JPS5938255A - Polyester resin composition - Google Patents

Polyester resin composition

Info

Publication number
JPS5938255A
JPS5938255A JP14951682A JP14951682A JPS5938255A JP S5938255 A JPS5938255 A JP S5938255A JP 14951682 A JP14951682 A JP 14951682A JP 14951682 A JP14951682 A JP 14951682A JP S5938255 A JPS5938255 A JP S5938255A
Authority
JP
Japan
Prior art keywords
less
parts
weight
glass
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14951682A
Other languages
Japanese (ja)
Inventor
Takashi Okamoto
岡本 孝士
Jun Aoki
潤 青木
Yoshiharu Ito
義治 伊藤
Toshio Tsuji
稔夫 辻
Minoru Mitsui
三ツ井 稔
Osamu Doi
土井 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP14951682A priority Critical patent/JPS5938255A/en
Publication of JPS5938255A publication Critical patent/JPS5938255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the titled compsn. having excellent characteristics in that the compsn. exhibits excellent crystallizability at conventional mold temperature and very small warp of glass-reinforced plastics, and has excellent mechanical properties, particularly flexural properties. CONSTITUTION:A crystallizability improver consisting of 0.1-5pts.wt. nucleating agent (e.g. monoclinic inorg. powder having a weight-average particle size of 50mu or below) and 0.5-10pts.wt. crystallization accelerator (e.g. an olefin having a solubility parameter of 7.5-12) is incorporated in 100pts.wt. polyethylene terephthalate or copolyester wherein at least 80% of the repeating unit is composed of ethylene terephthalate units. 10-15pts.wt. glass fiber (e.g. fiber having a weight-average fiber length distribution such that the 50% cumulative point in the logarithmic normal distribution is 0.2-0.4mm.) and 15-45pts.wt. inorg. powder (e.g. powder having a weight-average particle size of 2-100mu) are incorporated in 100pts.wt. above compsn. to obtain the titled compsn.

Description

【発明の詳細な説明】 本発明は成形性、特に100℃以下の成型金型温度にお
いて卓越しだ結晶性を示1〜.かつガラス強化プラスチ
ックスに宿命的に現われるソリ歪の極めて小さく1機械
物性、特に曲げ特性に秀れた特色を発揮するガラス強化
ポリエステル樹脂に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention exhibits excellent moldability, especially crystallinity at a mold temperature of 100°C or less. The present invention also relates to a glass-reinforced polyester resin that exhibits extremely low warp distortion, which inevitably appears in glass-reinforced plastics, and exhibits excellent mechanical properties, especially bending properties.

ポリエステル樹脂の射出成形特ておいて、従来から大き
な問題となっているのは樹脂のガラス転移点が約80℃
とかなり高く1通常の成型温度域である100℃以下で
は樹脂の結晶化が充分に進まないことで、120℃以上
9時には大型成型品の場合には150℃近い金型温度が
必要になる。又、このように金型温度を上げても相当長
い60秒を超える冷却時間を取らないと充分な結晶化度
に到達しない場合が多い。
Particularly in injection molding of polyester resin, a major problem has traditionally been that the glass transition point of the resin is approximately 80°C.
The resin crystallization does not proceed sufficiently at temperatures below 100°C, which is the normal molding temperature range, so mold temperatures of 120°C or higher and close to 150°C are required for large molded products. Further, even if the mold temperature is raised in this way, a sufficient degree of crystallinity is often not achieved unless a considerably long cooling time of over 60 seconds is taken.

重囲の一般成型業において金型温度が100℃を超える
ということは重大なる問題である。すなわち100℃以
上の金温とするにはm便な温水循環による型温コントロ
ールはできず、特殊熱媒、ダウサムオイル等による保温
が必要であり、設備的投資改造が必要となる。又、冷却
時間が長いと1成型品を取り出すまでのトータル時間、
いわゆるサイクル時間が大きくなって、生産効率が落ち
てしまう。
In the heavy-duty general molding industry, it is a serious problem that the mold temperature exceeds 100°C. In other words, in order to achieve a gold temperature of 100° C. or more, it is not possible to control the mold temperature by circulating hot water, which requires heat retention using a special heating medium, dowsome oil, etc., and requires capital investment and modification. Also, if the cooling time is long, the total time to take out one molded product,
This increases the so-called cycle time and reduces production efficiency.

かかる問題に対処するためポリエステル樹脂に結晶核剤
を投入して100C以下での結晶化速度を上げる試みが
公知技術としてよく行われるが(例えば特許公報昭45
−26225.昭54−38623 ) 。
In order to deal with this problem, attempts are often made to increase the crystallization rate below 100C by adding a crystal nucleating agent to polyester resin (for example, Patent Publication No. 1973).
-26225. (Sho 54-38623).

かかる結晶化速度向上のみを主眼とする手段だけでは、
特にガラス繊維強化されたポリエステル樹脂に対しては
極端な場合マイナス効果を与える場合がある。すなわち
、樹脂の強化をねらいとしてガラス繊維を添加せしめる
場合、チップ化混線機内でのガラス繊維の切断を抑え成
型品強度をでき得る限り上げる方向で操業が行われ9通
常、チップ中のガラス繊維は0.4(転)以上の長さを
も・っものの分率が大きくなる。かかるチップを成型す
ると必然的に長いガラス繊維は金型内で流動方向にそろ
い、成形収縮の流動方向と垂直方向の異方性(後者が大
)が大きくなり、成形品にソリ歪が発生し成形品に重大
な歪みがでる。
Measures focused only on improving the crystallization speed alone cannot
In extreme cases, this may have a negative effect, especially on polyester resins reinforced with glass fibers. In other words, when glass fiber is added with the aim of strengthening the resin, operations are carried out to prevent the glass fibers from being cut in the chip-forming crosstalk machine and to increase the strength of the molded product as much as possible9.Usually, the glass fibers in the chips are The fraction of those with a length of 0.4 (turn) or more increases. When such a chip is molded, the long glass fibers are inevitably aligned in the flow direction within the mold, and the anisotropy of molding shrinkage in the direction perpendicular to the flow direction (the latter being larger) increases, causing warp distortion in the molded product. Severe distortion occurs in the molded product.

金型内での溶融体の波動場はゲート近傍及び金型内面の
極く近くを除いて本質的には回転成分のない伸長波動場
であり、ガラス繊維は相互にほとんど移動せず、流動方
向にその長さ方向を向ける傾向にあり、ガラス繊維長分
布が特に0.4mm以上の部分に片寄ると機械的強度が
極端に流動に垂直方向で弱くなるばかりでなく、大きな
ソリという成形上やっかいな問題が発生する。
The wave field of the melt inside the mold is essentially an elongated wave field with no rotational component, except near the gate and very close to the inner surface of the mold, and the glass fibers hardly move relative to each other, and the flow direction If the glass fiber length distribution is particularly biased toward the part of 0.4 mm or more, not only will the mechanical strength become extremely weak in the direction perpendicular to the flow, but it will also cause large warps, which are troublesome for forming. A problem occurs.

特に前述した従来公知技術である結晶核剤投入を行った
場合には樹脂の結晶化度が上るためかえって成形収縮の
影響が増巾され、核剤なしの場合に比べ著しくソリ歪が
大きくなる。
In particular, when a crystal nucleating agent is added, which is the conventional technique described above, the degree of crystallinity of the resin increases, so the effect of molding shrinkage is rather aggravated, and the warp strain becomes significantly larger than when no nucleating agent is used.

ガラス繊維配向の影響を少なくするには、ガラス自体の
含有率を下げればある程度の効果は期待できるが、ガラ
ス含有率を下げるということは樹脂強化の面から好まし
くない。
In order to reduce the influence of glass fiber orientation, some effect can be expected by lowering the content of the glass itself, but lowering the glass content is not preferable from the viewpoint of resin reinforcement.

