JPS5937620B2 - Carrier wave current source switching circuit - Google Patents

Carrier wave current source switching circuit

Info

Publication number
JPS5937620B2
JPS5937620B2 JP6886279A JP6886279A JPS5937620B2 JP S5937620 B2 JPS5937620 B2 JP S5937620B2 JP 6886279 A JP6886279 A JP 6886279A JP 6886279 A JP6886279 A JP 6886279A JP S5937620 B2 JPS5937620 B2 JP S5937620B2
Authority
JP
Japan
Prior art keywords
output
switching relay
circuit
current source
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6886279A
Other languages
Japanese (ja)
Other versions
JPS55161431A (en
Inventor
和彦 中村
潤治 「ふな」津
光雄 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP6886279A priority Critical patent/JPS5937620B2/en
Publication of JPS55161431A publication Critical patent/JPS55161431A/en
Publication of JPS5937620B2 publication Critical patent/JPS5937620B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/74Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Description

【発明の詳細な説明】 本発明は搬送装置等に用いられる搬送波電流源切替回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carrier wave current source switching circuit used in a carrier device or the like.

従来の搬送波電流源切替回路の一例を第1図に示す。An example of a conventional carrier wave current source switching circuit is shown in FIG.

第1図で、Nは第1の搬送波電流発生回路、Eは第2の
搬送波電流発生回路、1は第1の搬送波電流源、2は第
1のレベル検出回路、3は制御リレー、4は制御リレー
3の接点、5は第1の切替リレー、6、12はコンデン
サ、T、13は抵抗、8、14は擬似負荷、9はリレー
5の接点、10は第2の搬送波電流源、11は第2の切
替リレー、15はリレー11の接点、16は出力端子、
17、18は電源端子である。第1図において、第1の
搬送波電流源1が正常の場合、レベル検出回路2により
制御リレー3が動作しており、該リレーの接点4は実線
で示す状態にあり、第1の切替リレー5には電流が流れ
ず非動作でその接点9は実線で示す状態にある。
In FIG. 1, N is the first carrier current generation circuit, E is the second carrier current generation circuit, 1 is the first carrier current source, 2 is the first level detection circuit, 3 is the control relay, and 4 is the Contacts of control relay 3, 5 is first switching relay, 6, 12 are capacitors, T, 13 are resistors, 8, 14 are pseudo loads, 9 is contact of relay 5, 10 is second carrier wave current source, 11 is the second switching relay, 15 is the contact of relay 11, 16 is the output terminal,
17 and 18 are power supply terminals. In FIG. 1, when the first carrier wave current source 1 is normal, the control relay 3 is operated by the level detection circuit 2, the contact 4 of this relay is in the state shown by the solid line, and the first switching relay 5 No current flows through the contact 9, which is inactive and the contact 9 is in the state shown by the solid line.

また第2の切替リレー11には電流が流れ、動作してお
り、その接点15は実線で示す状態にある。従つて第1
の搬送波電流源1からの出力電流が出力端子16に送出
されている。次に搬送波電流源1が障害となつた場合・
レにル検出回路2で出力障害が検出され、制御リレー3
は復旧し、その接点4は破線で示す状態となり、第2の
切替リレー11が復旧し、その接点15は破線で示す状
態となり、かつ第1の切替リレー5が動作し、その接点
9は破線で示す状態となる。
In addition, current flows through the second switching relay 11 and it is operating, and its contact 15 is in the state shown by the solid line. Therefore, the first
An output current from the carrier wave current source 1 is sent to the output terminal 16. Next, if carrier wave current source 1 becomes a failure,
An output fault is detected by the relay detection circuit 2, and the control relay 3
is restored, its contact 4 is in the state shown by the broken line, the second switching relay 11 is restored, its contact 15 is in the state shown by the broken line, and the first switching relay 5 is activated, and its contact 9 is in the state shown by the broken line. The state shown is as follows.

