JPS5937558B2 - Power synchronized sine wave type X-ray tube voltage stabilization device - Google Patents

Power synchronized sine wave type X-ray tube voltage stabilization device

Info

Publication number
JPS5937558B2
JPS5937558B2 JP10883378A JP10883378A JPS5937558B2 JP S5937558 B2 JPS5937558 B2 JP S5937558B2 JP 10883378 A JP10883378 A JP 10883378A JP 10883378 A JP10883378 A JP 10883378A JP S5937558 B2 JPS5937558 B2 JP S5937558B2
Authority
JP
Japan
Prior art keywords
sine wave
voltage
circuit
power
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10883378A
Other languages
Japanese (ja)
Other versions
JPS5535456A (en
Inventor
通 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Roentgen Industries Co Ltd
Original Assignee
Asahi Roentgen Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Roentgen Industries Co Ltd filed Critical Asahi Roentgen Industries Co Ltd
Priority to JP10883378A priority Critical patent/JPS5937558B2/en
Publication of JPS5535456A publication Critical patent/JPS5535456A/en
Publication of JPS5937558B2 publication Critical patent/JPS5937558B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/32Supply voltage of the X-ray apparatus or tube

Description

【発明の詳細な説明】 この発明はX線装置において電源電圧およびX線管電流
の変化に対するX線管電圧の補正を自動的に行ない常に
安定した設定管電圧が得られるとともにこの管電圧の調
整を無段階に連続的に行ない得るようにしたX線管電圧
安定化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention automatically corrects the X-ray tube voltage in response to changes in the power supply voltage and X-ray tube current in an X-ray apparatus, so that a stable set tube voltage can always be obtained and the tube voltage can be adjusted. This invention relates to an X-ray tube voltage stabilizing device that can perform stepless and continuous operation.

X線装置におけるX線出力■■−に−Vn−1−Tの関
係にあり、Kは定数、iは管電流、Tは曝射時間である
が管電圧Vのベキ数nが2〜6の範囲であるから、管電
圧Vの僅かな変化もX線出力Iに大きい変化を与える。
There is a relationship of -Vn-1-T with the X-ray output ■■- of the X-ray device, where K is a constant, i is the tube current, and T is the exposure time, but when the power number n of the tube voltage V is 2 to 6 Therefore, even a slight change in the tube voltage V causes a large change in the X-ray output I.

したがってX線出力を安定化させるためには管電圧の安
定化がもつとも重要な要素となる。
Therefore, stabilizing the tube voltage is an important factor in stabilizing the X-ray output.

これに対し従来X線装置の大部分は商用電源を直接高電
圧発生装置に接続しているので電源電圧の変動によって
管電圧が常に変動する。
On the other hand, in most conventional X-ray apparatuses, the commercial power supply is directly connected to the high voltage generator, so that the tube voltage constantly fluctuates due to fluctuations in the power supply voltage.

また管電流の変flZ、変動により高電圧変圧器の1次
電流も変化し、これが電源インピーダンスおよび装置内
インピーダンスなどによって電圧降下を生じ、管電圧に
変動を与える。
Furthermore, the primary current of the high voltage transformer also changes due to the fluctuation of the tube current, which causes a voltage drop due to the power supply impedance and the internal impedance of the device, causing fluctuations in the tube voltage.

上記管電流の変化、変動は管電流の設定によるものと、
管球線条加熱装置の不安定度によるものである。
The above changes and fluctuations in tube current are due to the tube current settings.
This is due to the instability of the tube filament heating device.

そのうち後者のものはその加熱装置の安定度を高めるこ
とでほぼ解決できる(管球線条の劣化による変動を除き
)が、前者すなわち管電流の設定によるものはX線装置
の撮影条件によって管電圧と管電流がそれぞれ設定され
るものである以上、その幾多の組み合せによる電圧降下
の差異はそのまま管電圧の変動となるものである。
Of these, the latter can be almost solved by increasing the stability of the heating device (excluding fluctuations due to deterioration of the tube filaments), but the former, that is, the setting of the tube current, can be solved by increasing the tube voltage depending on the imaging conditions of the X-ray device. As long as the tube current and the tube current are set individually, the difference in voltage drop due to their many combinations directly becomes a fluctuation in the tube voltage.

上記電圧降下分のうち電源インピーダンスによるものは
X線装置の設備する場所の電源事情などで個々に異なる
ため、従来電源インピーダンス調整用の可変形電力抵抗
器を用いてインピーダンス・マツチングを行っているが
、この方法は電源インピーダンスの大きさに制限があり
、いわゆる良質の電源が必要であるという条件のためX
線装置の設備場所が可成り限定せざるを得ないのが現状
である。
Of the voltage drops mentioned above, the amount due to the power supply impedance varies depending on the power supply situation of the location where the X-ray equipment is installed, so conventionally impedance matching is performed using a variable power resistor for adjusting the power supply impedance. , this method has limitations on the size of the power source impedance and requires a so-called high-quality power source.
The current situation is that the installation location of line equipment has to be considerably limited.