本発明者等は、かかるガラス強化ポリエステル樹脂忙本
質的に存在する結晶性の向上とソリ変形の抑制という問
題をバランスよく解決すべく鋭意努力の結果9本発明に
到達したのである。
The inventors of the present invention have arrived at the present invention as a result of their earnest efforts to solve the problems of improving crystallinity and suppressing warp deformation, which are inherent in glass-reinforced polyester resins, in a well-balanced manner.

本発明の対象となるポリエステルは、テレフタル酸又は
そのエステル形成誘導体とエチレングリコール又はエチ
レンオキシド等のエステル形成誘導体とを融解状態で縮
合反応して得られるポリエチレンテレフタレートもしく
はエチレンテレフタレート繰り返しユニットが80%以
上である(例えばポリアルキレングリコール単位を含有
する)共重合ポリエステルである。
The polyester that is the object of the present invention is polyethylene terephthalate obtained by condensing terephthalic acid or its ester-forming derivative with an ester-forming derivative such as ethylene glycol or ethylene oxide in a molten state, or has a content of 80% or more of ethylene terephthalate repeating units. A copolymerized polyester (containing, for example, polyalkylene glycol units).

本発明にいう結晶性向上剤は結晶核の生成エネルギーを
供給する核剤と該核へのポリマー分子の移動エネルギー
を供給する促進剤の組み合せからなっているものであり
、該核剤はペースポリマーに対し0.1以上5重量係以
下、又該促進剤は0.5以上10重量%以下の範囲で含
有されているものである。
The crystallinity improver according to the present invention is composed of a combination of a nucleating agent that supplies energy for generating crystal nuclei and an accelerator that supplies energy for moving polymer molecules to the nuclei, and the nucleating agent is a paste polymer. The accelerator is contained in an amount of 0.1 to 5% by weight, and the accelerator is contained in an amount of 0.5 to 10% by weight.

核剤の量が0.1重量%未満であると核生成のための充
分な表面エネルギーを付加するのに効果がなく、又5重
量%を超えて添加せしめてもかえって核剤の表面積が急
増するためポリマーの動きに干渉を起こし、結晶生成を
阻害する。又核剤自体のポリマー中への分散も不均一に
なり易く好ましくない。
If the amount of the nucleating agent is less than 0.1% by weight, it will not be effective in adding sufficient surface energy for nucleation, and if it is added in excess of 5% by weight, the surface area of the nucleating agent will increase rapidly. Therefore, it interferes with the movement of the polymer and inhibits crystal formation. Further, the dispersion of the nucleating agent itself into the polymer tends to become non-uniform, which is not preferable.

無機系の核剤としてはポリエチレンテレフタレートの結
晶系、三斜晶型(Triclinic Crystal
 )に近い結晶系を取るものが好ましく、特に本発明の
範囲に述べる如く、単斜晶型(Monoclinic 
Crystal)に属する無機結晶粉末を使用するのが
効果的で。
Examples of inorganic nucleating agents include polyethylene terephthalate crystal system and triclinic crystal type.
) is preferable, and in particular, as described in the scope of the present invention, monoclinic type (monoclinic type) is preferable.
It is effective to use inorganic crystal powder belonging to the group ``Crystal''.

例としては粒径50μ以下のタルク、マイカ、カオリン
等がある。さらには炭素数(:’10− C2Qの脂肪
酸金属塩9例えばカプリン酸、ラウリン酸、ミリスチン
酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニ
ン酸の亜鉛、カルシウム、鉛、マグネシウム、バリウム
、カドミウム、アルミニウム。
Examples include talc, mica, kaolin, etc. with a particle size of 50 μm or less. Furthermore, the number of carbon atoms (:'10- C2Q fatty acid metal salts 9 such as capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid zinc, calcium, lead, magnesium, barium, cadmium, aluminum .

ナトリウム、カリウム、リチウム塩が有機系核剤として
効果的であり、特忙ステアリン酸、ナトリウム、カリウ
ム、アルミニウム、リチウム塩が大きな効果を示す。又
、カルボキシル基を主鎖中にペンダントとして含みその
一部を中和した型のもの9例えばエチレン又はスチレン
とメタアクリル酸の共重合塩、アイオノマーも著しい核
剤効果を示し、特にエチレンとメタアクリル酸の共重合
体のナトリウム、カリウム、亜鉛塩が効果的である。
Sodium, potassium, and lithium salts are effective as organic nucleating agents, and special stearic acid, sodium, potassium, aluminum, and lithium salts show great effects. In addition, products containing pendant carboxyl groups in the main chain and partially neutralized types9, such as copolymer salts of ethylene or styrene and methacrylic acid, and ionomers also show remarkable nucleating effects, especially those of ethylene and methacrylic acid. Sodium, potassium, and zinc salts of copolymers of acids are effective.

これら有機系核剤は樹脂との親和性がよく樹脂に内部潤
滑効果を付与し、可塑剤としても働き操業性を上げるの
で、無機核剤と組み合せると樹脂の成形性を著しく向上
させる。
These organic nucleating agents have good affinity with resins, impart internal lubrication to the resin, and also act as plasticizers to improve operability, so when combined with inorganic nucleating agents, they significantly improve the moldability of the resin.

又、上記核剤に組み合せる促進剤はスモールの方法いよ
り簡便に言1算される。
Further, the accelerator to be combined with the above-mentioned nucleating agent can be more easily calculated by Small's method.

溶解度パラメータ(δ) 定数 が7.5以上12未満の範囲にあるものが望ましく。Solubility parameter (δ) constant is preferably in the range of 7.5 or more and less than 12.

この範囲をはずれるとポリエチレンテレフタレートとの
親和性が著しく下り、樹脂との均一ブレンドが困難にな
ってしまう。
If it is outside this range, the affinity with polyethylene terephthalate will drop significantly, making uniform blending with the resin difficult.

例えばポリマー系のものとしてはポリエチレン。For example, polyethylene is a polymer-based product.

ポリスチレン、ポリメタアクリレート、ポリ塩化ビニル
、ポリプロピレンが上げられるが、特にポリプロピレン
、ポリエチレン及びその変性物1例えばプロピレンとエ
チレン共重合物が望ましい。
Examples include polystyrene, polymethacrylate, polyvinyl chloride, and polypropylene, and particularly preferred are polypropylene, polyethylene, and modified products thereof, such as propylene and ethylene copolymers.

該促進剤の添加量は樹脂100重量部に対して、特許請
求の範囲に記す如<、0.5部具上IO部以下であれば
よい。0.5部未満では結晶化促進の効果がなく、又1
0部以上ではポリエステルへの溶解度の限界に近づき均
一な分散ができなくなる。又10部を超えて過度に該促
進剤を加えると、ポリマーへの可塑化効果が大きくなり
すぎ成形品の硬度が落ち、又成形中に樹脂が金型から洩
れパリの原因ともなり好ましくない。さらに望ましい該
促進剤の添加量は1部以上5部以下である。
The amount of the accelerator to be added may be less than 0.5 parts to 10 parts per 100 parts by weight of the resin, as stated in the claims. If it is less than 0.5 parts, there is no effect of promoting crystallization;
If it exceeds 0 parts, the solubility in polyester approaches the limit and uniform dispersion becomes impossible. Furthermore, if the accelerator is added in excess of 10 parts, the plasticizing effect on the polymer becomes too large, resulting in a decrease in the hardness of the molded product, and the resin leaks from the mold during molding, causing flaking, which is undesirable. More preferably, the amount of the accelerator added is 1 part or more and 5 parts or less.

