JPS5937859B2 - power circuit - Google Patents
power circuitInfo
- Publication number
- JPS5937859B2 JPS5937859B2 JP51110254A JP11025476A JPS5937859B2 JP S5937859 B2 JPS5937859 B2 JP S5937859B2 JP 51110254 A JP51110254 A JP 51110254A JP 11025476 A JP11025476 A JP 11025476A JP S5937859 B2 JPS5937859 B2 JP S5937859B2
- Authority
- JP
- Japan
- Prior art keywords
- cmos
- power supply
- voltage
- resistor
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Control Of Electrical Variables (AREA)
Description
【発明の詳細な説明】
本発明は、CMOS−IC(コンプリメンlリィM05
集積回路)の電源回路に関するもので、前記MOS−I
Cが有するラッチアップ現象を防止するための新規な電
源回路を提供するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a CMOS-IC (Complementary M05
This relates to the power supply circuit of the MOS-I integrated circuit).
The present invention provides a new power supply circuit for preventing the latch-up phenomenon of C.
前記CMOS−ICのラッチアップ現象というのは、正
常動作状態で入力端子又は出力端子に過大な電圧や電流
など力旧功口された場合に、CMOS−ICの電源端子
とアース間に異状電流が流れ、前記の過大な信号がなく
なつてもその異状電流が持続し、電源を〒度遮断し再び
投入しなおさないともとの正常動作はもどらない現象を
いう。The latch-up phenomenon of the CMOS-IC described above occurs when an abnormal current is generated between the power supply terminal of the CMOS-IC and the ground when an excessive voltage or current is applied to the input terminal or output terminal during normal operation. This is a phenomenon in which the abnormal current continues even after the excessive signal is removed, and normal operation cannot be restored unless the power is turned off and then turned on again.
この現象について第6図a、b、cでさらに詳しく説明
する。This phenomenon will be explained in more detail with reference to FIGS. 6a, b, and c.
前記CMOS−ICの構造は、第6図aに示すようにN
−BULK上にP−WELLが構成され、N−BULK
にはp+が拡散されてPチャンネルを形成し、P−WE
LLにはN+が拡散されてNチャンネルを形成している
。The structure of the CMOS-IC is as shown in FIG.
- P-WELL is configured on BULK, and N-BULK
p+ is diffused into to form a P channel, and P-WE
N+ is diffused into LL to form an N channel.
P−MOSとN−MOSのゲート同志は接続されて入力
端子INとなり、N−BULKは電源端子VDDに、P
−WELLはアースVssにそれぞれ接続されている。
第6図aの構成より明らかなようにCMOS−ICはP
NPNの4層構造になつており、図のようにPNPトラ
ンジスiT、、T2およびNPNトランジスタT33T
4が形成されている。第6図bに第6図aの等価回路を
示すが、今出力端子OUTに正の過大電圧が印加された
場合について考える。この場合、トランジスタT2のエ
ミッタから抵抗に3、抵抗に、を介して電源端子VDD
に電流が流れトランジスタT2が導通し、その結果OU
T−★T2→に5→に10→Vssの電流経路が形成さ
れ、抵抗に10に電圧降下が生じる。この抵抗に、Oの
電圧降下によりトランジスタT4が導通し、VDDHr
1Hr79T4HVSSの電流経路が形成され抵抗に、
にも電圧降下が生じ、この抵抗に、での電圧降下によつ
てトランジスIT、も導通し、さきに生じた抵抗に3O
の電圧降下を増加するように、VDD→Tl→に4→に
、O→vssの電流経路が形成される。これによつてト
ランジスlT4は導通状態を維持し、抵抗に、の電圧降
下は持続さわ、トランジスタT、も導通状態を維持して
、トランジスタT3、T4から成るPNPNのサイリス
タ構造が導通状態を保持し、出力端子OUTの過大電圧
を取り除いても電流保持現象は維持されている。The gates of P-MOS and N-MOS are connected to form the input terminal IN, and N-BULK is connected to the power supply terminal VDD, and P-MOS is connected to the input terminal IN.