従つて第1の搬送波電流源1は擬似負荷8に終端され、
第2の搬送波電流源10からの出力電流が出力端子16
に送出される。コンデンサ12および抵抗13は第2の
切替リレー11を緩復旧させるものであり、これは制御
リレー3の接点4のチヤツタリングや切替リレー5,1
1の動作および復旧時間の違いにより第2の切替リレー
11の復日が、第1の切替リレー5の動作より先に行な
われて、第1と第2の搬送波電流源1,10からの出力
電流が出力端子16に同時に送出されるのを防ぐためで
ある。なおコンデンサ6、および抵抗7は第1の切替リ
レー5の動作時には作用せず切替リレー5の動作ぱ速動
である。第1の搬送波電流源1の障害が復旧した場合は
、レベル検出回路2により制御リレー3が動作し、その
接点4は実線で示す状態に戻り第1の切替リレー5が復
旧し、かつ第2の切替リレー11が動作する。
The first carrier current source 1 is therefore terminated to a pseudo load 8,
The output current from the second carrier current source 10 is output to the output terminal 16.
will be sent to. The capacitor 12 and the resistor 13 are used to slowly restore the second switching relay 11, which is caused by the chatter of the contact 4 of the control relay 3 and the switching relays 5 and
Due to the difference in the operation and recovery time of the first switching relay 5, the second switching relay 11 is operated before the first switching relay 5, and the outputs from the first and second carrier wave current sources 1 and 10 are This is to prevent currents from being sent to the output terminals 16 at the same time. Incidentally, the capacitor 6 and the resistor 7 do not act when the first switching relay 5 is operated, and the switching relay 5 operates quickly. When the fault in the first carrier wave current source 1 is recovered, the control relay 3 is activated by the level detection circuit 2, its contact 4 returns to the state shown by the solid line, the first switching relay 5 is restored, and the second The switching relay 11 operates.

その両リレーの接点9,15は実線で示す状態に戻り、
第2の搬送波電流源10の出力電流は擬似負荷14に終
端され、第1の搬送波電流源1からの出力電流が出力端
子16に送出される。この場合も第1の搬送波電流源1
から第2の搬送波電流源10に切替るときと同じ理由に
より、第2の切替リレー11は速動、第1の切替リレー
5はコンデンサ6、抵抗7の作用により緩復旧となる。
以上説明した従来の回路では、第1、第2の搬送波電流
源1,10からの出力電流が出力端子16に同時に送出
されないようにするため、第1、第2の切替リレー5,
11の巻線に並列にコンデンサ、抵抗6,7,12,1
3を図のように接続することにより、該リレー5,11
を速動緩復旧となるようにしている。
The contacts 9 and 15 of both relays return to the state shown by the solid line,
The output current of the second carrier current source 10 is terminated to the pseudo load 14, and the output current from the first carrier current source 1 is sent to the output terminal 16. In this case as well, the first carrier current source 1
For the same reason as when switching from to the second carrier wave current source 10, the second switching relay 11 operates quickly, and the first switching relay 5 operates slowly due to the action of the capacitor 6 and resistor 7.
In the conventional circuit described above, in order to prevent the output currents from the first and second carrier wave current sources 1 and 10 from being simultaneously sent to the output terminal 16, the first and second switching relays 5,
Capacitor, resistor 6, 7, 12, 1 in parallel with winding 11
By connecting 3 as shown in the figure, the relays 5 and 11
We are trying to achieve a fast-paced recovery.

この方法の場合、復旧時間はリレーの開放電流のバラツ
キにより変化するため製造段階で抵抗、コンデンサの値
を調整する必要がある。また電源電圧の変動は直接復旧
時間の変化となるため、第1、第2の搬送波電流源1,
10からの出力電流が出力端子16から同時に送出され
ないようにするには切替リレー5,11の復旧時間を安
全をみて長くする必要があり、必然的に切替時間も長く
なる。即ち瞬断時間が長くなる。また制御リレー3は高
速でチヤツタリングの少ないものを使用する必要があり
、そのリレーの選択に制限を受ける。本発明はこれらの
欠点を解決するため、切替リレーの駆動に反転回路と、
速動緩復旧特性を有する切替リレー駆動回路を使用した
構成の搬送波電流源切替回路であり、以下詳細に説明す
る。
In the case of this method, the recovery time changes depending on the variation in the open current of the relay, so it is necessary to adjust the values of the resistor and capacitor at the manufacturing stage. In addition, since fluctuations in the power supply voltage directly result in changes in the recovery time, the first and second carrier current sources 1,
In order to prevent output currents from output terminals 10 from being simultaneously sent out from output terminals 16, it is necessary to lengthen the recovery time of switching relays 5 and 11 for safety reasons, and the switching time will inevitably become longer. In other words, the momentary interruption time becomes longer. Furthermore, it is necessary to use a control relay 3 that is high speed and has little chatter, and there are restrictions on the selection of the relay. In order to solve these drawbacks, the present invention uses an inverting circuit to drive the switching relay,
This is a carrier wave current source switching circuit configured using a switching relay drive circuit having fast-acting-slow recovery characteristics, and will be described in detail below.