該促進剤として請求の範囲に述べる如く、ケトン類の内
で溶解度パラメータが7.5以上12未満にあるものも
選択でき9例えばアセトン(δ=9.6)。
As described in the claims, ketones having a solubility parameter of 7.5 or more and less than 12 can also be selected as the accelerator.9 For example, acetone (δ=9.6).

ジオキサン(δ=9.9)が挙げられるが、操業中の揮
撥等の操業上の点から室温付近で固体状であるもの9例
えばベンゾフェノン(融点48.5℃、δ=10.7)
が取り扱い易い。
Dioxane (δ = 9.9) can be mentioned, but from the viewpoint of operational considerations such as volatilization during operation, substances that are solid at around room temperature 9 For example, benzophenone (melting point 48.5°C, δ = 10.7)
is easy to handle.

かかるケトン類の濃度はベースポリマーに対して0.1
重量係以上5%未満が望ましい。
The concentration of such ketones is 0.1 relative to the base polymer.
It is desirable that the weight ratio is greater than or equal to 5%.

さて9本発明組成物に含有してなるところのガラス繊維
は、全組成重量に対し1Qチ以上15%以下に濃度を調
節せしめることが重要で、  10%未満ではガラスの
流動配向の影響が小さくなる分、成形品のソリ変形は小
となるが、成形品の強度が著しく下ってしまい、又メル
ト状態での組成物粘度が下り、いわゆるパリ、金型から
の樹脂のはみ出し。
Now, it is important to adjust the concentration of the glass fibers contained in the composition of the present invention to 1Q or more and 15% or less based on the total composition weight, and if it is less than 10%, the influence of the flow orientation of the glass is small. Although the warp deformation of the molded product is reduced, the strength of the molded product is significantly reduced, and the viscosity of the composition in the melt state is also reduced, resulting in so-called flashing and extrusion of the resin from the mold.

又金型から成形品を取り出す際、成形物に腰がなhため
、ノックビンで突きだしが離しくなるという操業上の問
題が発生するのである。又15%を超えるとガラス繊維
の配向の影響が大きくなり、成形収縮率の流動方向とそ
れと垂直方向の差が大きくなりソリが発生し易くなる。
Furthermore, when taking the molded product out of the mold, the molded product is not stiff enough to cause operational problems such as difficulty in ejecting the knock bottle. If it exceeds 15%, the influence of the orientation of the glass fibers becomes large, and the difference in molding shrinkage rate between the flow direction and the direction perpendicular to it becomes large, making warpage more likely to occur.

又9組成物の溶融粘度も急増するので金型内での樹脂流
れが悪くなってしまい複雑な形状の金型の場合e 1、
!H部への樹脂の充填ができず重大な障害となる。
In addition, the melt viscosity of the composition 9 increases rapidly, resulting in poor resin flow within the mold, and in the case of a mold with a complex shape.
! The resin cannot be filled into the H section, which causes a serious problem.

又、ガラス繊維長の重量平均分布は本発明の請求に述べ
る如く、平均値0.2wm以北、 0.4?FF+未満
の範囲として長t−#、維$111に裾を引く「対数正
規分布」となっていることが重要であり、この分布から
少しでも繊維長分布がはずれると操業士も又成形樹脂と
しても問題が多発する。
Also, as stated in the claim of the present invention, the weight average distribution of glass fiber length is north of the average value of 0.2 wm, 0.4? It is important that the range below FF+ is a "lognormal distribution" with a tail at length t-# and fiber $111, and if the fiber length distribution deviates even slightly from this distribution, operators will also consider that the molding resin There are also many problems.

ずなわち、ガラス締、細長分布が平均0.4rpmを越
えて長縁X(1側に片よるとガラスの流動配向の影響が
強くなりソリ歪が大きくなる。又成形チップに長縁K(
f、長のガラスが毛羽状に浮きだし易くなり、成形機ホ
ッパー中でのチップ固体流れを悪くシ、スクリューへの
供給がスムーズにいかなくなる。かかる点において0.
4間以上の長さの繊維の存在を有利とする主張もあるが
、必ずしも妥当ではない(/I♀公昭44−457 )
。又、ガラス繊維長分布が平均0.2問未滴の分布と、
短繊維長側に片よるとガラスの補強剤としての効果が著
しく損われてしまう。
In other words, if the glass tightening and elongation distribution exceeds an average of 0.4 rpm and the long edge
f. Long glass tends to float up like fluff, which impairs the flow of chip solids in the molding machine hopper and prevents smooth supply to the screw. In this respect, 0.
There are claims that the presence of fibers with a length of 4 or more is advantageous, but this is not necessarily valid (/I♀Koshō 44-457)
. In addition, the glass fiber length distribution has an average of 0.2 questions and no droplets,
If the short fibers are biased toward the long side, the effect of the glass as a reinforcing agent will be significantly impaired.

本発明にいうガラス重量平均繊維長分布を実現するには
、ガラス繊維にかかる剪断力を制御するのが重要である
が、これは成形用チップ製造時に混線機スクリーー回転
数及びシリンダ温度を調節することKより可能である。
In order to achieve the glass weight-average fiber length distribution referred to in the present invention, it is important to control the shearing force applied to the glass fibers. This is more possible than K.

例えば1軸及び2軸スクリユー混線エクストルーダ中に
おいて、樹脂メルトにかかる最大剪断力(tmax )
は近似的に下記により与えられる2o)(1)−軸ルー
ダ (tmaxはバレル表面に発生) μ:メルト粘度 D=ルーダバレル内径 Nニスクリユー回転数 Hニスクリユー溝深さ く2)二軸ルーダ (tmaxはスクリューチャンネル表面に発生)tma
xの値としては10’ −10’dynes/c−Jの
範囲にあることがガラス繊維の長さ分布を制御する上で
望ましい。tmaxが10 dynes/rJ未満であ
るとガラス繊維の折れが少なくなり、ガラス繊維長分布
が0.4冒以上の長繊維側に片よる傾向となる。又tm
axが109dynes/fflを超えるとガラス繊維
の折れが過度とな9.ガラス繊維長の分布が0.2順以
下に片よる傾向となってしまう。
For example, the maximum shear force (tmax) applied to the resin melt in a single-screw and double-screw mixed wire extruder
is approximately given by the following 2o) (1) - Axial Ruder (tmax is generated on the barrel surface) μ: Melt viscosity D = Ruder barrel inner diameter N Niscrew rotation speed H Niscrew groove depth 2) Biaxial Ruder (tmax is screw (occurs on the channel surface) tma
It is desirable that the value of x be in the range of 10'-10'dynes/c-J in order to control the length distribution of the glass fibers. If tmax is less than 10 dynes/rJ, the glass fibers will be less likely to bend, and the glass fiber length distribution will tend to be biased toward long fibers of 0.4 or more. Also tm
9. If ax exceeds 109 dynes/ffl, the glass fibers will break excessively.9. The distribution of glass fiber length tends to be uneven in order of 0.2 or less.

本発明にいうガラス繊維の径は特に限定されないが、上
述の剪断力とガラス繊細の折れ方のノ(ランスから望ま
しい範囲は10ミクロンから13ミクロンの範囲である
。又、ガラス繊維とポリエステル樹脂との界面接着強度
を上げるために該繊維は種々の表面処理を処してあって
もよい。例えばトリアルコキシシラン系処理剤9例とし
てはビニルトリエトキシシラン、β−(3,4−エポキ
シシクロヘキシル)−エチルトリメトキシシラン、γ−
グリシドキシプロビルトリメトキシシラン、r−アミノ
プロピルトリエトキシシランが挙げられる。
The diameter of the glass fiber referred to in the present invention is not particularly limited, but the preferred range is from 10 microns to 13 microns due to the above-mentioned shearing force and the way the glass is broken (lance). The fibers may be subjected to various surface treatments to increase the interfacial adhesion strength.For example, nine examples of trialkoxysilane-based treatment agents include vinyltriethoxysilane, β-(3,4-epoxycyclohexyl)- Ethyltrimethoxysilane, γ-
Examples include glycidoxypropyltrimethoxysilane and r-aminopropyltriethoxysilane.