-WELL are respectively connected to ground Vss.
As is clear from the configuration of Figure 6a, the CMOS-IC has P
It has a four-layer NPN structure, as shown in the figure, PNP transistors iT, , T2 and NPN transistor T33T.
4 is formed. FIG. 6b shows an equivalent circuit of FIG. 6a, and now consider the case where a positive excessive voltage is applied to the output terminal OUT. In this case, the power supply terminal VDD is connected from the emitter of the transistor T2 to the resistor 3 and to the resistor.
A current flows through the transistor T2, and as a result, OU
A current path of T-★T2→5→10→Vss is formed, and a voltage drop occurs across the resistance. Transistor T4 becomes conductive due to the voltage drop across this resistor, and VDDHr
A current path of 1Hr79T4HVSS is formed and the resistor
A voltage drop occurs at the resistor, and due to the voltage drop at the resistor, the transistor IT also becomes conductive, and the previously generated resistor becomes 3O
A current path O→vss is formed from VDD→Tl→4→ so as to increase the voltage drop of . As a result, the transistor T4 maintains the conductive state, the voltage drop across the resistor continues, the transistor T also maintains the conductive state, and the PNPN thyristor structure consisting of the transistors T3 and T4 maintains the conductive state. , the current holding phenomenon is maintained even if the excessive voltage at the output terminal OUT is removed.
この現象からCMOS−1Cを正常動作にもどすために
は、電源端子V。In order to restore CMOS-1C to normal operation from this phenomenon, it is necessary to connect the power supply terminal V.
Oを一度遮断するか、又は電源端子VDDから供給され
る電流を保持電流以下に下げなければならない。第6図
cにCMOS−1Cの代表的なV。The current supplied from the power supply terminal VDD must be lowered below the holding current. Figure 6c shows a typical V of CMOS-1C.
O−100特性を示す。図において、VBOはブレーク
オーバ電圧、11[0は保持電流である。ラツチアツプ
現象を防止するために従来行われていた対策としては、
CMOS−1Cの入、出力端子1N,0UT又は電源端
子VI])に過大電圧等のノイズが入らない様に雑音対
策をとる方法が行われていた。Shows O-100 characteristics. In the figure, VBO is the breakover voltage and 11[0 is the holding current. The conventional measures to prevent the latchup phenomenon are as follows:
Noise countermeasures have been taken to prevent noise such as excessive voltage from entering the input/output terminals 1N, 0UT or power supply terminal VI] of the CMOS-1C.
具体的には、1電源端子V。に直列に抵抗を接続する。
2入、出力端子1N、0UTとアース間及び入、出力端
子と電源間にそれぞれダイオード等の保護回路を接続す
る。Specifically, 1 power supply terminal V. Connect a resistor in series with .
Connect protection circuits such as diodes between the 2 input and output terminals 1N and 0UT and the ground, and between the input and output terminals and the power supply.
3電源端子とアース間に極当なコンデンサを接続する。3 Connect an appropriate capacitor between the power supply terminal and ground.
等の方法が行われていたが、2の方法は全ての入、出力
端子に保護回路を設けるために構成が複雑でかつ高価で
あり、3の方法では完全な効果は期待できない欠点があ
る。また1の方法はCMOS−1Cが消費する電流によ
つて、電源端子に直列に接続された抵抗の両端に電圧降
下が生じ、消費電流のバラツキを考えた場合CMOS−
1Cの電源電圧。However, method 2 has a complicated and expensive structure because a protection circuit is provided at all input and output terminals, and method 3 has the disadvantage that it cannot be expected to be completely effective. In addition, in method 1, the current consumed by CMOS-1C causes a voltage drop across the resistor connected in series with the power supply terminal.
