JPS5937631B2 - Composite predictive coding/decoding device for color television signals - Google Patents

Composite predictive coding/decoding device for color television signals

Info

Publication number
JPS5937631B2
JPS5937631B2 JP50040619A JP4061975A JPS5937631B2 JP S5937631 B2 JPS5937631 B2 JP S5937631B2 JP 50040619 A JP50040619 A JP 50040619A JP 4061975 A JP4061975 A JP 4061975A JP S5937631 B2 JPS5937631 B2 JP S5937631B2
Authority
JP
Japan
Prior art keywords
prediction
frequency
encoding
composite
color television
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50040619A
Other languages
Japanese (ja)
Other versions
JPS51115727A (en
Inventor
一元 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP50040619A priority Critical patent/JPS5937631B2/en
Priority to CA249,484A priority patent/CA1085044A/en
Priority to US05/673,327 priority patent/US4075655A/en
Publication of JPS51115727A publication Critical patent/JPS51115727A/en
Publication of JPS5937631B2 publication Critical patent/JPS5937631B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)

Description

【発明の詳細な説明】 本発明は副搬送波を色信号で変調し周波数多重化したカ
ラーテレビ信号の複合予測符号化復号化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite predictive encoding/decoding device for color television signals in which subcarriers are modulated with color signals and frequency multiplexed.

テレビ信号の符号化方式として、テレビ信号のフレーム
相関を利用したフレーム予測符号化方式がある。
As a method for encoding television signals, there is a frame predictive encoding method that utilizes frame correlation of television signals.

フレーム予測符号化方式は前フレームの標本値を予測値
とし、その予測誤差を量子化し符号化するもので、被写
体の動きの少ないテレビ信号に対しては有効な符号化方
式である。さらに符号化効率をあげる符号化方式として
一標本化時間前の標本値を予測値とする前置予測や、一
走査線前の標本値を予測値とするライン予測とフレーム
予測を組合せた複合予測符号化方式がある。しかしなが
ら、従来の複合予測符号化方式は白黒テレビ信号に対し
ては有効であるが、ラインおよびフレーム毎に位相が反
転する搬送色信号を含む複合カラーテレビ信号に対して
は予測誤差が増大して適用できないという欠点があつた
。このため、従来は周波数多重化カラーテレビ信号を基
底帯域信号(例えば、NTSC方式では輝度信号Y、色
信号IおよびQ)に分離復調した後、個々に複合予測符
号化する方法がとられている。この場合色信号の分離復
調および再変調多重化が必要となり、装置が複雑となる
ばかりでなく、復変調過程において生じる振幅および位
相誤差が画質劣化の原因となる。本発明の目的は搬送色
信号を含む周波数多重化カラーテレビ信号に適応した予
測フィルタを組み合せ、前述の搬送色信号成分によるフ
レーム予測誤差の増大を防ぐようにして、カラーテレビ
信号の分解、再合成をすることなく直接予測符号化でき
る符号化復号化装置を提供することにある。
The frame predictive coding method uses the sample value of the previous frame as a predicted value, and quantizes and codes the prediction error, and is an effective coding method for television signals in which there is little movement of the subject. Encoding methods that further improve coding efficiency include pre-prediction, which uses the sample value one sampling time before as the predicted value, and composite prediction, which combines line prediction and frame prediction, which uses the sample value one scanning line before as the predicted value. There are encoding methods. However, although conventional composite predictive coding methods are effective for black and white television signals, prediction errors increase for composite color television signals that include carrier color signals whose phases are inverted for each line and frame. The drawback was that it could not be applied. For this reason, the conventional method has been to separate and demodulate a frequency multiplexed color television signal into baseband signals (for example, luminance signal Y and chrominance signals I and Q in the NTSC system), and then individually perform composite predictive coding. . In this case, it is necessary to separate and demodulate and re-modulate and multiplex the color signals, which not only complicates the apparatus, but also causes amplitude and phase errors that occur in the demodulation process to deteriorate image quality. An object of the present invention is to combine a prediction filter adapted to a frequency multiplexed color television signal including a carrier color signal, and to prevent an increase in frame prediction error due to the carrier color signal component described above, thereby decomposing and resynthesizing the color television signal. An object of the present invention is to provide an encoding/decoding device that can perform direct predictive encoding without performing any additional steps.