本発明の効果をさらに完全ならしめているのは。What makes the effect of the present invention even more complete is this.

前述の長さ分布をもつガラス繊維に対し重殺で2倍以上
3倍以下、全組成に対して20チ以上45チυ下の粒径
2ミクロン以上100ミクロン以下の無機粉末を添加し
ていることである。この無機粉末と前述の結晶性向上剤
及びガラス繊維とを組み合せることにより1本発明者等
は結晶性が極めてよく、金型内での同化が極めて短時間
に済み、かつ金型から取り出して後のソリ発生が少ない
寸法安定性の極めて良いガラス強化ポリエステル成形品
ができることを見い出したのである。
Inorganic powder with a particle size of 2 microns or more and 100 microns or less is added to the glass fiber with the above-mentioned length distribution, with a particle size of 2 microns or more and 45 inches or less for the entire composition, 2 times or more and 3 times or less in heavy killing. That's true. By combining this inorganic powder with the above-mentioned crystallinity improver and glass fiber, the present inventors have found that the crystallinity is extremely good, the assimilation within the mold is extremely short, and it is possible to remove the powder from the mold. They discovered that it is possible to produce glass-reinforced polyester molded products with extremely good dimensional stability and less warpage afterward.

無機粉末の粒径は100ミクロンを超えると樹脂への充
填度が悪くなり(密に詰まらない)、成形品をもろくす
る等の障害を起こす。又1粒径が22クロン未満となる
と粒子同志の表面吸着力が増して粒子の分散性が落ちて
しまい、又粒子の表面積が急増するため樹脂の流れを悪
くしたり、結晶化を阻害したりする。従って2粒径は2
ミクロン以上100ミクロン以下にあるのがよいが、さ
らに望ましい範囲は5ミクロン以上50ミクロン以下で
ある。又、上記と同じように粒子の分散性と樹脂の物性
への影響の観点から粉末の望ましい添加量は全組成に対
して20重量%以上451重量饅以下の範囲である。
If the particle size of the inorganic powder exceeds 100 microns, the degree of filling in the resin will be poor (not densely packed), causing problems such as making the molded product brittle. Furthermore, if the particle size is less than 22 microns, the surface adsorption force between the particles will increase and the dispersibility of the particles will decrease, and the surface area of the particles will increase rapidly, which will impede the flow of the resin and inhibit crystallization. do. Therefore, the 2 particle size is 2
The range is preferably from 5 microns to 100 microns, and more preferably from 5 microns to 50 microns. Further, as mentioned above, from the viewpoint of particle dispersibility and influence on the physical properties of the resin, the desirable addition amount of the powder is in the range of 20% by weight or more and 451% by weight or less based on the total composition.

本発明にいう無機粉末の種類は上記に述べる粒径範囲と
添加量範囲にあれば特に限定されないが。
The type of inorganic powder referred to in the present invention is not particularly limited as long as it falls within the particle size range and addition amount range described above.

ポリエステルとの親和性に富むものがよく1例えばチタ
ネート、シラン系カップリング剤で処j里してあっても
よい。例としては、ガラスピーズ粉末。
It is preferable to use a material that has a high affinity with polyester; for example, it may be treated with a titanate or silane coupling agent. An example is glass peas powder.

ガラスミルドファイバ、タルク、炭酸カルシウム。Glass milled fiber, talc, calcium carbonate.

マイカ粉、カオリンクレー、炭酸マグネシウム。Mica powder, kaolin clay, magnesium carbonate.

珪酸カルシウム、(シリカ)、カーボンブラック。Calcium silicate, (silica), carbon black.

酸化アルミナ、酸化チタン、亜鉛華等が挙げられる。Examples include alumina oxide, titanium oxide, zinc white, and the like.

これら無機粉末添加による餞味ある効果は成形品の曲げ
特性が犬きく上り、特に曲げ弾性率が著しい増大を示す
The mellow effect of adding these inorganic powders greatly improves the bending properties of the molded product, and in particular, shows a remarkable increase in the bending elastic modulus.

すなわち、実施例に述べる如くガラス繊維に無機粉末を
併用すると、ソリ歪が消えるだけでなく。
That is, as described in the examples, when inorganic powder is used in combination with glass fiber, warp distortion not only disappears.

成形品の曲げ弾性率が200チシいし300%犬となる
The flexural modulus of the molded product is between 200% and 300%.

本発明者等の見解によれば、ガラス繊維間の間隙に無機
粉末が密に充填されることにより、エステル樹脂の冷却
時及び結晶化時の収縮による動きが大巾に抑えられ、特
に樹脂流動方向と垂直の方向9通常収縮が大きく出る方
向の寸法変化を抑えるのである。ガラス繊維とポリエス
テル樹脂の熱膨張率の比は1:10程度といわれており
、ガラス繊維間の樹脂間隙に無機粉末の存−在する効果
は絶大である。又、無機粉末はさらに曲げ弾性率増大の
効果としても現われている如く、樹脂の流れを抑制する
効果もあり、一定荷重下での熱変形温度を大きくシック
リープ変形を抑える。
According to the inventors' opinion, by densely filling the gaps between the glass fibers with inorganic powder, the movement of the ester resin due to shrinkage during cooling and crystallization can be greatly suppressed, and in particular, the resin flow This is to suppress dimensional changes in the direction 9, which is perpendicular to the direction 9, which normally causes large shrinkage. The ratio of the coefficient of thermal expansion of glass fibers and polyester resin is said to be about 1:10, and the presence of inorganic powder in the resin gap between glass fibers has a tremendous effect. In addition, inorganic powder also has the effect of suppressing the flow of resin, as shown by the effect of increasing the bending elastic modulus, increasing the thermal deformation temperature under a constant load and suppressing sick leap deformation.

次に本発明の効果を実施例をもって詳述する。Next, the effects of the present invention will be explained in detail using examples.

なお、下記例中の測定は次のようにして行った。Note that measurements in the following examples were performed as follows.

(1)曲げ強度及び曲げ弾性率 ASTM D 790に準じ、巾1/2“(13聴)×
厚さ1/4“(6,4關) X 5” (127調)の
テストピースを作り、スパン長102飼の両持ちパリと
して中心に集中荷重をかけ(測定。
(1) Bending strength and bending elastic modulus According to ASTM D 790, width 1/2" (13 ears) x
A test piece with a thickness of 1/4" (6,4 mm) x 5" (127 scales) was made, and a concentrated load was applied to the center as a double-sided frame with a span length of 102 mm (measurement).

(2)熱変形温度 ASTM D 648に準じ、巾1/2“(13町)×
厚さII(13m) X 5” (127m)のテスト
ピースを作り、186Kg/rJLのファイバ荷電をか
けて測定しだ。
(2) Heat distortion temperature according to ASTM D 648, width 1/2" (13 towns) x
A test piece with a thickness of II (13 m) x 5” (127 m) was prepared and measured by applying a fiber charge of 186 Kg/rJL.

(3)結晶化速度 示差熱lid分析装置(Perkin E1mer社、
 I)SC−2型)を用いて、100℃での等温結晶化
半時間(tllo)2.)を測定1〜だ。測定は280
℃で溶F+11.たサンプル急冷凍結後0℃より320
℃%inで急速に昇温し、100℃で保持9発熱ピーク
の時間積分値を計測し、最終値の1/2になる時間をも
って結晶化半時間とした。父、結晶化半時間測定と同様
に一度溶解凍結したサンプルを20℃/―で等速昇臘し
(3) Crystallization rate differential thermal lid analyzer (Perkin Elmer Inc.,
I) Isothermal crystallization for half an hour (tllo) at 100°C using SC-2 type)2. ) is measured 1~. The measurement is 280
Melt at °C F+11. Samples were rapidly frozen from 0°C to 320°C.
The temperature was rapidly raised at 100° C. and held at 100° C. The time integral value of the exothermic peak was measured, and the time when the value reached 1/2 of the final value was defined as half an hour of crystallization. Similarly to half-hour crystallization measurements, a sample that had been thawed and frozen was heated at a constant rate of 20°C.