また正確に抵抗値を設定することも可成り難かしく、特
に大電流の装置では、僅かな抵抗差でも大きい電圧降下
の差異が生じ、管電圧には大きい変動を与える。
It is also quite difficult to set the resistance value accurately, and especially in devices with large currents, even a small difference in resistance causes a large difference in voltage drop, causing large fluctuations in the tube voltage.

以上述べた商用電源電圧の変動、電源インピーダンスお
よび装置内インピーダンスによる電圧降下の変化の影響
を管電圧に及ぼさないようにするために、瞬時に応答し
、かつ連続的にインピーダンスが変化するインピーダン
ス制御素子(トランジスタ・サイリスタ・FETなとの
半導体素子)を用いてそれら変化の影響を吸収させるX
線管電圧の安定化装置が以前からいろいろ考案され用い
られている。
An impedance control element that responds instantaneously and whose impedance changes continuously in order to prevent the tube voltage from being affected by the above-mentioned fluctuations in commercial power supply voltage, changes in voltage drop due to power supply impedance, and impedance within the equipment. (Semiconductor elements such as transistors, thyristors, and FETs) are used to absorb the effects of these changes.
Various line tube voltage stabilizing devices have been devised and used for some time.

しかしながらそれら従来の安定化装置のほとんどが上記
インピーダンス制御素子を用い直接交流電力を0N−O
FFする位相角制御方式である。
However, most of these conventional stabilizing devices use the above-mentioned impedance control element to directly convert AC power to 0N-0.
This is a phase angle control method that uses FF.

この位相角制御方式は負荷に供給する電力制御をインピ
ーダンス素子の非線形特性を利用して行っているため出
力電圧波形が高調波を多分に含んでおり、電力変圧器と
して使用される高電圧変圧器の損失が増加し、効率を低
下させる。
This phase angle control method uses the nonlinear characteristics of impedance elements to control the power supplied to the load, so the output voltage waveform contains many harmonics. losses increase and reduce efficiency.

また位相角制御のONまたはOFF時に発生する過渡電
圧(サージ電圧)によって高電圧変圧器の2次巻線に発
生する異常高電圧を防止するため、1次側に立上り速度
抑制用のインピーダンスを設けることなど安定化装置自
体も大形複雑となるだけでなく、前述したように設定に
よって大巾に変る管電流による高電圧変圧器の1次側電
流の差異によって上記立上り速度抑制インピーダンスに
蓄積されるエネルギーが異なるために電力波形もそれに
対応して変化することが考えられ、したがつそ正確に管
電圧のピーク電圧値および印加電圧波形を制御し得ない
欠点がある。
In addition, in order to prevent abnormal high voltage generated in the secondary winding of the high voltage transformer due to transient voltage (surge voltage) generated when the phase angle control is turned ON or OFF, an impedance is provided on the primary side to suppress the rise speed. Not only does the stabilizing device itself become large and complicated, but also the difference in the primary current of the high-voltage transformer due to the tube current, which varies widely depending on the setting as mentioned above, accumulates in the rise speed suppressing impedance. Since the energy differs, the power waveform may also change accordingly, but there is a drawback that the peak voltage value of the tube voltage and the applied voltage waveform cannot be accurately controlled.

上記の他に従来一部のX線装置に用いられているサイク
ロコンバータと称する制御整流器を用いた周波数変換方
式のX線管電圧安定化装置もあるが、この装置の出力電
力波形は矩形波であり、高調波が多分に含まれているた
め前述の安定化装置と同様のいくつかの欠点がある。
In addition to the above, there is also a frequency conversion type X-ray tube voltage stabilization device using a controlled rectifier called a cycloconverter, which is conventionally used in some X-ray devices, but the output power waveform of this device is a rectangular wave. There are some disadvantages similar to those of the stabilizers described above, since they contain a lot of harmonics.

なおこの装置の出力電力波形を正弦波とすることはフィ
ルタを用うれば可能ではあるが、出力電力に適する大容
量のフィルタは大形高価となり、かつ電力制御部での電
力損失も大きく大電力のX線管電圧安定化装置として不
適である。
Although it is possible to make the output power waveform of this device a sine wave by using a filter, a large-capacity filter suitable for the output power is large and expensive, and the power loss in the power control section is large, resulting in a large amount of power. It is unsuitable as an X-ray tube voltage stabilizing device.

この発明は以上の現況に鑑み従来の安定化装置がインピ
ーダンス制御素子の非線形特性を利用することに起因す
る前述したような幾多の欠点を解消するについて、イン
ピーダンス制御素子のトランジスタを商用電源周期と同
期し、かつその変動に対し安定した振幅を有する正弦波
信号で駆動し、高電圧変圧器の電力制御を線形要素で行
なうことで、その電力波形を正弦波とし、上記変圧器の
効率を高めるとともに簡単、堅牢な回路構成をもって電
源電圧およびX線管電流の変化に対するX線管電圧を円
滑に自動補正を行ない、常に安定した設定管電圧が得ら
れるとともに、その管電圧の調整が無段階に行ない得る
X線管電圧安定化装置にかかるものである。
In view of the above-mentioned current situation, the present invention aims to eliminate the above-mentioned drawbacks caused by the conventional stabilizing device utilizing the nonlinear characteristics of the impedance control element, and to synchronize the transistor of the impedance control element with the commercial power supply cycle. By driving the high voltage transformer with a sine wave signal that has a stable amplitude with respect to its fluctuations, and controlling the power of the high voltage transformer using linear elements, the power waveform becomes a sine wave, increasing the efficiency of the transformer. With a simple and robust circuit configuration, the X-ray tube voltage can be smoothly and automatically corrected in response to changes in the power supply voltage and X-ray tube current, and a stable set tube voltage can always be obtained, and the tube voltage can be adjusted steplessly. This is related to the X-ray tube voltage stabilizing device to be obtained.