第2図は本発明の実施例であつて、Nは第1の搬送波電
流発生回路、Eは第2の搬送波電流発生回路、100は
第1の搬送波電流源、101はレベル検出回路、102
は反転回路、103は速動緩復旧特性を有する第1の切
替リレー駆動回路、104は第1の切替リレー、105
は切替リレー104の接点、106,111は擬似負荷
、1mは第2の搬送波電流源、108は速動緩復旧特性
を有する第2の切替リレー駆動回路、109は第2の切
替リレー、110は切替リレー109の接点、112は
出力端子、113,114は電源端子である。第2図に
おいて第1の搬送波電流源100が正常の場合、第1の
切替リレー104は非動作状態、第2の切替リレー10
9は動作状態となるように反転回路102、切替リレ―
駆動回路103および108は設定してあり、第1の切
替リレー104の接点105は実線で示すように出力端
子112側に接続され、第2の切替リレー109の接点
110は実線で示すように擬似負荷111側に接続され
ている。
FIG. 2 shows an embodiment of the present invention, in which N is a first carrier current generation circuit, E is a second carrier current generation circuit, 100 is a first carrier current source, 101 is a level detection circuit, and 102 is a first carrier current generation circuit.
103 is a first switching relay drive circuit having fast-acting and slow recovery characteristics; 104 is a first switching relay; 105 is an inverting circuit;
is a contact of the switching relay 104, 106 and 111 are pseudo loads, 1 m is a second carrier wave current source, 108 is a second switching relay drive circuit having fast-acting and slow recovery characteristics, 109 is a second switching relay, and 110 is a Contact points of the switching relay 109, 112 are output terminals, and 113 and 114 are power terminals. In FIG. 2, when the first carrier current source 100 is normal, the first switching relay 104 is in the non-operating state, and the second switching relay 10
9 is an inverting circuit 102 and a switching relay so as to be in an operating state.
The drive circuits 103 and 108 are set, the contact 105 of the first switching relay 104 is connected to the output terminal 112 side as shown by the solid line, and the contact 110 of the second switching relay 109 is connected to the pseudo terminal as shown by the solid line. It is connected to the load 111 side.