本発明によれば、複合カラーテレビ信号を分解再合成す
ることなく直接予測符号化できるので、装置が単純でし
かも画質劣化の少ないカラーテレビ信号の符号化伝送が
実現できる。また、白黒テレビ信号との両立性をも得る
ことができる。以下、NTSC方式のカラーテレビ信号
を例にして説明する。副搬送波周波数fscはfHをラ
イン周波数としたときに選ばれている。
According to the present invention, direct predictive coding can be performed without disassembling and resynthesizing a composite color television signal, so that coding and transmission of color television signals can be realized with a simple device and with little deterioration in image quality. Compatibility with black and white television signals can also be achieved. Hereinafter, an explanation will be given using an NTSC color television signal as an example. The subcarrier frequency fsc is selected when fH is the line frequency.

また、フレーム周波数FFとFHの間には次の関係があ
る。従つて、副搬送波の位相はライン間およびフレーム
間で反転することになる。
Further, the following relationship exists between frame frequencies FF and FH. Therefore, the phase of the subcarriers will be reversed from line to line and from frame to frame.

輝度信号Yの時間関数をy(t)、色信号IおよびQの
それをi(t)、q(t)とすれば、NTSCカラーテ
レビ信号u(t)はで表わされる。
If the time function of the luminance signal Y is y(t), and those of the color signals I and Q are i(t) and q(t), then the NTSC color television signal u(t) is expressed as follows.

1フレーム期間をTFとすればTF=1/FFであるか
ら、1フレーム前の{NTSCカラーテレビ信号U(t
+TF)は(1)、(匂、(3)式からとなる。
If one frame period is TF, then TF=1/FF, so the {NTSC color television signal U(t
+TF) is obtained from equations (1), (odor, and (3)).

被写体が静止している場合は、となるから、このときの
フレーム予測誤差e(t)は、となる。
If the subject is stationary, then the frame prediction error e(t) at this time will be.

(6)式から明らかなように、被写体が静止している場
合でも、フレーム予測誤差は零にはならず、搬送色信号
成分が2倍に増大して現われるので、NTSC信号に対
しては通常のフレーム予測のみでは効果は殆んどない。
しかしながら、周知のように、NTSC信号の搬送色信
号成分はライン周波数JHの2分の1の奇数倍の周波数
近傍にエネルギーが集中している。
As is clear from equation (6), even when the subject is stationary, the frame prediction error does not become zero, and the carrier color signal component appears doubled, so it is normal for NTSC signals. Frame prediction alone has little effect.
However, as is well known, the energy of the carrier color signal component of the NTSC signal is concentrated near frequencies that are odd multiples of half the line frequency JH.

したがつて、この周波数成分に対する効率よい予測フイ
ルタが実現できれば、前述の予測誤差を充分小さくする
ことができ、白黒テレビ信号と同様に、複合予測符号化
が可能となる。第1図は本発明の複合予測符号化装置の
原理図を示す。
Therefore, if an efficient prediction filter for this frequency component can be realized, the above-mentioned prediction error can be made sufficiently small, and composite predictive coding becomes possible as in the case of black-and-white television signals. FIG. 1 shows a principle diagram of a composite predictive encoding device of the present invention.