すなわち商用電源と同期し、かつ安定化した正弦波信号
を出力する正弦波発生回路を設けるとともに、この正弦
波出力信号を入力として、2次回路にX線管の接続され
た変圧器の1次電力を制御する制御回路の線形電力制御
素子を商用電源と上記変圧器の1次巻線との間に設け、
この素子のインピーダンスを前記変圧器の1次または2
次回路の電圧と所定の設定電圧との正弦波の偏差出力で
制御するようにしたことを特徴とする電源同期正弦波式
X線管電圧安定化装置にかかるものである。
In other words, a sine wave generation circuit is provided that synchronizes with the commercial power supply and outputs a stabilized sine wave signal, and this sine wave output signal is used as an input to generate the primary circuit of a transformer with an X-ray tube connected to the secondary circuit. A linear power control element of a control circuit for controlling power is provided between a commercial power source and a primary winding of the transformer,
The impedance of this element is set to the primary or secondary of the transformer.
This invention relates to a power-synchronized sinusoidal X-ray tube voltage stabilizing device characterized in that control is performed using a sinusoidal deviation output between the voltage of the next circuit and a predetermined set voltage.

以下図面によってこの発明の実施例装置を詳説する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained in detail below with reference to the drawings.

第1図は一実施例のX線管電圧安定化装置のブロック図
であり、第2図はその各ブロックの出力波形図である。
FIG. 1 is a block diagram of an X-ray tube voltage stabilizing device according to one embodiment, and FIG. 2 is an output waveform diagram of each block.

1は商用電源で、その電圧波形は第2図■のW。1 is a commercial power supply, and its voltage waveform is W in Figure 2 ■.

のように正弦波である。2はパルス占有率50%のコン
パレータ増幅器などを用いて商用電源1に同期し、パル
ス占有率50%の矩形波(第2図■のW、 )を発生
させる回路、3は積分器によって第2図■に示すW2の
ような三角波を発生する回路、4は出力から入力にコン
デンサな介して負のフィードバックを行う演算増幅器か
らなるミラー積分器で第2図■に示すようにW2の三角
波を正弦波W′−3に波形変換する回路、5は移相回路
で第2図■のW′3の正弦波を第2図■のWOすなわち
商用電源同期と第2図■のW3のように同期するよう位
相を整合する。
It is a sine wave like. 2 is a circuit that synchronizes with the commercial power supply 1 using a comparator amplifier with a pulse occupancy rate of 50%, and generates a rectangular wave (W, in Figure 2 ■) with a pulse occupancy rate of 50%; A circuit that generates a triangular wave such as W2 shown in Figure ■, 4 is a Miller integrator consisting of an operational amplifier that provides negative feedback from the output to the input via a capacitor. A circuit for converting the waveform into wave W'-3, and 5 is a phase shift circuit that synchronizes the sine wave of W'3 in Figure 2 (■) with the WO in Figure 2 (■), that is, commercial power supply synchronization, and W3 in Figure 2 (■). Match the phases so that

6は管電圧設定回路で5のブロックで商用電源波形W。6 is the tube voltage setting circuit, and block 5 is the commercial power supply waveform W.

と位相整合され振幅および波形の安定した商用電源波形
とみなせる波形の電圧を可変抵抗器で分圧し、その分圧
信号SがX線管電圧の設定電圧を得るための信号として
7の電力制御部に出力する。
A voltage with a waveform that can be considered as a commercial power supply waveform with a stable amplitude and waveform that is phase-matched with that of Output to.

7のブロックは9の高電圧発生装置の高電圧変圧器の1
次入力電圧のピーク値より高いピーク値を有する商用電
源8を電源とし、上記6のブロックの出力信号Sを入力
とする電力制御回路と、この制御回路にて駆動される1
個または2個のパワートランジスタおよび管電圧検出回
路などから構成され、管電圧設定値に対応する高電圧変
圧器の1次側電力Wsを9の高電圧発生装置に供給する
Block 7 is one of the high voltage transformers of the high voltage generator in 9.
A power control circuit whose power source is a commercial power source 8 having a peak value higher than the peak value of the next input voltage and whose input is the output signal S of the block 6, and a power control circuit driven by this control circuit.
It is composed of one or two power transistors, a tube voltage detection circuit, etc., and supplies the primary side power Ws of the high voltage transformer corresponding to the tube voltage setting value to the high voltage generator 9.

このWsの電力波形は第2図■に示すように商用電源同
期と同期した正弦波である。
The power waveform of Ws is a sine wave synchronized with the commercial power supply synchronization, as shown in FIG. 2 (2).