1C power supply voltage.
oが変化することが考えられる。一方、CMOS−1C
の入力端子1Nに供給できる入力電圧レベルは=般に(
VDD+0.3)V以下と規定されているため、電源電
圧V。Oが変化することは、他の回路とCMOS−1C
とのインlフエースを考慮してシステム設計を行う場合
、大きな制約を受けることになる。本発明は、上記従来
例の欠点を除去し、かつCMOS−1Cのラツチアツブ
現象を防止するための新規な電源回路を提供するもので
ある。It is possible that o changes. On the other hand, CMOS-1C
The input voltage level that can be supplied to the input terminal 1N of is generally (
VDD+0.3)V or less, so the power supply voltage is V. Changing O means that other circuits and CMOS-1C
When designing a system taking into account the interface with the computer, there are significant restrictions. The present invention provides a new power supply circuit that eliminates the drawbacks of the conventional example and prevents the latch-up phenomenon of CMOS-1C.
すなわち、本発明はCMOS−1Cと他の回路のインタ
フエースを確実に行つた上で、異常状態が生じた場合で
も電源端子。からCMOS−ICに供給される電流を保
持電流以下に制限することにより、CMOS−1Cのラ
ツチアツプ現象を防止するものである。第1図にその基
本回路を示す。That is, the present invention provides a reliable interface between the CMOS-1C and other circuits, and even if an abnormal state occurs, the power supply terminal can be maintained. By limiting the current supplied to the CMOS-IC from below to the holding current, the latch-up phenomenon of the CMOS-1C is prevented. Figure 1 shows its basic circuit.
図において、1は第1の電圧源、2は抵抗で、前記第1
の電源1とCMOS−1C6の電源端子6−1との間に
挿入され、電圧。In the figure, 1 is a first voltage source, 2 is a resistor, and the first
The voltage is inserted between the power supply 1 of the CMOS-1C6 and the power supply terminal 6-1 of the CMOS-1C6.
をCMOS−IC6に供給する。また抵抗2の電源端子
側端子はダイオード3を介して別の電圧源5に接続され
ている。一方、電圧源5は回路ブロツク7の電源端子7
一1に直接接続されて回路ブロツク1を作勅している。
6−2,7−2はそれぞれCMOS−IC6、回路プロ
ツク7のアース端子、4はCMOS−1C6の電源端子
6−1とアース端子6−2との間に接続されたコンデン
サで低周波フィルタの機能をもつている。is supplied to the CMOS-IC6. Further, the power supply terminal side terminal of the resistor 2 is connected to another voltage source 5 via a diode 3. On the other hand, the voltage source 5 is connected to the power terminal 7 of the circuit block 7.
11 to create circuit block 1.
6-2 and 7-2 are the ground terminals of the CMOS-IC 6 and circuit block 7, respectively, and 4 is a capacitor connected between the power terminal 6-1 and the ground terminal 6-2 of the CMOS-1C6, which serves as a low frequency filter. It has a function.
また6−3,7−3は、それぞれCMOS−1C6、回
路プロツク7の信号入力端子であり、6−4,7−4は
、それぞれ信号出力端子である。この場合回路プロツク
1の出力端子7一4は、CMOS−1C6の入力端子6
−3に直接接続され、CMOS−1Cの出力端子6−4
回路プロツク7の入力端子7一3に直結されている。こ
こで、ラツチアツプ現象を起さないための回路定数とし
て抵抗2の抵抗値について詳細に説明する。Further, 6-3 and 7-3 are signal input terminals of the CMOS-1C6 and circuit block 7, respectively, and 6-4 and 7-4 are signal output terminals, respectively. In this case, the output terminals 7-4 of the circuit block 1 are the input terminals 6 of the CMOS-1C6.
-3 directly connected to output terminal 6-4 of CMOS-1C.