100℃から120℃刊近にかけて現われる発熱ピーク
(結晶化及び非晶部の分子配列による)のピーク温度(
Tp)を測定した。Tpが低温側にある程ポリマー分子
の易動度が大きく結晶化し易いと考えられる。
The peak temperature of the exothermic peak (due to crystallization and molecular arrangement of the amorphous part) that appears from 100℃ to 120℃ (
Tp) was measured. It is considered that the lower Tp is on the lower temperature side, the greater the mobility of polymer molecules and the easier it is to crystallize.

(、、+1ガラス繊維長分布 サンプルチップを粘度測定用溶媒(〕1ノール/テトラ
クロロエタン=6/4混液)に溶かし。
(,, +1 Dissolve the glass fiber length distribution sample chip in a solvent for viscosity measurement (1Nol/tetrachloroethane = 6/4 mixture).

沈澱したガラス繊維をプレパラート上に取り、カバーグ
ラスではさんで試料とした。
The precipitated glass fibers were placed on a slide and sandwiched between cover glasses to serve as a sample.

この試料を投影拡大器にかけスクリーン上のガラス繊維
の長さをインターフェースを通し計′:n機と連続され
た光電管式繊維長自動測定器(サンエンジニアリング社
製、デジタイザー)により測定し、長さ分布を自動計測
した。測定繊維数は300〜500本であった。
This sample was applied to a projection magnifier, and the length of the glass fibers on the screen was measured by an automatic phototube type fiber length measuring device (manufactured by Sun Engineering Co., Ltd., digitizer) connected to the interface and the length distribution. was automatically measured. The number of fibers measured was 300 to 500.

(5)ソリ量の測定 図1に示すような円板を成形しく厚み3笥、直径100
mm)、  130Cで約2時間熱処理後のものについ
て1図1のa、b点(流動方向)を交互に押えた時のソ
リ量の和(a+b)、及びc、d点を交互に押えた時の
ソリ量の和(c+d)を測り。
(5) Measurement of amount of warp A disk like the one shown in Figure 1 was formed with a thickness of 3 cm and a diameter of 100 mm.
mm), after heat treatment at 130C for about 2 hours 1 Sum of warpage amount (a + b) when points a and b (flow direction) in Figure 1 are held alternately, and points c and d are held alternately Measure the sum of the amount of warpage (c + d) at the time.

ソリの比較基準とした。This was used as a comparison standard for sleds.

実施例1 フェノール/テトラクロロエタン(6/4 )混合液で
測定した極限粘度〔η:] = 0.60のポリエチレ
ングリコール(分子fl 4000 ) 10wt%を
共重合成分として含む共重合ポリエチレンテレフタレー
ト100重量部に対し、結晶核剤として1部のタルク(
日本タルク製、ミクロエースに−11粒径平均50μ)
、結晶化促進剤として3部の変性ポリオレフィン(東亜
燃料石油環、無水ハイミック酸添加。
Example 1 100 parts by weight of copolymerized polyethylene terephthalate containing 10 wt% of polyethylene glycol (molecular fl 4000) having an intrinsic viscosity [η:] = 0.60 measured with a phenol/tetrachloroethane (6/4) mixed solution as a copolymerization component In contrast, one part of talc (
Made by Nippon Talc, Micro Ace-11 particle size average 50μ)
, 3 parts of modified polyolefin (Toa Fuel Sekiyu, Himic anhydride added) as a crystallization accelerator.

耐衝重重IPP 、 Grade 102− L)を添
加し、さらに全樹脂組成電歇に対し、  10%のガラ
ス繊維(旭ガラス製、3闘カット長チョツプドストラン
ド、糸径10ミクo 7. Grade A 429 
)と20q6のマイカ粉(白石工業、チタネート処理3
25メツシユWhiteWater Ground M
ica )を加え、熱安定剤イルガノックス1010を
ポリエチレンテレフタレート100重険部に対し0.2
部、離命剤としてステアリン酸カルシウムを0.1部添
加した後、V型プレンダで予備混線後、直接45mmス
クリュー径2軸チツプ成形機に投入(池貝鉄工製PCM
 45型、 Ventタイプ)成形用チップとした。
Impact-resistant heavy duty IPP, Grade 102-L) is added, and 10% glass fiber (manufactured by Asahi Glass, 3-cut length chopped strand, thread diameter 10 microns) is added to the all-resin electric switch. A429
) and 20q6 mica powder (Shiraishi Kogyo, titanate treatment 3
25 Metsuyu WhiteWater Ground M
ica) and the heat stabilizer Irganox 1010 at a rate of 0.2
After adding 0.1 part of calcium stearate as a life-sustaining agent, premixing was carried out in a V-type blender, and then directly put into a 45 mm screw diameter twin-screw chip forming machine (PCM made by Ikegai Iron Works).
45 type, Vent type) was used as a molding tip.

成形条件は2軸スクリユ一同方向回転1回転数200 
r p m w  シリンダ温度280Uである。かく
して製造したチップ中のガラス繊維長分布は対数正規分
布確率紙上のプロットでほぼ直線となり、 50%累積
点は0.32門であった。
Molding conditions are 2 screws rotating in the same direction at 200 revolutions per rotation.
r p m w Cylinder temperature is 280U. The glass fiber length distribution in the thus manufactured chip was approximately a straight line when plotted on log-normal distribution probability paper, and the 50% cumulative point was 0.32.

次にチップを真空下120Dにおいて24時間乾燥し、
  100mII+スクリュー径射出成型機にて(日本
製鋼新製、J100S型)、テスト円板を成形した。
The chips were then dried under vacuum at 120D for 24 hours;
A test disk was molded using a 100 m II + screw diameter injection molding machine (J100S type, manufactured by Nippon Steel Corporation).

かくして得られた円板を水平定盤の上に1Nき、前述の
方法r(て円板のソリ量をノギスにより読み取った。
The disk thus obtained was placed on a horizontal surface plate for 1N, and the amount of warpage of the disk was read using a caliper using the method described above.

射出成形条件はシリンダがホッパー側がら240−27
0−280−280Cであり、金型温度は100℃。
The injection molding conditions are 240-27 with the cylinder on the hopper side.
The temperature is 0-280-280C, and the mold temperature is 100C.

射出圧3130 Kg/cnl 、射出時間×冷却時間
1o秒XIO秒である。
The injection pressure was 3130 Kg/cnl, and the injection time x cooling time was 10 seconds XIO seconds.

実施例2 実施例1と同じ共重合ポリエチレンテレフタレートをベ
ースにぞの100重量部に対して、結晶核剤として1部
のタルク(日本タルク、ミクロエースに−1)、3部の
エチレン−メタクリル酸共重合体ナトリウム中和物(D
u: Font社製、サーリン熱安定剤イルガノックス
1010(チバ、ガイキ社)0.1部、離型剤としてポ
リエチレンワックス(ヘキストワックスPE −190
) 0.1部を添加、さらに全組成重量に対して10%
の実施例1と同じガラス繊維と全組成Mlに対し、25
%のマイカ粉(瀬戸工業製白マイカ、粒径平均10μ)
をV型プレンダーで予備混合後実施例1と同じ二軸混練
機を用いてチップ化した。
Example 2 Based on 100 parts by weight of the same copolymerized polyethylene terephthalate as in Example 1, 1 part of talc (Nippon Talc, Micro Ace -1) and 3 parts of ethylene-methacrylic acid were added as a crystal nucleating agent. Copolymer sodium neutralized product (D
u: Font, Surlyn heat stabilizer Irganox 1010 (Ciba, Gaiki) 0.1 part, mold release agent polyethylene wax (Hoechst wax PE-190)
) Added 0.1 part, further 10% based on the total composition weight
For the same glass fiber and total composition Ml as in Example 1, 25
% mica powder (Seto Kogyo white mica, average particle size 10μ)
The mixture was premixed in a V-type blender and then chipped using the same twin-screw kneader as in Example 1.