説明の便宜上、符号化複合化装置系はすべてサンプル値
系とし、第1の予測フイルタ26の伝達関数の伝達関数
をP1(z)、第2の予測フイルタ27’の伝達関数を
P2(z)、第3の予測フイルタ28の伝達関数をP3
(z)、入力テレビ信号をU(z)、量子化回路25で
発生する量子化誤差をN(z)、とすれば、減算器21
,22および23の出力信号E1(z)、E2(z)お
よびE3(z)は、となる。これらの式から明らかなよ
うに、量子化誤差N(z)が充分小さいとすれば、E1
(z)はU(z)を予測フイルタ26で予測したときの
予測誤差成分であり、E2(z)はE1(t)を矛狽l
フイルタ28で予測したときの予測誤差成分である。し
たがつてP1(z)をフレーム選延素子とすれば、E,
(z)は被写体が静止している場合、ほぼ(6)式で表
わされる搬送色信号成分となる。本発明の特徴は、この
搬送色信号成分のスペクトルがFH/2の奇数倍の周波
数近傍に集中していることを利用して、第2の予測手段
により、搬送色信号成分を抑圧することにある。
For convenience of explanation, all the encoding and decoding device systems are sample value systems, and the transfer function of the first prediction filter 26 is referred to as P1(z), and the transfer function of the second prediction filter 27' is referred to as P2(z). , the transfer function of the third prediction filter 28 is P3
(z), the input television signal is U(z), and the quantization error generated in the quantization circuit 25 is N(z), then the subtracter 21
, 22 and 23, the output signals E1(z), E2(z) and E3(z) are as follows. As is clear from these equations, if the quantization error N(z) is sufficiently small, E1
(z) is a prediction error component when U(z) is predicted by the prediction filter 26, and E2(z) contradicts E1(t).
This is a prediction error component when predicted by the filter 28. Therefore, if P1(z) is a frame selection element, E,
When the subject is stationary, (z) becomes a transport color signal component approximately expressed by equation (6). A feature of the present invention is that the carrier color signal component is suppressed by the second prediction means by utilizing the fact that the spectrum of the carrier color signal component is concentrated near frequencies that are odd multiples of FH/2. be.

すなわち、関数{1−P2(z)} をFH/2の奇数
倍の周波数で1より充分小さくなるような関数とすれば
、(8)式よりE2(z)は搬送色信号成分が抑圧され
た信号となる。被写体が動きを伴つている場合は、E1
(z)には搬送色信号成分の他に輝度信号成分のフレー
ム予測誤差が現われる。
In other words, if the function {1-P2(z)} is a function that is sufficiently smaller than 1 at frequencies that are odd multiples of FH/2, E2(z) is determined by suppressing the carrier color signal component from equation (8). It becomes a signal. If the subject is moving, E1
In (z), a frame prediction error of the luminance signal component appears in addition to the carrier color signal component.

この場合にも、搬送色信号成分は第2の予測フイルタ2
7で抑圧されるので、一E2(z)には輝度信号成分の
みが現われる。したがつて、E2(z)に対して白黒テ
レビ信号の場合と同様の予測を行なうことができる。例
えば、第3の予測手段として、前値予測用い、関数{1
−P3(z)} が零周波数近傍で1より充分小さくな
るように設定すれば、白黒テレビ信号の場合と同様に、
予測誤差E3(z)は零に集中した信号となり、効率の
よい予測符号化ができる。
Also in this case, the carrier color signal component is passed through the second predictive filter 2.
7, only the luminance signal component appears in -E2(z). Therefore, predictions similar to those for black-and-white television signals can be made for E2(z). For example, as the third prediction means, the previous value prediction is used, and the function {1
-P3(z)} is set to be sufficiently smaller than 1 near the zero frequency, as in the case of black-and-white television signals,
The prediction error E3(z) becomes a signal concentrated at zero, allowing efficient predictive coding.

また、関数{1−P。(z)} が零周波数の他に副搬
送波数Fscでも1より充分小さくなるように設定すれ
ば、E。(z)に含まれる残留搬送色信号成分も抑圧さ
れるので、更に効率よい予測符号化ができる。なお、(
7)、(8)、(9)式から明らかなように、であるか
ら、予測フイルタ26,27,28の伝達特性を相互に
入れ替えてもE3(z)には何ら変化がない。したがつ
て、P1(z)、P2(z)およびP3(z)なる伝達
特性を予測フイルタ26,2Tおよびε28のいずれに
もたせてもよい。量子化回路25の出力V(z)はE3
(z)に量子化誤差N(z)を加えたものであるから、
Afj式からただちに導びかれとなる。
Also, the function {1-P. (z)} is set so that not only the zero frequency but also the number of subcarriers Fsc is sufficiently smaller than 1, E. Since the residual carrier color signal component included in (z) is also suppressed, more efficient predictive coding can be performed. In addition,(
As is clear from equations 7), (8), and (9), there is no change in E3(z) even if the transfer characteristics of the prediction filters 26, 27, and 28 are interchanged. Therefore, any of the prediction filters 26, 2T, and ε28 may have the transfer characteristics P1(z), P2(z), and P3(z). The output V(z) of the quantization circuit 25 is E3
(z) plus the quantization error N(z), so
It is immediately derived from the Afj formula.