この電力制御部7の回路構成は第3〜8図で、6種の実
施例を示し、その作動を後述する。
The circuit configuration of this power control section 7 is shown in six embodiments in FIGS. 3 to 8, and its operation will be described later.

9は高電圧発生装置で高電圧変圧器、高圧整流器、線条
加熱装置、操作盤などを含む従来のものと同じである。
9 is a high voltage generator, which is the same as the conventional one including a high voltage transformer, a high voltage rectifier, a wire heating device, an operation panel, etc.

以上が第1図のブロック1〜9までで構成されるこの発
明の第一の実施例装置の構成とその機能の概要である。
The above is an overview of the configuration and functions of the first embodiment of the apparatus of the present invention, which is comprised of blocks 1 to 9 in FIG.

つぎに第1図の4のミラー積分回路の代りに10の折線
近似回路を(点線)挿入した第二の実施例装置について
述べる。
Next, a second embodiment will be described in which ten broken line approximation circuits (dotted lines) are inserted in place of the four Miller integration circuits shown in FIG.

10の折線近似回路は演算増幅器の人力と出力との間に
ダイオードと抵抗の回路網を多数設け、入力の増加につ
れて順次抵抗が減するように構成されゲータは入力振幅
の増大とともに下がり、バイアス電圧とダイオードの数
を適当に選ぶことによって第2図■の三角波W2を正弦
波W′3に変換しうるものであり、その折線の数によっ
て正弦波としてのひずみ率を小にし、良好な正弦波発生
回路となる。
The broken line approximation circuit of No. 10 has a large number of diode and resistor networks between the input power and the output of the operational amplifier, and is configured so that the resistance decreases as the input increases.The gator decreases as the input amplitude increases, and the bias voltage By appropriately selecting the number of diodes and diodes, the triangular wave W2 shown in Figure 2 (■) can be converted into a sine wave W'3, and depending on the number of broken lines, the distortion rate as a sine wave can be reduced, and a good sine wave can be obtained. It becomes a generation circuit.

その他のブロックは第一の実施例装置と同一である。The other blocks are the same as those of the first embodiment.

つぎに第1図の2〜5までのブロックの代りに一点鎖線
で挿入した11,12,130ブロツクを用いる第三の
実施例装置について述べる。
Next, a third embodiment will be described in which blocks 11, 12, and 130, which are inserted by dashed lines in place of blocks 2 to 5 in FIG. 1, are used.

この3つのブロックは一般にPLLと称されIC化され
た位相同期ループ(Phase −Locked Lo
op )で、11は位相比較器で商用電源1から人、力
された信号Wo と13の電圧制御発振器VCOの出力
信号W3 とを常に比較し、検出された位相誤差電圧E
xは12のループ・フィルタで応答特性を決定したり不
必要な雑音を除去し、発振制御信号So として13の
ブロックに入力し、ここで入力信号WOと位相同期した
正弦波出力信号W3が発振され、6の管電圧設定回路に
入力され、以後は第一、第二の実施例装置と同一の作動
をする。
These three blocks are generally called PLL and are integrated into an IC phase-locked loop (Phase-Locked Loop).
11 is a phase comparator that constantly compares the signal Wo input from the commercial power supply 1 with the output signal W3 of the voltage controlled oscillator VCO of 13, and calculates the detected phase error voltage E.
x determines the response characteristics and removes unnecessary noise using 12 loop filters, and inputs it as the oscillation control signal So to 13 blocks, where the sine wave output signal W3 phase-synchronized with the input signal WO is oscillated. and is input to the tube voltage setting circuit 6, and thereafter operates in the same manner as the first and second embodiment devices.

この第三の実施例装置は第一、第二の実施例に比し、回
路構成が簡単で前記したようにIC化されており、受動
素子も少な(安定性においてすぐれたものである。
Compared to the first and second embodiments, this third embodiment has a simpler circuit configuration, is integrated into an IC as described above, and has fewer passive elements (it has excellent stability).

以上3つの実施例装置がこの発明の基本となるものであ
り、7を除く各ブロックの回路構成は個別において公知
に属するので、図示しないが前述したとおり第3〜8図
によって1の電力増幅部の回路構成の実施例を説明する
The above three embodiment devices form the basis of the present invention, and the circuit configurations of each block except for 7 belong to the public knowledge, so although not shown in the drawings, as described above, the power amplifying section 1 is illustrated in FIGS. 3 to 8. An example of the circuit configuration will be described.

第3図の6,8゜90点線のブロックは第1図と同じも
ので、7Aが電力増幅部の第一の実施例回路で6の管電
圧設定器の摺動接点6Cで無段階に設定された電圧信号
S(第2図■の正弦波)は増幅器AI 、半波整流器D
1、負帰還抵抗R1および増幅器A2からなる全波直線
検波回路を経て比較増幅器A3の(±端子に入力する。
The block indicated by the 6,8°90 dotted line in Fig. 3 is the same as Fig. 1, and 7A is the first embodiment circuit of the power amplification section, and stepless setting is made by sliding contact 6C of the tube voltage setting device 6. The resulting voltage signal S (sine wave in Figure 2) is passed through an amplifier AI and a half-wave rectifier D.
1. The signal is input to the (± terminal) of the comparator amplifier A3 via a full-wave linear detection circuit consisting of a negative feedback resistor R1 and an amplifier A2.