成形条件はシリンダ一温度280℃、スクリュー回転、
2軸回方向250rpmである。かくして得られたチッ
プ中のガラス繊維長分布は対数正規分布確率紙上できれ
いな直線となり、50チ累積点は(1,29mmであっ
た。チップを真空下120Cて24時間乾燥の後、実施
例1と同様に1.てテスト円板を成型した。
The molding conditions are cylinder temperature 280℃, screw rotation,
The rotation speed is 250 rpm in the two-axis rotation direction. The glass fiber length distribution in the chip thus obtained was a clean straight line on the log-normal distribution probability paper, and the 50-chi cumulative point was (1.29 mm). After drying the chip at 120 C under vacuum for 24 hours, Example 1 A test disk was molded in the same manner as in step 1.

実施例3 実施例1と同じ方法にて求められた固有粘度〔η]=0
.68のポリエチレンテレフタレートヲベースに、その
100重量部に核剤としてタルク(日本タルク、ミクロ
エースK −1) t O,5部−エチレン−メタクリ
ル酸共重合ナトリウム中和物(DuPont社、サーリ
ン1555 )を4部、かつ促進剤として実施例1に用
いる変性ポリプロピレンを1部とベンゾフェノン(石律
裂薬製、試薬1級)0.5部とを組み合せ、さらにガラ
ス繊維(旭ガラス製。
Example 3 Intrinsic viscosity [η] determined by the same method as Example 1 = 0
.. 68 polyethylene terephthalate as a base, 100 parts by weight of the same as a nucleating agent, talc (Nippon Talc, Micro Ace K-1), 5 parts O, neutralized sodium ethylene-methacrylic acid copolymer (DuPont, Surlyn 1555) and 1 part of the modified polypropylene used in Example 1 as an accelerator, and 0.5 part of benzophenone (Reagent Grade 1, manufactured by Seiretsu Ryakuyaku Co., Ltd.), and further glass fiber (manufactured by Asahi Glass Co., Ltd.).

3町カツト長チヨツプドストランド、 Grade &
419、糸径13μ)を全組成重量に対して15係。
3-cho long chopped strand, Grade &
419, yarn diameter 13 μ), 15 times the total composition weight.

軸混練機を用いてチップ化した( Irganox 1
010ステアリン酸カルシウム含量1ハ例1と同じ)。
It was made into chips using an axial kneader (Irganox 1
010 Calcium stearate content 1 C Same as Example 1).

得られたチップ中のガラス繊維長分布は対数正規確率紙
で前例と同じく直線となり、  50%累積点は0.3
2胴を示した。
The glass fiber length distribution in the obtained chip is a lognormal probability paper, and is a straight line as in the previous example, and the 50% cumulative point is 0.3.
Two torsos were shown.

このチップを前例と同じく予備コ(空乾燥の後。Prepare this chip as before (after air drying).

前と同様にしてテスト円板を成形した。Test discs were molded as before.

実施例4 前例と同様にして測定した固有粘度〔η) = 0.6
2の10wt%ポリエチレングリコール(分子量約30
00)を共重合せしめた共重合ポリエチレンテレフタレ
ートに、実施例3で述べるポリエチレンテレフタレート
を50150の割合でブレンドせしめ混合チップを作成
した。このチップ100重量部に対して。
Example 4 Intrinsic viscosity [η) = 0.6 measured in the same manner as the previous example
2, 10 wt% polyethylene glycol (molecular weight approximately 30
A mixed chip was prepared by blending the copolymerized polyethylene terephthalate prepared by copolymerizing 00) with the polyethylene terephthalate described in Example 3 at a ratio of 50,150. For 100 parts by weight of this chip.

結晶核剤としてエチレン−メタクリル酸共重合体ナトリ
ウム中和物(Du Pont製、サージy 1560)
を5部、促進剤として前例1に述べる変性ポリプロピレ
ン3部を添加し、ガラス繊維(上記に述べる旭ガラス製
A419)を全組成に対して10チ添加。
Neutralized sodium ethylene-methacrylic acid copolymer (manufactured by Du Pont, Surge Y 1560) as a crystal nucleating agent
and 3 parts of the modified polypropylene described in Example 1 as an accelerator were added, and 10 parts of glass fiber (A419 manufactured by Asahi Glass as described above) was added to the total composition.

さらにタルク粉末(日本タルク製、ミクロエースに−1
)を25チ添加して(安定剤、離型剤種、含量は実施例
2に同じ)、前と同様にチップ化した。
In addition, talcum powder (manufactured by Nippon Talc, -1 to Micro Ace)
) was added (stabilizer, mold release agent type and content were the same as in Example 2), and chips were formed in the same manner as before.

チップ中のガラス線維分布は対数正規確率プロットで直
線で、50チ累積点は0.27 vysであった。テス
ト円板を前例と同様にして作成した。
The glass fiber distribution in the chip was a straight line on a log-normal probability plot, and the cumulative score of 50 chips was 0.27 vys. A test disk was prepared in the same manner as in the previous example.

実施例5 実施例4に述べた共重合ポリエチレンテレフタレートと
ポリエチレンテレフタレートの混合チップ100重量部
に対して、核剤として1部のタルク(前例に同じ)、3
部のエチレン−メタクリル酸共重合ナトリウム中和物(
Du Pont社、サーリン1555 )を、促進剤と
して前例1に述べた変性ポリプロピレン3部を添加し、
全組成に対し10重i%の上記仕様ガラス繊維(旭ガラ
スA429)と20重量%のガラスピーズ(旭ガラス、
グラスロン粒径20μ)を混合しくイルガノックス10
10及びヘキストワックスPE −190全ベースポリ
エステル100重量部に0,1部ずつ含む)、実施例1
と同様にチップ化した。チップ中の!Jシラス維長分布
は対数正規分布をなしており、50%累積点は0.32
tmmであった。テスト円板の作成は前例の通りにし行
った。
Example 5 For 100 parts by weight of the mixed chips of copolymerized polyethylene terephthalate and polyethylene terephthalate described in Example 4, 1 part of talc (same as in the previous example) and 3 parts of talc as a nucleating agent were added.
Part of neutralized sodium ethylene-methacrylic acid copolymer (
Du Pont Co., Surlyn 1555) with the addition of 3 parts of the modified polypropylene described in Example 1 as an accelerator;
Based on the total composition, 10% by weight of glass fiber with the above specifications (Asahi Glass A429) and 20% by weight of glass beads (Asahi Glass,
Glassron particle size 20μ) is mixed with Irganox 10.
10 and Hoechstwax PE-190 (containing 0.1 parts each in 100 parts by weight of total base polyester), Example 1
It was also made into a chip. In the tip! The J Shirasu fiber length distribution has a lognormal distribution, and the 50% cumulative point is 0.32.
It was tmm. The test disk was created as in the previous example.