従つて第1の搬送波電流源100の出力電流が出力端子
112に送出される。第1の搬送波電流源100が障害
となつた場合、レベル検出回路101により検出された
出力により、反転回路102および速動緩復旧特性を有
する第1の切替リレー駆動回路103により前記の状態
と逆の状態となる。即ち、第1の切替リレー駆動回路1
03はレベル検出回路101の出力を受け、第1の切替
リレー104を直ちに動作させ、その接点105は破線
で示す状態となり、第1の搬送波電流源100の出力電
流は擬似負荷106に終端される。一方レベル検出回路
101の出力は反転回路102にも与えられ、その出力
は第2の切替リレー駆動回路108に与えられる。第2
の切替リレー109は第1の搬送波電流源100が正常
時には動作状態となつているが、反転回路102の出力
により第2の切替リレー駆動回路108の出力が反転し
て第2の切替リレー109は復旧する。第2の切替リレ
ー駆動回路108は第2の切替リレー109の復旧に対
して遅延特性、即ち緩復旧特性を有しており、第2の切
替リレー109は緩復旧する。従つて第1の切替リレー
104の接点105が動作して破線で示す状態となつた
後で、第2の切替リレー109の接点110が復旧して
破線で示す状態となり、第2の搬送波電流源107の出
力電流が出力端子112へ送出されることになり、第1
、第2の出力電流が同時に出力端子112へ送出される
ことはない。第1の搬送波電流源100が正常に復した
場合、レベル検出回路101の出力は元に戻り、第1、
第2の切替リレー駆動回路103,108の出力は反転
し、第1、第2の切替リレー104,109は元の状態
に復し、接点105,110は実線の状態にもどる。こ
の場合も第1の切替リレー駆動回路103は緩復旧特性
を有しているので、第2の切替リレー109の接点11
0が実線で示す状態となつた後で、第1の切替リレー1
04の接点105が復旧して実線で示す状態となり、第
1の搬送波電流源100の出力電流が出力端子112に
送出され、第1と第2の出力電流が同時に出力端子11
2から送出されることはない。次に速動緩復旧特性をも
つた切替リレー駆動回路について説明する。
The output current of the first carrier current source 100 is therefore delivered to the output terminal 112. When the first carrier wave current source 100 becomes a failure, the output detected by the level detection circuit 101 causes the inversion circuit 102 and the first switching relay drive circuit 103 having fast-acting-slow recovery characteristics to reverse the above state. The state will be as follows. That is, the first switching relay drive circuit 1
03 receives the output of the level detection circuit 101 and immediately operates the first switching relay 104, its contact 105 is in the state shown by the broken line, and the output current of the first carrier wave current source 100 is terminated to the pseudo load 106. . On the other hand, the output of the level detection circuit 101 is also given to an inversion circuit 102, and its output is given to a second switching relay drive circuit 108. Second
The switching relay 109 is in an operating state when the first carrier wave current source 100 is normal, but the output of the second switching relay drive circuit 108 is inverted by the output of the inverting circuit 102, and the second switching relay 109 is in an operating state. Recover. The second switching relay drive circuit 108 has a delay characteristic, that is, a slow recovery characteristic for the recovery of the second switching relay 109, and the second switching relay 109 recovers slowly. Therefore, after the contact 105 of the first switching relay 104 operates and enters the state shown by the broken line, the contact 110 of the second switching relay 109 recovers and enters the state shown by the broken line, and the second carrier wave current source 107 output current will be sent to the output terminal 112, and the first
, the second output currents are not delivered to the output terminal 112 at the same time. When the first carrier wave current source 100 returns to normal, the output of the level detection circuit 101 returns to the original state, and the first,
The outputs of the second switching relay drive circuits 103 and 108 are inverted, the first and second switching relays 104 and 109 return to their original states, and the contacts 105 and 110 return to their solid line states. In this case as well, since the first switching relay drive circuit 103 has a slow recovery characteristic, the contact 11 of the second switching relay 109
0 becomes the state shown by the solid line, the first switching relay 1
04 contact 105 is restored to the state shown by the solid line, the output current of the first carrier wave current source 100 is sent to the output terminal 112, and the first and second output currents are simultaneously sent to the output terminal 11.
It is never sent from 2. Next, a switching relay drive circuit with quick action and slow recovery characteristics will be explained.

第3図は第2図の第1、第2の切替リレ→躯動回路10
3,108の詳細図である。第3図においてD1はダイ
オード、Rl,R2,R3は抵抗、C1はコンデンサ、
IClは第2図におけるレベル検出回路101もしくは
反転回路102。の出力回路、IC2は演算増幅器、R
Llは第2図における切替リレー104もしくは109
に該当するリレー、150は本回路の入力端子、151
は電源端子、152は本回路の出力端子、またVINは
入力端子150の電圧、V+は演算増幅器C2の非反転
入力端子電圧、V−は演算増幅器1C2の反転入力端子
電圧、VOUTは演算増幅器1C2の出力電圧、eは電
源電圧を示す。本回路の入力電圧INは地気または電源
電圧であり、搬送波電流源の障害または障害復旧した時
にステツブ状に変化する。
Figure 3 shows the first and second switching relays in Figure 2 → rotation circuit 10
3,108 is a detailed diagram. In Figure 3, D1 is a diode, Rl, R2, R3 are resistors, C1 is a capacitor,
ICl is the level detection circuit 101 or inversion circuit 102 in FIG. output circuit, IC2 is an operational amplifier, R
Ll is the switching relay 104 or 109 in FIG.
The relay corresponding to , 150 is the input terminal of this circuit, 151
is the power supply terminal, 152 is the output terminal of this circuit, VIN is the voltage of the input terminal 150, V+ is the non-inverting input terminal voltage of operational amplifier C2, V- is the inverting input terminal voltage of operational amplifier 1C2, and VOUT is the operational amplifier 1C2. The output voltage of , e indicates the power supply voltage. The input voltage IN of this circuit is the ground voltage or power supply voltage, and changes in a stepwise manner when the carrier wave current source fails or the failure is recovered.