従つて、符号化装置の信号U(z)に対する伝達特性は
、{ 1−P1(z)}{ 1−P2(z)}{ 1−
P3(z)}となるから復号化装置の伝達特性W(z)
はにすれば、符号化装置の入力から復号化装置の出力ま
での伝達特性が1になり、なる復号信号U(z)を得る
Therefore, the transfer characteristic of the encoding device for the signal U(z) is { 1-P1(z)}{ 1-P2(z)}{ 1-
P3(z)}, so the transfer characteristic W(z) of the decoding device
, the transfer characteristic from the input of the encoding device to the output of the decoding device becomes 1, and a decoded signal U(z) is obtained.

つまり、復号化装置の伝達特性は符号化装置の伝達特性
の逆特性になるように設定すればよい。以下実施例につ
いて説明する。
In other words, the transfer characteristic of the decoding device may be set to be the opposite of the transfer characteristic of the encoding device. Examples will be described below.

第2図は本発明の実施例の構成を示すプロツク図である
。符号化装置への入力カラーテレビ信号u(t)はアナ
ログ/デジタル変換器31によつて標本化周波数Fsの
PCM(パルス符号変調)信号U(z)に変換される。
FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention. An input color television signal u(t) to the encoding device is converted by an analog/digital converter 31 into a PCM (pulse code modulation) signal U(z) with a sampling frequency Fs.

Fsは信号帯域幅の2〜3倍でFHの整数倍に選ぷ。P
CM信号U(z)は減算器21に供給され、第1の予測
フイルタ26の出力との差が計算される。減算器21の
出力は減算器22に送られ、第2の予測フイルタ2Tの
出力との差が計算される。減算器22の出力はさらに減
算器23に送られ、第3の予測フイルタ28の出力との
差が計算される。減算器23の出力は量子化回路25で
量子化され、量子化回路の出力は符号変換器39に送ら
れ符号変換されてバツフアメモリ38を通じて平滑化さ
れ伝送路に送り出される。量子化回路出力は零レベルと
なる確率が圧倒的に多く、一般に出力レベルが零から離
れるにつれて発生確率が減少するので、符号変換器39
はこの確率分布に合つた符号変換を行なうことにより、
伝送ビツト数を大巾に低減することができる。量子化回
路25の出力はまた、加算器13にも供給され、第3の
予測フイルタ28の出力と加算され、その結果は予測フ
イルタ28および加算器12に供給され帰還ルーブを構
成する。同様に、加算器12、加算器11も帰還ルーブ
を構成する。受信側の復号化装置は、バツフアメモリ4
2に蓄積された受信符号が符号復号器40によつて送信
側の量子化出力に対応する符号に変換され加算器13′
に供給される。加算器13′は送信側の予測フイルタと
同じ機能を有する第8の予測フイルタ28′の出力と符
号復号器40の出力を加算し、その結果を加算器12′
に供給するとともに予測フイルタ28′に帰還する。第
2および第1の予測フイルタ27′および26′に対し
ても同様のループを構成する。復号化装置をこのような
構成にすれば加算器13′の入力から加算器1Vの出力
に至る伝達特性W(z)は(自)式に示したような符号
化装置のそれの逆特性となり、加算器1Vの出力に復号
信号n(Z)が得られる。n(Z)はデジタル/アナロ
グ変換器41によつて、汀(t)なるカラーテレビ信号
に変換される。n(t)は元のカラーテレビ信号U(t
)に量子化誤差が加わつたものである。量子化回路の入
力は予測フイルタによつてダイナミツクレンジが充分抑
圧されているので、量子化誤差を充分小さくすることが
できる。次にP1(z)、P2(z)、P3(z)なる
伝達特性を有する予測フイルタの具体的な構成法を説明
する。
Fs is selected to be 2 to 3 times the signal bandwidth and an integral multiple of FH. P
The CM signal U(z) is supplied to a subtracter 21, and the difference between it and the output of the first prediction filter 26 is calculated. The output of the subtracter 21 is sent to the subtracter 22, and the difference between it and the output of the second prediction filter 2T is calculated. The output of the subtracter 22 is further sent to a subtracter 23, and the difference between it and the output of the third prediction filter 28 is calculated. The output of the subtracter 23 is quantized by a quantization circuit 25, and the output of the quantization circuit is sent to a code converter 39, where the code is converted, smoothed through a buffer memory 38, and sent out to a transmission line. There is an overwhelming probability that the quantization circuit output will be at zero level, and the probability of occurrence generally decreases as the output level moves away from zero, so the code converter 39
By performing code conversion that matches this probability distribution,
The number of transmission bits can be greatly reduced. The output of the quantization circuit 25 is also supplied to the adder 13 and added to the output of the third prediction filter 28, and the result is supplied to the prediction filter 28 and the adder 12 to form a feedback loop. Similarly, adder 12 and adder 11 also constitute a feedback loop. The decoding device on the receiving side includes a buffer memory 4.
The received code stored in 2 is converted by the code decoder 40 into a code corresponding to the quantized output on the transmitting side, and then sent to the adder 13'.
supplied to The adder 13' adds the output of the eighth prediction filter 28', which has the same function as the transmission side prediction filter, and the output of the code decoder 40, and sends the result to the adder 12'.
and fed back to the prediction filter 28'. Similar loops are constructed for the second and first prediction filters 27' and 26'. If the decoding device is configured like this, the transfer characteristic W(z) from the input of adder 13' to the output of adder 1V will be the inverse characteristic of that of the encoding device as shown in equation (self). , a decoded signal n(Z) is obtained at the output of the adder 1V. n(Z) is converted by the digital/analog converter 41 into a color television signal called ti(t). n(t) is the original color television signal U(t
) plus quantization error. Since the dynamic range of the input to the quantization circuit is sufficiently suppressed by the prediction filter, the quantization error can be sufficiently reduced. Next, a specific method of configuring a prediction filter having transfer characteristics P1(z), P2(z), and P3(z) will be described.