比較例1 実施例3に使用したのと同じポリエチレンテレフタレー
) ([?) = 0.68 )をベースとして、その
100重量部に3部のタルクを核剤として添加させたの
みで、他に促進剤は添加せず、全組成に対して10重量
%のペースポリエステル100重量部に対しノ、(A 
4A 9.i維に、安定剤イーガノ・クス10100.
2部、#型剤ステアリン酸カルシウム0.1部添加後、
  40mスクリュー径1軸ルーダ(日本製鋼新製)に
てチップ化した。シリンダ一温度はホッパー側から25
0−260−280−280℃で、スクリュー回転20
rpmであった。
Comparative Example 1 Using the same polyethylene terephthalate ([?) = 0.68) as used in Example 3 as a base, 3 parts of talc was added as a nucleating agent to 100 parts by weight, and no other (A
4A 9. Stabilizer Egano Cus 10100.
After adding 2 parts, # type agent calcium stearate 0.1 part,
Chips were made using a 40 m screw diameter single-screw router (manufactured by Nippon Steel Corporation). Cylinder temperature is 25 from hopper side
At 0-260-280-280℃, screw rotation 20
It was rpm.

チップ中のガラス繊維長分布は対数正規確率プロット上
で直線から長繊維側で大きくずれ、50チ累積点は0.
45 mRであった。
The glass fiber length distribution in the chip deviates greatly from a straight line on the lognormal probability plot toward the long fiber side, and the cumulative point of 50 chips is 0.
It was 45 mR.

比較例2 実施例4に述べたベースポリエチレンテレフタレート向
脂(ポリエチレンテレフタレートと共重合ポリエチレン
テレフタレートの等量ブレンド物)核剤(サーリン15
60)、促進剤(実施例1に述べた変性ポリプロピレン
)、ガラス繊維(旭ガラスA419)−安定剤(イルガ
ノックス1010)、離型剤(ヘキストワックスPE 
−190)を全く同じ割合で組み合せ、比較例1に述べ
た40畔−軸混練機で混練チップ化した(成形条件も比
較例1に同じ)。
Comparative Example 2 Base polyethylene terephthalate resin (equal blend of polyethylene terephthalate and copolymerized polyethylene terephthalate) nucleating agent (Surlyn 15) described in Example 4
60), accelerator (modified polypropylene described in Example 1), glass fiber (Asahi Glass A419)-stabilizer (Irganox 1010), mold release agent (Hoechst wax PE
-190) in exactly the same proportions and kneaded into chips using the 40-shaft kneader described in Comparative Example 1 (the molding conditions were also the same as in Comparative Example 1).

チップ中のガラス繊維長分布は対数正規分布とならず、
50%累積点は0.42mmとなった。
The glass fiber length distribution in the chip does not follow a lognormal distribution;
The 50% cumulative point was 0.42 mm.

・比較例1,2のチップは実施例と同一の条件にてテス
ト円板としたが、サンプルの外観はソリ歪が大きく良好
ではなかった。
- The chips of Comparative Examples 1 and 2 were used as test disks under the same conditions as the Examples, but the appearance of the samples was not good due to large warp distortion.

比較例1,2では本発明の効果を完全にならしめている
ガラス繊維と併用すべき本発明規定欺の無機粉末を含ん
でおらず、成形高歪が大きく出たものと考えられる。
Comparative Examples 1 and 2 do not contain the inorganic powder specified in the present invention, which should be used in combination with the glass fibers that perfectly normalize the effects of the present invention, and it is considered that the molding distortion was large.

次に各側の組成表を表1に、測定データを表2に示す。Next, Table 1 shows the composition of each side, and Table 2 shows the measurement data.

(IJPEG 300010wt% Copolyme
r  C’j〕= 0.62(2JP EG 4000
 10wt% Copolymer  [’7) = 
0.60(3) P E T    [:η]= 0.
68(4)タルク(日本タルク身、′1 ミクロエース
に−1)(5)チーリン1555.サーリン1560 
 (Du Pont社製アイオノマー) (6)変性PP(東燃石油化学、無水ハイミック酸付加
(IJPEG 300010wt% Copolyme
r C'j] = 0.62 (2JP EG 4000
10wt% Copolymer ['7) =
0.60(3) P E T [:η] = 0.
68 (4) Talc (Japanese talc, '1 -1 to Micro Ace) (5) Chi Lin 1555. Surlyn 1560
(Ionomer manufactured by Du Pont) (6) Modified PP (Tonen Petrochemical, added with Himic anhydride.

I(A102− L ) (7)PE(三井石油化学凱、低圧法低密度PE 、ウ
ルトゼックス20200J ) (8)ヘンシフエノン(石津製薬11)C9) W、 
G、マイカ(白石工業製)(11瀬戸マイカ(瀬戸窯業
製) C1l) 炭酸カルシウム(白石工業、ボヮイテンSB
 −2)(1匂ガラス繊維A429(旭ガラス製、糸径
1()3品)A419(#  13 #  ) (I9)ガラスパウダ(旭ガラス製、グラスロンパウダ
)II12III定デーI例 Pb:曲げ強度 (Ky/cJ ) Eb:曲げ弾性率(#) I(DT ;Heat Deflection Tem
p (℃) (熱変形温度)tl/2 :等温(100
C)結晶化速度(―)Tp:昇温時発熱ピーク温度 (a+b) :流動方向のソリ量(−)(e+d) :
流動方向に垂直方向のソリt (+mw)型離れ二金型
温度100C,射出×冷却10 X 10秒で判定 表2の結果から本発明に規定する結晶核剤、促進剤、ガ
ラス繊維及び無機粉末の4つの組合せが極めて結晶性の
よい低温成形性に優れたソリ歪のない、熱安定性1曲げ
特性に特色をもつガラス強化ポリエステル樹脂を生み出
すことがI’lJる。
I (A102-L) (7) PE (Mitsui Petrochemicals Gai, low pressure method low density PE, Ultzex 20200J) (8) Hensiphenon (Ishizu Pharmaceutical 11) C9) W,
G, Mica (Shiraishi Kogyo) (11 Seto Mica (Seto Ceramics) C1l) Calcium carbonate (Shiraishi Kogyo, Boiten SB
-2) (1 scent glass fiber A429 (manufactured by Asahi Glass, thread diameter 1 () 3 items) A419 (# 13 #) (I9) Glass powder (manufactured by Asahi Glass, glassron powder) II12III Regular day I example Pb: Bending Strength (Ky/cJ) Eb: Flexural modulus (#) I (DT; Heat Deflection Tem
p (℃) (Heat distortion temperature) tl/2: Isothermal (100
C) Crystallization rate (-) Tp: Exothermic peak temperature during temperature rise (a+b): Amount of warp in flow direction (-) (e+d):
The crystal nucleating agent, accelerator, glass fiber and inorganic powder specified in the present invention were evaluated based on the results of Table 2. It is believed that the combination of these four properties produces a glass-reinforced polyester resin with extremely good crystallinity, excellent low-temperature formability, no warp strain, and excellent thermal stability and bending properties.

【図面の簡単な説明】[Brief explanation of drawings]

図1はソリ量測定用テスト円板を示すものである。a−
)1)は樹脂流動方向、c−>dはそれに垂直方向であ
る。ゲート位置は点aに相当する。 図2はガラス繊維長の対数正規分布プロットの例を示す
ものである。線Aは実施例1.純13は比較例1の繊維
長分布である。 特π「出願人  ユニチカ株式会社 第1図 手続補正書(自発) 昭和58年2月17日 特許庁長官 殿 1、事件の表示 特願昭57−149516号 2、発明の名称 ポリエステル樹脂組成物 3、補正をする者 事件との関係  特許出願人 住 所  兵庫県尼崎市東本町1丁目50番地fll 
 明細書第15頁第14行目の「著しい増大を示す。」
を[著しい増大を示すことである。」と訂正する。
FIG. 1 shows a test disk for measuring the amount of warpage. a-
)1) is the resin flow direction, and c->d is the direction perpendicular to it. The gate position corresponds to point a. FIG. 2 shows an example of a log-normal distribution plot of glass fiber length. Line A is Example 1. Pure 13 is the fiber length distribution of Comparative Example 1. Patent π "Applicant: Unitika Co., Ltd. Figure 1 procedural amendment (spontaneous) February 17, 1980 Director General of the Patent Office 1, Indication of the case Patent Application No. 149516/1982 2, Name of the invention Polyester resin composition 3 , Relationship with the case of the person making the amendment Patent applicant address 1-50 Higashihonmachi, Amagasaki City, Hyogo Prefecture
"Indicates a significant increase" on page 15, line 14 of the specification.
[showing a significant increase]. ” he corrected.