今人力電圧VlNが電源電圧から地気に変化する場合、
反転入力電圧V−は抵抗R1とコンデンサC1からなる
積分回路の抵抗R1に並列に、かつ入力端子から演算増
幅器へ向けて順方向となるように接続したダイオードD
1の順方向抵抗RFとコンデンサC1によつて定まる時
定数ClRFに従つて変化し、抵抗R2,R3によつて
設定される非反転入力電圧+を超えた時に演算増幅器1
C2の出力電圧0UTはステツプ状に地気から電源電圧
に変化する。また、入力電圧INが地気から電源電圧に
変化する場合は反転入力電圧V−はダイオードD1の逆
方向抵抗が十分大きく無視できるので抵抗R1とコンデ
ンサC1によつて定まる時定数ClRlに従つて変化し
、非反転入力電圧V+を超えた時に演算増幅器1C2の
出力電圧VOu?まステツプ状に電源電圧から地気に変
化する。従つて入力電圧VlNがステツプ状に変化して
から出力電圧VOUTがステツプ状に変化するまでの時
間は入力電圧VINが電源電圧から地気に変化する場合
と、地気から電源電圧に変化する場合とでは、時定数C
lRFとClRlの相違する分だけ異なる。例えば非反
転入力電圧V+を電源電圧eの%となるように抵抗R2
,R,を選べば、入力電圧VINが電源電圧eから地気
にステツプ状に変化した時、反転入力電圧一が電源電圧
からe/2に達するまでの時間は周知の如くClRFl
Og82であり、入力電圧VINが地気から電源電圧e
にステツプ状に変化した時、反転入力電圧−が地気から
e/2に達するまでの時間はClRllOg82である
If the human power voltage VIN changes from the power supply voltage to the earth voltage,
The inverted input voltage V- is applied to a diode D connected in parallel to the resistor R1 of an integrating circuit consisting of a resistor R1 and a capacitor C1, and in a forward direction from the input terminal to the operational amplifier.
The operational amplifier 1 changes according to the time constant ClRF determined by the forward resistance RF of 1 and the capacitor C1, and exceeds the non-inverting input voltage + set by the resistors R2 and R3.
The output voltage 0UT of C2 changes stepwise from the ground voltage to the power supply voltage. Furthermore, when the input voltage IN changes from the ground voltage to the power supply voltage, the inverted input voltage V- changes according to the time constant ClRl determined by the resistor R1 and the capacitor C1, since the reverse resistance of the diode D1 is sufficiently large and can be ignored. However, when the non-inverting input voltage V+ is exceeded, the output voltage VOu of the operational amplifier 1C2? It changes from the power supply voltage to the earth voltage in steps. Therefore, the time from when the input voltage VIN changes stepwise until the output voltage VOUT changes stepwise is the same when the input voltage VIN changes from the power supply voltage to the ground voltage and when it changes from the ground voltage to the power supply voltage. So, the time constant C
They differ by the difference between lRF and ClRl. For example, resistor R2 so that the non-inverting input voltage V+ becomes % of the power supply voltage e
, R, when the input voltage VIN changes stepwise from the power supply voltage e to the earth, the time it takes for the inverted input voltage 1 to reach e/2 from the power supply voltage is ClRFl, as is well known.
Og82, and the input voltage VIN is from the earth to the power supply voltage e
The time it takes for the inverted input voltage - to reach e/2 from ground level is ClRllOg82.