まず、P1(z)は通常のフレーム遅延素子、すなわち
、シフトレジスタまたはメモリ素子により、1フレーム
遅延を実現すればよい。すなわち、フレーム周波数Fl
l、標本化周波数Fsに対して、F(=Fs/FF)標
本値の遅延を実現するこのときP1(z)=Z−Fとな
るから、関数{1−P1(z)}はであり、フレーム周
波数の整数倍の周波数で零になることがわかる。
First, P1(z) may be delayed by one frame using a normal frame delay element, that is, a shift register or a memory element. That is, the frame frequency Fl
l, for the sampling frequency Fs, realize the delay of the sample value F (= Fs / FF). In this case, P1 (z) = Z - F, so the function {1 - P1 (z)} is , it can be seen that it becomes zero at frequencies that are integral multiples of the frame frequency.

次に、P1(z)は関数{1−P2(z)}がライン周
波数FHの2分の1の奇数倍で1より充分小さくなるよ
うにすればよいので、の項を含めばよい。
Next, P1(z) can be set such that the function {1-P2(z)} is an odd multiple of 1/2 of the line frequency FH and is sufficiently smaller than 1, so it is sufficient to include the term.

これを満足する予測フイルタとしては、例えば第3図、
第4図、第5図に示すものが容易に実現できる。第3図
は、予測フイルタ27をH標本値遅延素子3と極性反転
器4で構成した場合を示す。
For example, a predictive filter that satisfies this requirement is shown in Fig. 3.
What is shown in FIGS. 4 and 5 can be easily realized. FIG. 3 shows a case where the prediction filter 27 is composed of an H sample value delay element 3 and a polarity inverter 4.

この場合、P2(z)=−Z−Hとなるから関数{1−
P2(z)}はであり、やはり搬送色信号成分を抑圧す
るフイルタになる。
In this case, P2(z)=-Z-H, so the function {1-
P2(z)} is also a filter that suppresses the carrier color signal component.