この正弦波信号によってパワートランジスタTrlのベ
ース電流を制御し、コレクターエミッタ間のインピーダ
ンスが変化し、商用電源8の電力が全波整流器D3を通
じ高電圧変圧器T1 の1次巻線に正弦波電力(第2図
■のWs )として供給される。
The base current of the power transistor Trl is controlled by this sine wave signal, the impedance between the collector and emitter changes, and the power from the commercial power supply 8 is passed through the full-wave rectifier D3 to the primary winding of the high voltage transformer T1. It is supplied as Ws in Figure 2 (■).

この高電圧変圧器T1 の1次巻線には並列に接続さ
れた変圧器T2があり、これと全波整流器D2および抵
抗R2,R3からなる電圧検出回路V、Dが設けられ、
その出力が上記比較増幅器A3の(→端子に入力し、X
線管Xの管電圧が設定値になるまでその出力はパワート
ランジスタTr1のインピーダンスを制御する。
There is a transformer T2 connected in parallel to the primary winding of this high voltage transformer T1, and a voltage detection circuit V, D consisting of a full wave rectifier D2 and resistors R2 and R3 is provided.
The output is input to the (→ terminal) of the comparison amplifier A3, and
Its output controls the impedance of the power transistor Tr1 until the tube voltage of the ray tube X reaches a set value.

したがって8の電源電圧Q変動は高電圧変圧器T1 の
1次電圧Epには影響を及ぼさない。
Therefore, the power supply voltage Q fluctuation of 8 does not affect the primary voltage Ep of the high voltage transformer T1.

さらにX線管の管電流の変化によって高電圧変圧器T1
の1次電流Ipが変動するとT1の入力電圧Epが変化
する。
Furthermore, due to changes in the tube current of the X-ray tube, the high voltage transformer T1
When the primary current Ip of T1 changes, the input voltage Ep of T1 changes.

この変化は直ちに電圧検出回路V、Dから比較増幅器A
3への比較電圧の変化となりA3の出力、すなわちTr
lのベース電流が変化し、高電圧変圧器T1の1次電圧
Epが常に設定された電圧になるようTrlのコレクタ
ーエミッタ間の電位差を自動的に制御する。
This change is immediately detected from the voltage detection circuits V and D to the comparator amplifier A.
3, and the output of A3, that is, Tr
The base current of Trl changes and the potential difference between the collector and emitter of Trl is automatically controlled so that the primary voltage Ep of the high voltage transformer T1 always remains at the set voltage.

換言すれば管電流が如何なる原因で変化しても常に6の
管電圧設定器で設定された管電圧が得られるよう自動的
に管電流の変化に対する管電圧の補正が行われるのであ
る。
In other words, the tube voltage is automatically corrected for changes in the tube current so that the tube voltage set by the tube voltage setting device 6 is always obtained no matter what causes the tube current to change.

以上がこの発明のX線管電圧安定化装置の作動を電力制
御部の第一の実施例回路での説明である。
The above is an explanation of the operation of the X-ray tube voltage stabilizing device of the present invention using the first embodiment circuit of the power control section.

以下第二〜第六までの電力増幅部7Aの実施例の説明で
は第一の実施例との差について述べ、安定化作動の説明
は省く。
In the following description of the second to sixth embodiments of the power amplifying section 7A, differences from the first embodiment will be described, and explanation of the stabilizing operation will be omitted.

第4図はインピーダンス制御素子としてのトランジスタ
を2個にし、加算増幅器A5 と管電圧検出用抵抗R4
JR5とを設は比較増幅器んの出力をトランジスタTr
2.Tr3の両ベースに入力し、半波整流器D4からの
電力を半波ごとに制御すする電力制御部7Bの回路図で
ある。
In Figure 4, two transistors are used as impedance control elements, a summing amplifier A5 and a tube voltage detection resistor R4.
JR5 is set to connect the output of the comparison amplifier to the transistor Tr.
2. FIG. 3 is a circuit diagram of a power control unit 7B that is input to both bases of Tr3 and controls power from a half-wave rectifier D4 for each half-wave.

第5図は加算増幅器の代りに変圧器T3を用い電圧検出
回路V、DをダイオードD5 ? D6と抵抗で構成し
比較増幅器A6 t A702個用いた電力制御部7C
の回路図である。
In FIG. 5, a transformer T3 is used instead of the summing amplifier, and the voltage detection circuit V, D is replaced by a diode D5? Power control section 7C consisting of D6 and resistor and using two comparison amplifiers A6 and A70
FIG.