この時間関係は電源電圧eが変動しても変化しない。即
ち前述したように入力電圧INは地気または電源電圧e
であり、また非反転入力電圧+は電源電圧eの%となる
ように抵抗R2,R3で分割してあるため、電源電圧e
が変動しても電圧はe/2である。従つて反転人力電圧
V−が地気または電源電圧eよりe/2に達する時間は
やはりClRllOg82およびClRFlOg82と
なり、電源電圧の変動には影響されない。従つて従来の
回路第1図の例のように切替リレーの緩復旧時間を必要
以上に長くする必要はない。また従来のリレー駆動回路
では緩復旧特性を得ようとすると第3図におけるダイオ
ードD1がなかつたため、動作時も積分回路の抵抗R1
、コンデンサC1の作用で緩動作特性となつていたが、
本回路第3図のようにダイオードD1を抵抗R1に並列
に接続すれば、該ダイオードD,の順方向抵抗RFは一
般に小さな値であり、抵抗R1をダイオードD1の順方
向抵抗RFに比べて大きな値に選ぶことにより、動作時
間ClRFlmg82は極めて小さく、復旧時間ClR
llOgO2を大きくすることは容易で、第2図におけ
る第1、第2の切替リレー104,109を電源電圧変
動に関係なく安定にかつ必要以上に復旧時間が長くなら
ないように速動緩復旧させることができる。更に従来の
回路第1図のように制御リレー3を設けない構成となる
ので、そのリレーの接点のチヤツタリング等を防止する
ことを考える必要はない。以上説明したように本発明に
よれば、第1、第2の搬送電流源の切替にあたり、反転
回路および速動緩復旧特性を有する切替リレー駆動回路
を用いる構成により、切替時間を短縮し、電源電圧変動
に影響されない安定な切替回路を安価に提供できる。
This time relationship does not change even if the power supply voltage e changes. That is, as mentioned above, the input voltage IN is the earth's voltage or the power supply voltage e.
, and since the non-inverting input voltage + is divided by resistors R2 and R3 so that it becomes % of the power supply voltage e, the power supply voltage e
Even if the voltage changes, the voltage is e/2. Therefore, the time required for the inverted human power voltage V- to reach e/2 from the ground voltage or the power supply voltage e is still ClRllOg82 and ClRFlOg82, and is not affected by fluctuations in the power supply voltage. Therefore, unlike the example of the conventional circuit shown in FIG. 1, there is no need to make the slow recovery time of the switching relay longer than necessary. In addition, in the conventional relay drive circuit, when trying to obtain a slow recovery characteristic, the diode D1 in Fig. 3 was not provided, so the resistor R1 of the integrating circuit was also used during operation.
, it had a slow operating characteristic due to the action of capacitor C1, but
If the diode D1 is connected in parallel with the resistor R1 as shown in FIG. By choosing this value, the operating time ClRFlmg82 is extremely small and the recovery time ClR
It is easy to increase llOgO2, and the first and second switching relays 104 and 109 in FIG. 2 can be quickly and slowly restored in a stable manner regardless of power supply voltage fluctuations and so that the restoration time does not become longer than necessary. I can do it. Furthermore, unlike the conventional circuit shown in FIG. 1, since the control relay 3 is not provided, there is no need to consider preventing chatter of the contacts of the relay. As explained above, according to the present invention, when switching between the first and second carrier current sources, the switching time can be shortened by using a switching relay drive circuit having an inverting circuit and a fast-acting-slow recovery characteristic. A stable switching circuit that is not affected by voltage fluctuations can be provided at low cost.

