control this to 80% or more. The improvement examples shown in Table 6 below are those in which the air permeability inside the blast furnace (V,
@ p ) can be stabilized at a high level such as 3.42, λ45 or &40, and it also stabilizes the gas flow in the blast furnace and reduces the blast furnace fuel ratio, allowing the blast furnace to operate in a luxurious and stable manner. I was able to figure it out.

第  6   表 以上説明したような本発明によるときは高炉用鉄鉱石の
ブレンディングについての技術的実態を解明し、序なる
鉄鉱石の気孔率を測定するだけで夫々のR1,RDI及
びTIを適宜に推定せしめ、それによってブレンディン
グ鉱としての品質を制御することにより高炉内でのガス
利用率及び通気性を有効に改善せしめ、高炉燃料比の低
下、高炉操業の安定化を適切に図らしめるものであるか
ら工業的にその効果の大きい発明である。
Table 6 In accordance with the present invention as explained above, it is possible to elucidate the technical reality of blending iron ore for blast furnaces, and to adjust R1, RDI and TI appropriately by simply measuring the porosity of the iron ore. By estimating and controlling the quality of blending ore, it is possible to effectively improve the gas utilization rate and permeability in the blast furnace, thereby appropriately reducing the blast furnace fuel ratio and stabilizing the blast furnace operation. This invention has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、袷1図
は鉱石の物理性状と気孔率σ)関係を示した図表で、(
−)はRI、(b)はRDI、 (c)はTIとの関係
を夫々示し、第2図はブレンディング鉱の物理性状につ
いて実測値と単銘柄鉱石からの引算値との関係を示した
図表で、(、)はRI 、 (b)はRDI、 (c)
はTIにつ(・てσ)関係を夫り示すものであり、第3
図は鉄鉱石の平均RIとガス利用率とめ関係を示した図
表、第4Mは鉄鉱石の円l均RDIとシャフト圧損との
関係を示した図表、第5図は鉄鉱石σ戸V均TIと通気
性との関係を示した図表である。 特許出願人 日本鋼管株式会社 発  明  者  堀   1)  裕   入間  
        山    岡    γ羊 次 部間
          堤        −大同   
       Ell     中    邦    
部同          北   島    −嗣第 
/  圓 つジyLテムJ#″(%)七− TI<g噂4) 第 、、TIXI R,1,(鑵毛) 第 41船 第 6 l TL鍮)
The drawings show the technical content of the present invention, and Figure 1 is a chart showing the relationship between the physical properties of ore and the porosity σ).
-) shows the relationship with RI, (b) with RDI, and (c) with TI, respectively. Figure 2 shows the relationship between actual measured values and subtracted values from single brand ore regarding the physical properties of blended ore. In the diagram, (,) is RI, (b) is RDI, (c)
shows the relationship between TI and the third
The figure is a chart showing the relationship between the average RI of iron ore and the gas utilization rate, the 4th M is a chart showing the relationship between the average RDI of iron ore and the shaft pressure loss, and the fifth figure is the chart showing the relationship between the average RI of iron ore and the shaft pressure drop. It is a chart showing the relationship between air permeability and air permeability. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Hori 1) Yutaka Iruma
Yamaoka Gyō Tsutsui Bema Tsutsumi − Daido
Ell Nakakuni
Department Kitajima - Tsuguday
/ EntsujiyLtemJ#''(%)7-TI<g Rumor 4) No. ,, TIXI R,1, (Kanemo) No. 41 Ship No. 6 l TL Brass)

Claims (1)