第5図は、H標本値遅延素子3を2個縦続して構成した
場合で、であり、やはり搬送色信号成分を抑圧するフイ
ルタとなる。
FIG. 5 shows a case in which two H sample value delay elements 3 are connected in series, which also serves as a filter for suppressing the carrier color signal component.

搬送色信号成分は上述の3つの予測フイルタのいづれで
も抑圧することができるが、信号のライン相関が一般に
予測距りが大きくなると減少するので、抑圧の効果はほ
ぼ第3図、第4図、第5図、の順に少なくなる。
The carrier color signal component can be suppressed by any of the three prediction filters mentioned above, but since the line correlation of the signal generally decreases as the prediction distance increases, the suppression effect is almost the same as that shown in FIGS. The number decreases in the order of Fig. 5.

一方、輝度信号成分に対する通過特性は、第3図の構成
では約2倍に増大し、第4図の構成ではほとんど平担で
、第5図の構成では抑圧される。第2の予測フイルタに
よる予測誤差は第3の予測フイルタでさらに抑圧される
ので、上述の3つの予測フイルタのどれを選択するかは
、第3の予測フイルタξの組合せで最も効率のよいもの
を選べばよい。次に、第3の予測フイルタ28の伝達特
性P3(z)を実現する方法について述べる。
On the other hand, the passage characteristic for the luminance signal component increases approximately twice in the configuration shown in FIG. 3, is almost flat in the configuration shown in FIG. 4, and is suppressed in the configuration shown in FIG. Since the prediction error caused by the second prediction filter is further suppressed by the third prediction filter, the most efficient combination of the third prediction filter ξ should be selected from among the three prediction filters mentioned above. All you have to do is choose. Next, a method for realizing the transfer characteristic P3(z) of the third predictive filter 28 will be described.

第3の予測手段は主に輝度信号成分を抑圧するためのも
のであるから関数{1−P3(z)}が(1−Z−1)
の項を含めばよい。したがつて、最も簡単な構成は、P
3(z)に1標本値遅延素子を用いる方法であり、これ
は通常の前値予測と同じである。P3(z)の他の構成
例として、第3の予測回路の入力(第1図のE2(z)
)に含まれる残留搬送色信号成分の予測誤差を低減する
ために{1−P3(z)}が副搬送波周波数Fscでも
1より充分小さくなるような構成が有効である。
Since the third prediction means is mainly for suppressing the luminance signal component, the function {1-P3(z)} is (1-Z-1)
It is sufficient to include the section. Therefore, the simplest configuration is P
This method uses a one-sample value delay element for 3(z), and this is the same as normal previous value prediction. As another configuration example of P3(z), the input of the third prediction circuit (E2(z) in FIG.
), it is effective to have a configuration in which {1-P3(z)} is sufficiently smaller than 1 even at subcarrier frequency Fsc.

第6図はその一例を示すもので、1標本値遅延素子Dを
4個と倍率0.5の乗算器5、減算器6、加算器7で構
成される。この場合関数{1−P3(z)}はであり、
標本化周波数FsをFscの約3倍に選べば、(自)式
は零周波数および副搬送波周波数Fscで1より充分小
さくなることがわかる。
FIG. 6 shows an example of this, which is composed of four one-sample value delay elements D, a multiplier 5 with a magnification of 0.5, a subtracter 6, and an adder 7. In this case the function {1-P3(z)} is
It can be seen that if the sampling frequency Fs is selected to be about three times Fsc, the formula (self) becomes sufficiently smaller than 1 at the zero frequency and the subcarrier frequency Fsc.