このような利点がある本発明による切替回路は搬送装置
のみならず、例えば信号機の常用予備切替回路等にも応
用できるものである。
The switching circuit according to the present invention, which has such advantages, can be applied not only to conveyance devices but also, for example, to regular standby switching circuits for traffic lights.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の搬送波電流源切替回路のプロツク図、第
2図は本発明の実施例のプロツク図、第3図は本発明の
実施例で使用した切替リレー駆動回路の回路図である。 Nは第1の搬送波電流発生回路、Eは第2の搬送電流発
生回路、1,100は第1の搬送波電流源、2,101
はレベル検出器、3は制御リレー4は制御リレー3の接
点、5,104は第1の切替リレー、6,12はコンデ
ンサ、7,13は抵抗、8,14,106,111は擬
似負荷、9,105は第1の切替リレー5,104の接
点、10,107は第2の搬送波電流源、11,109
は第2の切替リレー、15,110は第2の切替リレー
11,109の接点、16,112は出力端子、102
は反転回路、103は第1の切替リレー駆動回路、10
8は第2の切替リレー駆動回路、17,18,113,
114は電源端子、150は入力端子、151は電源端
子、152は出力端子、IClは反転回路もしくはレベ
ル検出器の出力回路、IC2は演算増幅器、D1はダイ
オード、Rl,R2,R3は抵抗、RLlは切替リレー
C1はコンデンサ、VINは入力端子150の入力電圧
、+は演算増幅器1C2の非反転入力電圧、−は演算増
幅器1C2の反転人力電圧、0UTは演算増幅器1C2
の出力電圧、eは電源電圧を示す。
FIG. 1 is a block diagram of a conventional carrier wave current source switching circuit, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a circuit diagram of a switching relay drive circuit used in an embodiment of the present invention. N is the first carrier current generation circuit, E is the second carrier current generation circuit, 1,100 is the first carrier current source, 2,101
is a level detector, 3 is a control relay 4 is a contact of control relay 3, 5, 104 is a first switching relay, 6, 12 is a capacitor, 7, 13 is a resistor, 8, 14, 106, 111 is a pseudo load, 9,105 is a contact of the first switching relay 5,104, 10,107 is a second carrier wave current source, 11,109
is the second switching relay, 15, 110 is the contact of the second switching relay 11, 109, 16, 112 is the output terminal, 102
103 is an inverting circuit, 103 is a first switching relay drive circuit, and 10
8 is a second switching relay drive circuit, 17, 18, 113,
114 is a power supply terminal, 150 is an input terminal, 151 is a power supply terminal, 152 is an output terminal, ICl is an inverting circuit or an output circuit of a level detector, IC2 is an operational amplifier, D1 is a diode, Rl, R2, R3 are resistors, RLl is the switching relay C1 is the capacitor, VIN is the input voltage of the input terminal 150, + is the non-inverting input voltage of the operational amplifier 1C2, - is the inverted human input voltage of the operational amplifier 1C2, 0UT is the operational amplifier 1C2
The output voltage of , e indicates the power supply voltage.

Claims (1)