以上3種の電力制御部は電源変動および管電流の変化に
対する高電圧変圧器の1次電圧の変化をインピーダンス
制御素子にて補正する方式であるが大容量X線装置にお
いては管電圧安定化装置の電力制御部と高電圧変圧器と
(7)11続線およびその1次、2次巻線での電圧降下
がX線管電圧に与える影響が無視できないので、電圧検
出回路V、Dを高電圧変圧器の2次側に設ける2つの実
施例と1次側電流を検出する1つの実施例を第6,7,
8図で説明する。
The above three types of power control units use an impedance control element to correct changes in the primary voltage of the high voltage transformer due to fluctuations in the power supply and changes in tube current. Since the influence of the voltage drop in the power control section, high voltage transformer, (7) 11 connection wire, and its primary and secondary windings on the X-ray tube voltage cannot be ignored, the voltage detection circuits V and D are set to high voltage. Two embodiments provided on the secondary side of a voltage transformer and one embodiment for detecting the primary current are shown in the sixth, seventh, and third embodiments.
This will be explained using Figure 8.

第6図は上記電力制御部7B(第4図)を用い高電圧変
圧器の2次側電圧を変圧器T4と抵抗R6からなる電圧
検出回路V、Dsの出力な差動増幅器A8に入力し、1
次例の電圧検出回路V、Dとのフィードバックと併せ制
御回路系の安定度を高めた電力制御部7Dである。
FIG. 6 shows that the power control section 7B (FIG. 4) is used to input the secondary voltage of the high voltage transformer to the differential amplifier A8, which is the output of the voltage detection circuit V, Ds, which consists of the transformer T4 and the resistor R6. ,1
This is a power control unit 7D that improves the stability of the control circuit system in conjunction with feedback with the voltage detection circuits V and D of the next example.

第1図は上記同様第4図の電力制御部7Bの比較増幅器
A4に高電圧変圧器T1の2次側の電圧検出回路V、D
sの出力をフィードバックした電力制御部IEの回路構
成である。
Similarly to the above, FIG. 1 shows that the comparator amplifier A4 of the power control section 7B of FIG.
This is a circuit configuration of a power control unit IE that feeds back the output of s.

第8図は第4図の電力制御部7Bに高電圧変圧器T1の
1次線に無誘導抵抗R7を挿入し、その電圧降下を増幅
器A、で増幅した後、加算増幅器A5 によって設定信
号Sに加算させることにより1次電流の変化を補正し、
特に大容量のX線管電圧の安定度を高めたこの発明の今
一つの要件の電力制御部7Fの実施例回路である。
FIG. 8 shows that a non-inductive resistor R7 is inserted into the primary line of the high voltage transformer T1 in the power control section 7B of FIG. Corrects changes in the primary current by adding
This is an example circuit of the power control section 7F, which is another requirement of the present invention, and particularly improves the stability of the voltage of a large-capacity X-ray tube.

以上第3〜第8図の6つの電力制御部を第1図の1のブ
ロックに組合せた管電圧安定化装置は上記の説明のとお
り、電源1および8の変動はもとより、管電流の設定の
変化、その他の変動による電源インピーダンスおよび装
置内インピーダンスなどの電圧降下の変動をインピーダ
ンス制御素子のインピーダンスで補償するよう構成され
た正弦波の管電圧安定装置であり、回路構成は上記実施
例に限定されるものではない。
As explained above, the tube voltage stabilizing device which combines the six power control units shown in Figs. 3 to 8 into block 1 in Fig. This is a sinusoidal tube voltage stabilizer configured to compensate for voltage drop fluctuations such as power supply impedance and internal impedance due to changes and other fluctuations with the impedance of an impedance control element, and the circuit configuration is limited to the above embodiment. It's not something you can do.

この発明は以上のように構成されているので、トランジ
スタを線形電力制御素子として用い、これを商用電源と
同期し、かつ安定した振幅をもつ正弦波信号で制御する
ことによってX線管電圧を無段階に連続的に設定し5る
とともに、その管電圧を電源変動ならびに管電流の変化
、変動に対し即時にこれを自動補正し、常にX線管電圧
を設定電圧に保ちX線出力を安定させ、診断能を向上さ
せる大きい効果とともに高電圧変圧器への印加電力波形
が正弦波であり、変圧器の効率を高めるだけでなく、電
力源として商用電源を直接用いることが出来る特長があ
り、しかも従来一般の安定化装置に付設していたサージ
電圧、電流抑制用の大きいインピーダンス素子や前述の
サイクロコンバータ方式における整流・平滑回路が不要
であり、回路構成が簡素で装置が小形化でき、故障のほ
とんどない信頼性の高いものとなる。
Since the present invention is configured as described above, the X-ray tube voltage can be eliminated by using a transistor as a linear power control element, synchronizing it with a commercial power supply, and controlling it with a sine wave signal having a stable amplitude. In addition to continuously setting the X-ray tube voltage in 5 steps, the tube voltage is immediately and automatically corrected for fluctuations in the power supply and tube current, and the X-ray tube voltage is always kept at the set voltage and the X-ray output is stabilized. In addition to having the great effect of improving diagnostic performance, the power waveform applied to the high voltage transformer is a sine wave, which not only increases the efficiency of the transformer, but also allows direct use of commercial power as a power source. It eliminates the need for large impedance elements for suppressing surge voltage and current that were conventionally attached to general stabilizing devices, and the rectification and smoothing circuits used in the cycloconverter method described above. It will be highly reliable.