従つて、第3の予測手段により、残留輝度信号成分のみ
ならず残留搬送色信号成分をも抑圧することができる。
このような目的の予測フイルタはFsとFscの関係を
変えることにより、種々の変形が可能である。以上実施
例で述べたように本発明によれば、周波数多重化カラー
テレビ信号に何らの操作を加えることなく、直接予測符
号化でき、画質劣化の少ない効率よい符号化伝送が実現
できる。また、量子化回路に入る予測誤差信号には搬送
色信号成分が殆んど含まれていないので、白黒テレビ信
号の場合と同様の符号化動作の制御が可能である。すな
わち、被写体の動きに応じて、動きの非常に大きい場合
はサブサンプリングやフイールド繰返し等の制御を加え
、発生情報量の増大を防止する手法を適用することもで
き、伝送符号数を大巾に圧縮することができる。
Therefore, the third prediction means can suppress not only the residual luminance signal component but also the residual carrier color signal component.
A predictive filter for such a purpose can be modified in various ways by changing the relationship between Fs and Fsc. As described in the embodiments above, according to the present invention, direct predictive coding can be performed without adding any operation to a frequency multiplexed color television signal, and efficient coding transmission with little deterioration in image quality can be realized. Furthermore, since the prediction error signal entering the quantization circuit contains almost no carrier color signal component, it is possible to control the encoding operation in the same way as in the case of a monochrome television signal. In other words, depending on the movement of the subject, if the movement is very large, it is possible to apply controls such as subsampling and field repetition to prevent an increase in the amount of generated information, and to greatly reduce the number of transmission codes. Can be compressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の複合予測符号器の構成を示すプロツ
ク図、第2図は符号化復号化装置の構成を示すプロツク
図である。 第3図、第4図、第5図および第6図は予測フイルタの
具体的構成例を示すプロツク図である。21,22,2
3,6・・・・・・減算器、11,12,13,1V,
12!,13′,7・・・・・・加算器、26,27,
28,267,27′,287・・・・・・予測フイル
タ、25・・・・・・量子化回路、31・・・・・・ア
ナログ/デジタル変換器、41・・・・・・デジタル/
アナログ変換器、39・・・・・・符号変換器、40・
・・・・・符号復号器、38,42・・・・・・バツフ
アメモリ、3・・・・・・1ライン遅延素子、4,5・
・・・・・乗算器。
FIG. 1 is a block diagram showing the configuration of a composite predictive encoder of the present invention, and FIG. 2 is a block diagram showing the configuration of an encoding/decoding apparatus. FIGS. 3, 4, 5, and 6 are block diagrams showing specific examples of the construction of the prediction filter. 21, 22, 2
3, 6... Subtractor, 11, 12, 13, 1V,
12! , 13', 7... Adder, 26, 27,
28, 267, 27', 287...Prediction filter, 25...Quantization circuit, 31...Analog/digital converter, 41...Digital/
Analog converter, 39... Code converter, 40.
... code decoder, 38, 42 ... buffer memory, 3 ... 1 line delay element, 4, 5...
...multiplier.

Claims (1)

【特許請求の範囲】[Claims] 1 搬送色信号を含む複合カラーテレビ信号の予測符号
化伝送装置において、前フレーム内の標本値による予測
関数(1−P_1)は少なくともフレーム周波数の整数
倍の周波数近傍で、1ないし数ライン前の標本値による
予測関数(1−P_2)は少なくともライン周波数の2
分の1の奇数倍の周波数近傍で、同一走査線内の標本値
による予測関数(1−P_3)は少なくとも零周波数近
傍で、それぞれ1より充分小さくなるような第1、第2
および第3の予測手段と、前記第1、第2および第3の
予測手段により生ずる複合予測誤差をあらかじめ定めら
れた規則に従つて量子化し、符号化して伝送する手段と
を備え、符号化装置総合の伝達特性を(1−P_1)(
1−P_2)(1−P_3)になるように設定し、復号
化装置では伝達特性が符号化装置の逆特性となるように
設定することにより、復合カラーテレビ信号を分解する
ことなく予測符号化することを特徴とする複合予測符号
化復号化装置。
1. In a predictive coding transmission device for a composite color television signal including a carrier color signal, the prediction function (1-P_1) based on sample values in the previous frame is at least near a frequency that is an integer multiple of the frame frequency, and is based on one or several lines before. The prediction function (1-P_2) based on the sample value is at least 2 of the line frequency.
Near frequencies that are odd multiples of 1/2, the prediction function (1-P_3) based on sample values within the same scanning line is at least near zero frequency, and the first and second prediction functions are sufficiently smaller than 1, respectively.
and a third prediction means, and means for quantizing, encoding, and transmitting a composite prediction error generated by the first, second, and third prediction means according to a predetermined rule, the encoding device The overall transfer characteristic is (1-P_1)(
1-P_2) (1-P_3), and by setting the decoding device so that the transfer characteristic is the opposite of that of the encoding device, predictive coding can be performed without decomposing the decoded color television signal. A composite predictive encoding/decoding device.
JP50040619A 1975-04-03 1975-04-03 Composite predictive coding/decoding device for color television signals Expired JPS5937631B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP50040619A JPS5937631B2 (en) 1975-04-03 1975-04-03 Composite predictive coding/decoding device for color television signals
CA249,484A CA1085044A (en) 1975-04-03 1976-04-02 Composite feedback predictive code communication system for a color tv signal including a carrier chrominance signal
US05/673,327 US4075655A (en) 1975-04-03 1976-04-05 Composite feedback predictive code communication system for a color tv signal including a carrier chrominance signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50040619A JPS5937631B2 (en) 1975-04-03 1975-04-03 Composite predictive coding/decoding device for color television signals