【特許請求の範囲】 1 負荷に対して、常時は第1の搬送波電流源から搬送
波電流を供給し、第1の搬送波電流源の出力レベルが異
常時は第2の搬送波電流源から搬送波電流を供給するよ
うにした搬送装置等の搬送波電流源切替回路において、
第1の搬送波電流源の出力レベルが正常時のレベル検出
回路の出力を受けた速動緩復旧特性を有する第1の切替
リレー駆動回路の出力で第1の切替リレーを復旧状態と
すると共に、前記正常時のレベル検出回路の出力による
反転回路の出力を受けた速動緩復旧特性を有する第2の
切替リレー駆動回路の出力で第2の切替リレーを動作状
態とし、第1の搬送波電流源の出力レベルが異常時のレ
ベル検出回路の出力を受けた第1の切替リレー駆動回路
の出力で第1の切替リレーを動作状態とすると共に、前
記異常時のレベル検出回路出力による反転回路の出力を
受けた第2の切替リレー駆動回路の出力で第2の切替リ
レーを復旧状態とし、かつ、前記第1の切替リレーの接
点を第1の搬送波電流源と負荷とに介在させ、第2の切
替リレーの接点を第2の搬送波電流源と負荷とに介在さ
せるように構成したことを特徴とする搬送波電流源切替
回路。 2 切替リレー駆動回路として、入力電圧を積分回路を
経て演算増幅器に与え、該演算増幅器の出力電圧で切替
リレーを駆動する回路構成とし、かつ、抵抗とコンデン
サから成る前記積分回路において該抵抗に並列にダイオ
ードを入力端子から演算増幅器へ向けて順方向となるよ
うに接続し、速動緩復旧特性をもたせた回路とした特許
請求の範囲第1項記載の搬送波電流源切替回路。
[Claims] 1. A carrier current is normally supplied to the load from a first carrier current source, and when the output level of the first carrier current source is abnormal, a carrier current is supplied from a second carrier current source. In a carrier wave current source switching circuit of a carrier device, etc., which supplies
Bringing the first switching relay into a recovery state with the output of a first switching relay drive circuit having a quick-slow recovery characteristic that receives the output of the level detection circuit when the output level of the first carrier current source is normal; The second switching relay is activated by the output of the second switching relay drive circuit having fast-acting and slow recovery characteristics, which receives the output of the inversion circuit based on the output of the level detection circuit during normal operation, and the first carrier wave current source is activated. The output level of the first switching relay is activated by the output of the first switching relay drive circuit that receives the output of the level detection circuit when the output level is abnormal, and the output of the inverting circuit is caused by the output of the level detection circuit when the output level is abnormal. The second switching relay is put into a recovery state by the output of the second switching relay drive circuit that receives the signal, and the contact of the first switching relay is interposed between the first carrier wave current source and the load, and the second switching relay is A carrier wave current source switching circuit characterized in that a contact point of a switching relay is arranged between a second carrier wave current source and a load. 2. The switching relay drive circuit has a circuit configuration in which the input voltage is applied to an operational amplifier via an integrating circuit, and the switching relay is driven by the output voltage of the operational amplifier, and in the integrating circuit consisting of a resistor and a capacitor, the input voltage is applied in parallel to the resistor. 2. The carrier wave current source switching circuit according to claim 1, wherein a diode is connected in a forward direction from the input terminal to the operational amplifier to provide a fast-acting-slow recovery characteristic.
JP6886279A 1979-06-04 1979-06-04 Carrier wave current source switching circuit Expired JPS5937620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6886279A JPS5937620B2 (en) 1979-06-04 1979-06-04 Carrier wave current source switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6886279A JPS5937620B2 (en) 1979-06-04 1979-06-04 Carrier wave current source switching circuit

Publications (2)

Publication Number Publication Date
JPS55161431A JPS55161431A (en) 1980-12-16
JPS5937620B2 true JPS5937620B2 (en) 1984-09-11

Family

ID=13385894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6886279A Expired JPS5937620B2 (en) 1979-06-04 1979-06-04 Carrier wave current source switching circuit

Country Status (1)

Country Link
JP (1) JPS5937620B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240021A (en) * 1988-03-22 1989-09-25 Nec Corp Transmission system switching equipment for multi-direction multiplex communication equipment
JPH02100352U (en) * 1989-01-26 1990-08-09

Also Published As

Publication number Publication date
JPS55161431A (en) 1980-12-16

Similar Documents

Publication Publication Date Title
CN112713642A (en) Power supply detection switching control circuit
JPS5937620B2 (en) Carrier wave current source switching circuit
JPS5861030A (en) Lamp flickering circuit for car
US4451778A (en) Short-circuit-resistant trigger circuit layout for an electrical consumer
US4551637A (en) Electronic monitoring system with direct-current power supply
JP3472407B2 (en) Parallel current balance type redundant operation circuit
KR970015168A (en) Battery breakdown circuit of electric vehicle
SU502467A1 (en) Redundant converter
JP3227644B2 (en) Switching power supply circuit
GB1604435A (en) Electrical circuit with load continuity detector
JPS6319097A (en) Line abnormality monitor
JPH0234027A (en) Solid-state relay
JPH0742202Y2 (en) Power supply device for fire alarm equipment
SU603054A1 (en) Device for automatic switching of users
JPH0246133A (en) Semiconductor device
JPH0229441Y2 (en)
JPH0223886B2 (en)
JPH0717241Y2 (en) Battery backup circuit
JPS5850020A (en) Constant voltage circuit protected from short-circuit
SU1029313A1 (en) Device for protection of static voltage converter
DE19648905A1 (en) Switching circuit for monitoring three-phase mains safety
SU1091124A1 (en) Device for tolerance checking of voltages
CN117767221A (en) Load protection circuit and method
JP2588620B2 (en) Switching control circuit
JPH0583847A (en) Alarm detector power supply unit