更に位相角制御や矩形波制御時に発生する大きいエネル
ギを有する高調波が全く無いため、使用されている変圧
器および大電流が流れる電路からの電磁誘導による障害
電波も発生しないので、同じ場所の他の医療機器などへ
の妨害防止策も不要となるなどがすかずの効果をもたら
すすぐれたX線管電圧安定化装置を提供しえたものであ
る。
Furthermore, since there are no harmonics with large energy that are generated during phase angle control or square wave control, there are no interference radio waves caused by electromagnetic induction from the transformer being used or the electrical circuit through which large currents flow, so it is possible to The present invention has provided an excellent X-ray tube voltage stabilizing device that has significant effects such as eliminating the need for measures to prevent interference with medical equipment and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のX線管電圧安定化装置の3種の実施
例を示すブロック図、第2図はその各ブロックの出力波
形図、第3,4,5図はこの発明のX線管電圧安定化装
置の電力制御部(標準容量のX線装置用)の実施例回路
図、第6.γ、8図は主として大容量X線装置用の電力
制御部の実施例回路図である。 Wo・・・・・・商用電源波、Wl・・・・・・矩形波
、W2・・・・・・三角形、W′3・・・・・・正弦波
、W3・・・・・・商用電源同期正弦波、Ws・・・・
・・制御電力波、S・・・・・・管電圧設定値信号(正
弦波)、Ex・・・・・・位相誤差電圧、So・・・・
・・発振制御信号、T1・・・・・・高電圧変圧器、E
p・・・・・・仝上の1次電圧、Ip・・・・・・仝上
の1次電流、T2・・・・・・1次電圧検出変圧器、V
、D・・・・・・(1次)電圧検出回路、6c・・・・
・・管電圧設定器須動接点、A1〜A、・・・・・・I
C増幅器、Trl〜Tr5・・・・・・パワートランジ
スタ(インピーダンス制御素子)、D1〜D8・・・・
・・ダイオード、T3・・・・・・設定信号変圧器、V
、Ds・・・・・・(2次)電圧検出回路、R7・・・
・・・1次電流の電圧降下検出用無誘導抵抗。
Fig. 1 is a block diagram showing three embodiments of the X-ray tube voltage stabilizing device of this invention, Fig. 2 is an output waveform diagram of each block, and Figs. Example circuit diagram of the power control section of the tube voltage stabilizing device (for standard capacity X-ray equipment), No. 6. γ, FIG. 8 is a circuit diagram of an embodiment of a power control section mainly for a large-capacity X-ray apparatus. Wo...Commercial power wave, Wl...Square wave, W2...Triangle, W'3...Sine wave, W3...Commercial Power synchronized sine wave, Ws...
...Control power wave, S...Tube voltage setting value signal (sine wave), Ex...Phase error voltage, So...
...Oscillation control signal, T1...High voltage transformer, E
p...Primary voltage above, Ip...Primary current above, T2...Primary voltage detection transformer, V
, D... (primary) voltage detection circuit, 6c...
・・Tube voltage setting device moving contact, A1~A,・・・・・・I
C amplifier, Trl to Tr5... Power transistor (impedance control element), D1 to D8...
...Diode, T3...Setting signal transformer, V
, Ds... (secondary) voltage detection circuit, R7...
...Non-inductive resistance for detecting voltage drop of primary current.

Claims (1)

【特許請求の範囲】 1 商用電源と同期し、かつ安定化した正弦波信号を出
力する正弦波発生回路を設けるとともに、この正弦波出
力信号を入力として、2次回路にX線管の接続された変
圧器の1次電力を制御する制御回路の線形電力制御素子
を商用電源と上記変圧器の1次巻線との間に設け、この
素子のインピーダンスを前記変圧器の1次または2次回
路の電圧と所定の設定電圧との正弦波の偏差出力で制御
するようにしたことを特徴とする電源同期正弦波式%式
% 2 商用電源と同期し発生させた三角波をミラー積分回
路によって正弦波に波形変換するようにした正弦波発生
回路を設けてなる特許請求の範囲第1項記載の電源同期
正弦波式X線管電圧安定化装置。 3 商用電源と同期し発生させた三角波を折線近似回路
によって正弦波に波形変換するようにした正弦波発生回
路を設けてなる特許請求の範囲第1項記載の電源同期正
弦波式X線管電圧安定化装置。 4 商用電源と同期し、正弦波を発生する電圧制御発振
器と位相比較器およびループフィルタとからなる位相同
期ループを正弦波発生回路としてなる特許請求の範囲第
1項記載の電源同期正弦波式%式% 5 商用電源と同期し、かつ安定化した正弦波信号を出
力する正弦波発生回路を設けるとともにこの正弦波出力
信号を入力として、2次回路にX線管の接続された変圧
器の1次電力を制御回路の線形電力制御素子を商用電源
と上記変圧器の1次巻線との間に設け、この素子のイン
ピーダンスを前記変圧器の1次回路の電圧と、所定の設
定電圧に1次回路の電流による電圧降下を加算した加算
電圧との正弦波の偏差出力で制御するようにしたことを
特徴とする電源同期正弦波式X線管電圧安定化装置。
[Claims] 1. A sine wave generating circuit is provided which synchronizes with a commercial power source and outputs a stabilized sine wave signal, and an X-ray tube is connected to a secondary circuit using this sine wave output signal as input. A linear power control element of a control circuit for controlling the primary power of the transformer is provided between the commercial power supply and the primary winding of the transformer, and the impedance of this element is set to the primary or secondary circuit of the transformer. A power synchronized sine wave type % type which is characterized in that it is controlled by a sine wave deviation output between the voltage of the voltage and a predetermined set voltage. 2. A power-synchronized sine wave type X-ray tube voltage stabilizing device according to claim 1, further comprising a sine wave generating circuit configured to convert the waveform into a sine wave generator. 3. Power-synchronized sinusoidal X-ray tube voltage according to claim 1, which is provided with a sine wave generation circuit that converts a triangular wave generated in synchronization with a commercial power source into a sine wave using a broken line approximation circuit. Stabilizer. 4. The power-synchronized sine wave type according to claim 1, wherein the sine wave generating circuit is a phase-locked loop consisting of a voltage-controlled oscillator that generates a sine wave in synchronization with a commercial power source, a phase comparator, and a loop filter. Equation % 5 A sine wave generating circuit is provided that synchronizes with the commercial power supply and outputs a stabilized sine wave signal, and this sine wave output signal is used as input to generate one of the transformers with an X-ray tube connected to the secondary circuit. A linear power control element of the control circuit is provided between the commercial power source and the primary winding of the transformer, and the impedance of this element is adjusted to the voltage of the primary circuit of the transformer and a predetermined set voltage. 1. A power supply synchronized sinusoidal X-ray tube voltage stabilizing device, characterized in that control is performed by outputting a sinusoidal wave deviation from an added voltage obtained by adding a voltage drop due to a current in a subsequent circuit.
JP10883378A 1978-09-04 1978-09-04 Power synchronized sine wave type X-ray tube voltage stabilization device Expired JPS5937558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10883378A JPS5937558B2 (en) 1978-09-04 1978-09-04 Power synchronized sine wave type X-ray tube voltage stabilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10883378A JPS5937558B2 (en) 1978-09-04 1978-09-04 Power synchronized sine wave type X-ray tube voltage stabilization device