【特許請求の範囲】 1 塊鉄鉱石の種類、銘柄別に気孔率とRI。 RDIおよびTI  のような物理性状との相関関係を
求め、当該塊鉄鉱石の気孔率から前記RI、 RDIお
よびTIのような各特性値の倒れか1つ又は2つ以上を
推定し、この特性推定値によってブレンディング鉱の配
合率を調整することを特徴とする高炉用塊鉄鉱石の配合
方法。 2  RIの荷重平均値を50%以上として調整する特
許請求の範囲第1項に記載の高炉用塊鉄鉱石の配合方法
。 a  RDIの荷重平均値を20%以下として調整する
特許請求の範囲第1項に記載の高炉用塊鉄鉱石の配合方
法。 4  TIの荷重平均値を80%以上とし℃調整′1−
る特許請求の範囲第1項に記載の高炉用塊鉄鉱石の配合
方法。
[Claims] 1. Porosity and RI by type and brand of lump iron ore. Find the correlation with physical properties such as RDI and TI, estimate one or more of the characteristic values such as RI, RDI, and TI from the porosity of the lump iron ore, and A method for blending lump iron ore for blast furnaces, characterized by adjusting a blending ratio of blending ore based on an estimated value. 2. The method for blending lump iron ore for blast furnaces according to claim 1, wherein the loaded average value of RI is adjusted to 50% or more. a. The method for blending lump iron ore for blast furnaces according to claim 1, wherein the loaded average value of RDI is adjusted to 20% or less. 4 Set the TI load average value to 80% or more and adjust the temperature by °C.'1-
A method for blending lump iron ore for blast furnaces according to claim 1.
JP14621482A 1982-08-25 1982-08-25 Method for blending lump iron ore for blast furnace Pending JPS5938307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14621482A JPS5938307A (en) 1982-08-25 1982-08-25 Method for blending lump iron ore for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14621482A JPS5938307A (en) 1982-08-25 1982-08-25 Method for blending lump iron ore for blast furnace

Publications (1)

Publication Number Publication Date
JPS5938307A true JPS5938307A (en) 1984-03-02

Family

ID=15402686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14621482A Pending JPS5938307A (en) 1982-08-25 1982-08-25 Method for blending lump iron ore for blast furnace

Country Status (1)

Country Link
JP (1) JPS5938307A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199867A (en) * 1987-02-16 1988-08-18 Chugai Ro Kogyo Kaisha Ltd Method and device for magnetron sputtering
JPS63282260A (en) * 1987-05-13 1988-11-18 Chugai Ro Kogyo Kaisha Ltd Sputtering device
CN113151620A (en) * 2021-03-11 2021-07-23 首钢集团有限公司 Smelting method and device for titanium-containing furnace burden

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199867A (en) * 1987-02-16 1988-08-18 Chugai Ro Kogyo Kaisha Ltd Method and device for magnetron sputtering
JPH052737B2 (en) * 1987-02-16 1993-01-13 Chugai Ro Kogyo Kaisha Ltd
JPS63282260A (en) * 1987-05-13 1988-11-18 Chugai Ro Kogyo Kaisha Ltd Sputtering device
JPH052738B2 (en) * 1987-05-13 1993-01-13 Chugai Ro Kogyo Kaisha Ltd
CN113151620A (en) * 2021-03-11 2021-07-23 首钢集团有限公司 Smelting method and device for titanium-containing furnace burden
CN113151620B (en) * 2021-03-11 2022-09-13 首钢集团有限公司 Smelting method and device for titanium-containing furnace burden

Similar Documents

Publication Publication Date Title
CN104263914A (en) Method for preparing pellet ore by using mixed iron concentrate with high Na2O content
JPS5938307A (en) Method for blending lump iron ore for blast furnace
CN114438313B (en) Sintering material and material mixing method thereof
CN111074023B (en) Method for determining ton iron loss under different fuel ratios
JP4971662B2 (en) Blast furnace operation method
JPH0285324A (en) Operating method for sintering low in nox
DE69624224T2 (en) Process for the preparation of coal agglomerates for use in a direct iron ore smelting reduction furnace
CN106676215B (en) A kind of vanadium titano-magnetite Bf Burden and blast furnace smelting method
CN106282548B (en) A kind of ore-proportioning method and device of more ore deposit iron ore pellets
JPS5938308A (en) Method for regulating blending of starting material containing iron for charge into blast furnace
JPH0617056A (en) Production of coke for balst furnace
US1538893A (en) Manufacture of iron and steel alloys
JP3014549B2 (en) Blast furnace operation method
JP7260786B2 (en) Method for blending raw materials for sintering and method for producing sintered ore
JP5453932B2 (en) Blast furnace operation method
CN101818219A (en) Method for improving blast-furnace output and lowering blast-furnace coke ratio by increasing qualification rate of Tfe blending material pile
JP2006131979A (en) Method for charging coke into bell-less blast furnace
JPH10265857A (en) High quality sintered ore
RU2171846C1 (en) Method of running of blast-furnace heat
JP4196613B2 (en) High-depot ratio blast furnace operation method
US728369A (en) Briquet.
JPH04258690A (en) Manufacture of metallurgical coke
JPS60138009A (en) Method for operating blast furnace
CN118034214A (en) LIBS-based sintering ore binary alkalinity stable control method
CN116401491A (en) Method for quantifying maximum blast furnace air quantity according to fluctuation level of furnace condition