It is directly connected to the input terminals 7-3 of the circuit block 7. Here, the resistance value of the resistor 2 will be explained in detail as a circuit constant for preventing the latch-up phenomenon.
今、第6図cにおけるCMOS−1C6の保持電流をI
HO、保持電流1H0のときの電源端子6−1の電圧を
V,、正常動作時におけるCMOS−1C6の最大動作
電流をI。Now, the holding current of CMOS-1C6 in Fig. 6c is I
HO, the voltage of the power supply terminal 6-1 when the holding current is 1H0 is V, and the maximum operating current of CMOS-1C6 during normal operation is I.
、電圧源1の電圧をE,、電圧源5の電圧をE2、ダイ
オード3の順方向電圧をV。lとすると、抵抗2の抵抗
値Rは、に選べばよい。, the voltage of voltage source 1 is E, the voltage of voltage source 5 is E2, and the forward voltage of diode 3 is V. 1, the resistance value R of the resistor 2 may be selected as follows.
この場合、正常動作時のCMOS一IC6の電源端子6
−1の電圧V。Oはとなり、回路プロツク7の動作電圧
がE,であるから、CMOS−1C6の入力端子6−3
に入力される信号レベルは、E2以下であるので、イン
タフェースの点でも問題は生じない。In this case, power supply terminal 6 of CMOS-IC6 during normal operation.
-1 voltage V. Since the operating voltage of the circuit block 7 is E, the input terminal 6-3 of the CMOS-1C6
Since the signal level input to the terminal is equal to or lower than E2, no problem arises in terms of the interface.
なお、回路プロツク7から入力端子6−3に加えられる
入力信号レベルをCMOS−1C6の電源電圧VDDに
出来るだけ近ずけるには、ダイオード3に、ゲルマニユ
ームダイオードを用いてV。lの値を低くすれば可能で
ある。第2図、第3図は他の実施例を示すもので、第1
図の基本回路における、抵抗2とダイオード3の接続点
と、CMOS−1C6の電源端子6−1との間に第2図
の実施例ではダイオード8を挿入し、第3図の実施例で
は、抵抗9を挿入した場合を示す。Incidentally, in order to bring the input signal level applied from the circuit block 7 to the input terminal 6-3 as close as possible to the power supply voltage VDD of the CMOS-1C6, a germanium diode is used as the diode 3. This is possible by reducing the value of l. Figures 2 and 3 show other embodiments.
In the basic circuit shown in the figure, a diode 8 is inserted between the connection point between the resistor 2 and the diode 3 and the power supply terminal 6-1 of the CMOS-1C6 in the embodiment shown in FIG. 2, and in the embodiment shown in FIG. The case where a resistor 9 is inserted is shown.
なお1〜7については、第1図と同一である。第2図の
場合における抵抗2の抵抗値Rおよび、電源端子6−1
の正常動作時の電圧V。Note that 1 to 7 are the same as in FIG. The resistance value R of the resistor 2 and the power supply terminal 6-1 in the case of FIG.
Voltage V during normal operation.
Oは、となる・ただし・VD2は−ダイオード8の順方
向電圧である。4式でV。O is the following. However, VD2 is the forward voltage of the -diode 8. V in 4 formulas.
l=::VO2となる様にダイオード3および8を選べ
ば、VOO=E2となり、CMOS−1C6の電源電圧
は回路プロツク7の動作電圧と等しくなり、インlフエ
ースの点でさらに有利である。また第3図の場合におけ
る抵抗2の抵抗値R、および正常動作時の電源端子6−
1の電圧V。If diodes 3 and 8 are selected so that l=::VO2, then VOO=E2, and the power supply voltage of CMOS-1C6 becomes equal to the operating voltage of circuit block 7, which is further advantageous in terms of interface. Also, the resistance value R of the resistor 2 in the case of Fig. 3, and the power supply terminal 6- during normal operation.
1 voltage V.
Oは、VV4−ν慮−一V−υ1となる。O becomes VV4−ν×−1V−υ1.