Publications (2)

Publication Number Publication Date
JPS5535456A JPS5535456A (en) 1980-03-12
JPS5937558B2 true JPS5937558B2 (en) 1984-09-10

Family

ID=14494700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10883378A Expired JPS5937558B2 (en) 1978-09-04 1978-09-04 Power synchronized sine wave type X-ray tube voltage stabilization device

Country Status (1)

Country Link
JP (1) JPS5937558B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885800U (en) * 1981-12-05 1983-06-10 株式会社モリタ製作所 X-ray tube tube voltage control device
JPH0637680B2 (en) * 1987-06-15 1994-05-18 三菱電機株式会社 Cu-Ni-Sn alloy with excellent fatigue characteristics
EP1834981B1 (en) 2004-11-12 2011-09-21 Toray Industries, Inc. Biaxially oriented polyarylene sulfide film and laminated polyarylene sulfide sheets comprising the same
KR101331465B1 (en) 2006-05-10 2013-11-20 도레이 카부시키가이샤 Biaxially oriented polyarylene sulfide film
US8349974B2 (en) 2007-05-09 2013-01-08 Toray Industries, Inc. Biaxially oriented polyarylene sulfide film and method for producing the same
JP5981283B2 (en) * 2012-09-14 2016-08-31 東芝メディカルシステムズ株式会社 X-ray CT system

Also Published As

Publication number Publication date
JPS5535456A (en) 1980-03-12

Similar Documents

Publication Publication Date Title
US10554144B2 (en) Dual voltage and current loop linearization control and voltage balancing control for solid state transformer
US9853573B2 (en) Grid-tie inverter with active power factor correction
US4934822A (en) PWM-controlled power supply capable of eliminating modulation-frequency signal components from ground potentials
US4439821A (en) DC to DC switching regulator with temperature compensated isolated feedback circuitry
JP3747105B2 (en) Resonant converter control system
JPS5937558B2 (en) Power synchronized sine wave type X-ray tube voltage stabilization device
US3903469A (en) Inverting arrangement employing compressed sine waves and class B amplifiers
US4788451A (en) AC voltage stabilizer easily convertible into uninterruptible power supply (UPS)
US4692686A (en) Low-distortion line voltage regulator
US6331801B1 (en) RF amplifier system having an improved power supply
JPS61220386A (en) High voltage generator
US7259705B2 (en) Tracking supply AC regeneration system and method
JPH06121778A (en) Witching frequency generator
Renders et al. Input impedance of grid-connected converters with programmable harmonic resistance
JP3330168B2 (en) Horizontal deflection circuit and cathode ray tube display using the same
JP3211944B2 (en) Inverter device
US4287556A (en) Capacitive current limiting inverter
JPS62216012A (en) Stabilized power supply device with high efficiency
JPH0583953A (en) Output voltage compensating apparatus of uninterruptible power supply equipment
CN114362506B (en) Power factor correction circuit
KR20010060202A (en) 2 level switching power transform apparatus
JPH07337019A (en) Control method for self-excited rectifier
JPH04313108A (en) Reactive power compensating device
JP3045204B2 (en) Switching power supply
JP3168683B2 (en) Switching power supply