Claims (1)

【特許請求の範囲】 1、 ポリエチレンテレフタレートもしくはエチレンテ
レフタレート繰り返し即位が80%以上からなる共重合
ポリエステル100重数部に対して(イ)0.1部以上
5部以下の結晶化核剤(ロ)0.5部以上10部以下の
結晶化促進剤の組み合せからなる結晶性向上剤を含有し
てなり、かつ全組成100重量部に対して Hio部以上15部以下のガラス繊維及びに)15部以
上45部以下の無機粉末を含有してなるところの ポリエステル樹脂組成物。 2、結晶化核剤が単斜晶系に団するit乎均粒径50ミ
クロン以下の無機粉末、もしくは炭素数10以上20未
満の脂肪酸金属塩、もしくはカルボキシル基をペンダン
トとして含有するエチレン又はスチレンとメタクリル酸
の共重合体の部分中和物であるか、これらの組み合せで
ある特許請求の範囲第1項記載のポリエステル樹脂組成
物。 3、結晶化促進剤が溶解度パラメーターが7.5以上1
2未満の範囲にある。オレフィン又はケトン又はこれら
の混合物であるところの特許請求の範囲第1項及び第2
項記載のポリエステル樹脂組成物。 4、 ガラス繊維の重量平均繊維長の分布が対数正規分
布に従い、かつその分布の50%累積点が0.2mm以
上かつ0.4m未満の範囲にあるところの特許請求の範
囲第1項、第2項記載のポリエステル樹脂組成物。 5、無機粉末の重量平均粒径が2ミクロン以上100ミ
クロン以下であるところの特許請求の範囲第1項及びM
2項に記載のポリエステル樹脂組成物。 6、無機粒径の重量平均が2ミクロン以上100ミクロ
ン以下であって、全組成型iK対して15チ以上45%
未満含有することを特徴とする特許請求の範囲第1項、
第2項及び第5項に記載のポリエステル(つ、1脂組成
物。
[Scope of Claims] 1. (a) 0.1 part to 5 parts of a crystallization nucleating agent (b) based on 100 parts by weight of polyethylene terephthalate or a copolyester consisting of 80% or more of ethylene terephthalate repeated coagulation. Contains a crystallinity improver consisting of a combination of 0.5 parts or more and 10 parts or less of a crystallization promoter, and 15 parts of glass fiber and 15 parts of Hio or more and 15 parts or less based on 100 parts by weight of the total composition. A polyester resin composition containing 45 parts or less of an inorganic powder. 2. The crystallization nucleating agent is an inorganic powder with an average particle size of 50 microns or less that aggregates in a monoclinic system, or a fatty acid metal salt having 10 or more and less than 20 carbon atoms, or ethylene or styrene containing pendant carboxyl groups. The polyester resin composition according to claim 1, which is a partially neutralized product of a copolymer of methacrylic acid or a combination thereof. 3. The crystallization promoter has a solubility parameter of 7.5 or more1
In the range of less than 2. Claims 1 and 2 are olefins or ketones or mixtures thereof.
The polyester resin composition described in . 4. Claims 1 and 4, wherein the distribution of the weight average fiber length of the glass fibers follows a lognormal distribution, and the 50% cumulative point of the distribution is in the range of 0.2 mm or more and less than 0.4 m. The polyester resin composition according to item 2. 5. Claims 1 and M in which the weight average particle size of the inorganic powder is 2 microns or more and 100 microns or less
The polyester resin composition according to item 2. 6. The weight average of the inorganic particle size is 2 microns or more and 100 microns or less, and 15 cm or more and 45% of all composition types iK.
Claim 1, characterized in that it contains less than
The polyester composition according to Items 2 and 5.
JP14951682A 1982-08-28 1982-08-28 Polyester resin composition Pending JPS5938255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14951682A JPS5938255A (en) 1982-08-28 1982-08-28 Polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14951682A JPS5938255A (en) 1982-08-28 1982-08-28 Polyester resin composition

Publications (1)

Publication Number Publication Date
JPS5938255A true JPS5938255A (en) 1984-03-02

Family

ID=15476842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14951682A Pending JPS5938255A (en) 1982-08-28 1982-08-28 Polyester resin composition

Country Status (1)

Country Link
JP (1) JPS5938255A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130643A (en) * 1983-12-16 1985-07-12 Mitsui Petrochem Ind Ltd Polyester composition
JPS61207458A (en) * 1985-03-08 1986-09-13 Unitika Ltd Impact-resistant polyester resin composition
JPS6270443A (en) * 1985-09-24 1987-03-31 Idemitsu Petrochem Co Ltd Glass fiber-reincorced polyester resin composition
EP0649874A2 (en) * 1993-10-22 1995-04-26 Shell Internationale Researchmaatschappij B.V. Nucleation of crystallization in polyesters

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130643A (en) * 1983-12-16 1985-07-12 Mitsui Petrochem Ind Ltd Polyester composition
JPS61207458A (en) * 1985-03-08 1986-09-13 Unitika Ltd Impact-resistant polyester resin composition
JPH0514739B2 (en) * 1985-03-08 1993-02-25 Unitika Ltd
JPS6270443A (en) * 1985-09-24 1987-03-31 Idemitsu Petrochem Co Ltd Glass fiber-reincorced polyester resin composition
JPH0546861B2 (en) * 1985-09-24 1993-07-15 Idemitsu Petrochemical Co
EP0649874A2 (en) * 1993-10-22 1995-04-26 Shell Internationale Researchmaatschappij B.V. Nucleation of crystallization in polyesters
EP0649874A3 (en) * 1993-10-22 1995-06-28 Shell Int Research Nucleation of crystallization in polyesters.

Similar Documents

Publication Publication Date Title
EP0194808B1 (en) Polyester resin composition for forming an impact resistant article
JPS59131645A (en) Thermoplastic polyester-linear low density polyethylene molding compositions
WO2006017050A1 (en) High gloss pet molding composition and articles made therefrom
JPS5845255A (en) Polybutylene terephthalate composition
JPS5938255A (en) Polyester resin composition
JPS6311378B2 (en)
JP2960149B2 (en) Polyester molding
JPH041260A (en) Polyester resin composition
JPH11269360A (en) Polyester resin composition
JPH0639747A (en) Outer shell of motor-operated tool
JP3672759B2 (en) Resin composition
JP2583231B2 (en) Impact resistant polyester resin composition
JPS636093B2 (en)
JPH0514739B2 (en)
JPS63245427A (en) Impact-resistant polyester resin composition
JPH01161043A (en) Production of polyester resin composition
JP2843158B2 (en) Thermoplastic styrenic resin composition structure and method for producing the same
JPS6086158A (en) Polycarbonate resin composition
JP3035010B2 (en) Talc-containing propylene polymer composition
WO1994006864A1 (en) A process for preparing high impact strength polyethylene terephthalate/ionomer blends
JPH04136061A (en) Thermoplastic interpenetrating network structure and its formation
JP3274934B2 (en) Method for producing polyolefin resin composition
JPH0258560A (en) Molded article of polyethylene terephthalate for automobile part
Schrauwen et al. Toughness of high-density polyethylene with hard filler particles
JPH0314065B2 (en)