但しR,は抵抗9の抵抗値である。同様′に2 におい
て、R,IO=VO,になる様にR,を選べば、VOO
=E2となり、第2図の実施例同様インノブニーズの点
で有利である。However, R is the resistance value of the resistor 9. Similarly, in 2, if R is chosen so that R,IO=VO, then VOO
=E2, which is advantageous in terms of in-knob needs, similar to the embodiment shown in FIG.
しかしながらこの場合CMOS−1Cの正常動作電流に
、バラツキがあることを考慮すると第2図の方法が有利
である。第4図は、さらに他の実施例で第1図における
抵抗2の代りに定電流回路10を用いた場合である。However, in this case, considering that there are variations in the normal operating current of CMOS-1C, the method shown in FIG. 2 is advantageous. FIG. 4 shows still another embodiment in which a constant current circuit 10 is used in place of the resistor 2 in FIG.
定電流回路10の具体回路例は第5図に示すようにPN
Pトランジスタ12と抵抗11,13,14から成つて
おり、15は第4図の3〜7をまとめて表わした定電流
回路10の負荷である。A specific circuit example of the constant current circuit 10 is a PN circuit as shown in FIG.
It consists of a P transistor 12 and resistors 11, 13, and 14, and 15 is a load of the constant current circuit 10, which collectively represents 3 to 7 in FIG.
この場合の定電流値1C0NTはに選べばよい。In this case, the constant current value 1C0NT may be selected as follows.
又、第4図の場合においても第2図、第3図の実施例と
同様に定電流回路10とダイオード3の接続点と、CM
OS−1C6の電源端子6−1の間に、ダイオード8、
又は抵抗9を挿入すればインタフエースの点で有利にな
ることは明らかである。Also, in the case of FIG. 4, the connection point between the constant current circuit 10 and the diode 3 and the CM
A diode 8,
Alternatively, it is clear that inserting the resistor 9 would be advantageous in terms of interface.
以上説明したように本発明&丸電圧源1と回路プロツク
1の電圧源5の間に抵抗2又は定電流源回路10とダイ
オード3を直列に接続し、抵抗2又は定電流源回路10
とダイオード3の接続点をCMOS−1C6の電源端子
6−1に接続するだけの簡単な回路構成でCMOS−1
C6と回路プロツク7のインタフエースを確実に行い、
さらにCMOS−1Cの最大の問題であるラツチアツプ
を防止することができる。As explained above, the resistor 2 or the constant current source circuit 10 and the diode 3 are connected in series between the round voltage source 1 and the voltage source 5 of the circuit block 1.
CMOS-1 with a simple circuit configuration that just connects the connection point of diode 3 and diode 3 to the power supply terminal 6-1 of CMOS-1C6.
Ensure the interface between C6 and circuit block 7.
Furthermore, latch-up, which is the biggest problem with CMOS-1C, can be prevented.
第1図は本発明の一実施例における電源回路の回路図、
第2図、第3図、および第4図は本発明の他の実施例を
示す回路図、第5図は第4図における定電流回路の具体
回路図、第6図A,d,c、はCMOS−1Cの構成お
よびラツチアツブ現象を説明するための等価回路と、特
性図である。
1・・・・・・第1の電圧源、2,9・・・・・・抵抗
、3,8・・・・・・ダイオード、5・・・・・・第2
の電圧源、6・・・・・・CMOS−1C、7・・・・
・・CMOS−1Cとインlフエースされる回路プロツ
ク。FIG. 1 is a circuit diagram of a power supply circuit in an embodiment of the present invention,
FIGS. 2, 3, and 4 are circuit diagrams showing other embodiments of the present invention, FIG. 5 is a specific circuit diagram of the constant current circuit in FIG. 4, and FIGS. 6A, d, c, These are an equivalent circuit and a characteristic diagram for explaining the configuration of CMOS-1C and the latch-up phenomenon. 1...First voltage source, 2,9...Resistor, 3,8...Diode, 5...Second
voltage source, 6...CMOS-1C, 7...