Publications (2)

Publication Number Publication Date
JPS51115727A JPS51115727A (en) 1976-10-12
JPS5937631B2 true JPS5937631B2 (en) 1984-09-11

Family

ID=12585534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50040619A Expired JPS5937631B2 (en) 1975-04-03 1975-04-03 Composite predictive coding/decoding device for color television signals

Country Status (1)

Country Link
JP (1) JPS5937631B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0934615A (en) * 1995-07-24 1997-02-07 Nec Corp Portable information terminal
DE112018001723T5 (en) 2017-03-31 2019-12-19 Honda Motor Co., Ltd. Non-contact energy transmission system
US10640002B2 (en) 2017-05-24 2020-05-05 Honda Motor Co., Ltd. Non-contact power transmission system
US10847990B2 (en) 2017-03-31 2020-11-24 Honda Motor Co., Ltd. Non-contact power transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0934615A (en) * 1995-07-24 1997-02-07 Nec Corp Portable information terminal
DE112018001723T5 (en) 2017-03-31 2019-12-19 Honda Motor Co., Ltd. Non-contact energy transmission system
US10847990B2 (en) 2017-03-31 2020-11-24 Honda Motor Co., Ltd. Non-contact power transmission system
US10640002B2 (en) 2017-05-24 2020-05-05 Honda Motor Co., Ltd. Non-contact power transmission system

Also Published As

Publication number Publication date
JPS51115727A (en) 1976-10-12

Similar Documents

Publication Publication Date Title
US5973739A (en) Layered video coder
US5089889A (en) Apparatus for inter-frame predictive encoding of video signal
JP2778412B2 (en) Motion compensated interframe composite TV signal direct encoding device
US5005076A (en) DCT video signal compression device with intrafield/interfield switching and adjustable high frequency filter
US3921204A (en) Digital encoding system
US4797742A (en) Divisional image transmission system and method
CA1085044A (en) Composite feedback predictive code communication system for a color tv signal including a carrier chrominance signal
US4791483A (en) Adaptive differential pulse code modulation video encoder
EP0510975B1 (en) Efficient coding/decoding apparatus for processing digital image signal
FI108597B (en) A system comprising at least one encoder for encoding a digital signal and at least one decoder for decoding a coded signal, and an encoder and decoder for use in the system
US4202011A (en) Television signal coder
JPH0813151B2 (en) Color video signal encoding method and encoding circuit
JPH06189281A (en) Video signal encoding device using compression of adaptive frame/field format
US4745474A (en) Two resolution level DPCM system
US4780760A (en) DPCM system with interframe motion indicator signal
US4837617A (en) Method and means for coding and decoding picture information
JPS5937631B2 (en) Composite predictive coding/decoding device for color television signals
US5323188A (en) DPCM predictive encoder
JP3227813B2 (en) Digital image transmission device, digital image transmission method, digital image transmission system, and digital image transmission / reception method
JPS6127949B2 (en)
JPH02288695A (en) Picture coding and decoding device
JPS5923148B2 (en) Encoder/decoder for narrowband color television signals
JPS5927512B2 (en) Interframe coding device for color television signals
JP2598416B2 (en) Compound differential prediction coding method
JPH0389689A (en) Coding device for moving picture signal