...Circuit block interfaced with CMOS-1C.
Claims (1)
イオードと、第2の電圧源とを直列接続し、前記インピ
ーダンス素子と第1のダイオードの接続点をCMOS−
ICの電源端子に接続したことを特徴とする電源回路。 2 インピーダンス素子を定電流回路でもつて構成した
ことを特徴とする特許請求の範囲第1項記載の電源回路
。 3 インピーダンス素子と第1のダイオードの接続点と
、前記CMOS−ICの電源端子との間に第2のダイオ
ード又は抵抗器を挿入したことを特徴とする特許請求の
範囲第1項記載の電源回路。[Claims] 1. A first voltage source, an impedance element, a first diode, and a second voltage source are connected in series, and the connection point between the impedance element and the first diode is connected to a CMOS-
A power supply circuit characterized in that it is connected to a power supply terminal of an IC. 2. The power supply circuit according to claim 1, characterized in that the impedance element is constituted by a constant current circuit. 3. The power supply circuit according to claim 1, characterized in that a second diode or a resistor is inserted between the connection point between the impedance element and the first diode and the power supply terminal of the CMOS-IC. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51110254A JPS5937859B2 (en) | 1976-09-13 | 1976-09-13 | power circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51110254A JPS5937859B2 (en) | 1976-09-13 | 1976-09-13 | power circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5335142A JPS5335142A (en) | 1978-04-01 |
JPS5937859B2 true JPS5937859B2 (en) | 1984-09-12 |
Family
ID=14531012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51110254A Expired JPS5937859B2 (en) | 1976-09-13 | 1976-09-13 | power circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5937859B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57157557A (en) * | 1981-03-23 | 1982-09-29 | Fujitsu Ltd | Complementary mis integrated circuit |
JPH01115257U (en) * | 1988-01-28 | 1989-08-03 | ||
JP2570919B2 (en) * | 1991-04-19 | 1997-01-16 | 株式会社デンソー | Integrated circuit |
-
1976
- 1976-09-13 JP JP51110254A patent/JPS5937859B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5335142A (en) | 1978-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5512844A (en) | Output circuit with high output voltage protection means | |
JP2869791B2 (en) | Semiconductor integrated circuit device and electronic device using the same | |
JPS60182219A (en) | Semiconductor device | |
US5775310A (en) | Ignition device for an internal combustion engine | |
US4698531A (en) | Power-on reset circuit | |
JPS60501035A (en) | Comparator circuit with reduced input bias current | |
JPH0350423B2 (en) | ||
JPS5937859B2 (en) | power circuit | |
US4980792A (en) | BiCMOS power transition circuit | |
US6407898B1 (en) | Protection means for preventing power-on sequence induced latch-up | |
JP3319879B2 (en) | Semiconductor device | |
US5796567A (en) | Electronic circuit with protection against supply voltage overload | |
JP2573394B2 (en) | Hysteresis circuit | |
KR100195527B1 (en) | Circuit for protection against negative overvoltage across the power supply of an integrated curcuit comprising a power device with a related control circuit | |
JP2970054B2 (en) | DC-DC converter | |
JP3190169B2 (en) | Semiconductor integrated circuit | |
JPS595734A (en) | Input circuit with protecting circuit | |
US4189738A (en) | Semiconductor integrated circuit device | |
JPS63257420A (en) | Rush current eliminating circuit | |
JPH03101518A (en) | Load driving circuit | |
JP2964567B2 (en) | Overcurrent protection circuit | |
JPS649695B2 (en) | ||
JPS61208921A (en) | Automatic reset circuit | |
JPS61269362A (en) | Semiconductor integrated circuit device | |
JPS6047747B2 (en) | Malfunction prevention circuit |