JPS5937470B2 - Insulation resistance measurement method and device - Google Patents

Insulation resistance measurement method and device

Info

Publication number
JPS5937470B2
JPS5937470B2 JP53137563A JP13756378A JPS5937470B2 JP S5937470 B2 JPS5937470 B2 JP S5937470B2 JP 53137563 A JP53137563 A JP 53137563A JP 13756378 A JP13756378 A JP 13756378A JP S5937470 B2 JPS5937470 B2 JP S5937470B2
Authority
JP
Japan
Prior art keywords
phase
ground
insulation resistance
voltage
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53137563A
Other languages
Japanese (ja)
Other versions
JPS5563765A (en
Inventor
宏一 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP53137563A priority Critical patent/JPS5937470B2/en
Publication of JPS5563765A publication Critical patent/JPS5563765A/en
Publication of JPS5937470B2 publication Critical patent/JPS5937470B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 本発明は三相交流系統全体の各相別対地絶縁抵抗値及び
各相別対地静電容量値を運転電圧下(活線下)で測定す
る方法及び装置に関するものであ5 る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring the insulation resistance to ground of each phase and the capacitance to ground of each phase of an entire three-phase AC system under operating voltage (under live wires). A5.

本発明者は、先に三相交流系統全体の総合絶縁抵抗値及
び総合静電容量値の測定を可能ならしめる方法及び装置
を提案し、この方法ではA相、B相、C相の三相全体の
総合絶縁抵抗値及び総合静フ 電容量値の測定が可能と
なつた。
The present inventor previously proposed a method and device that enables the measurement of the total insulation resistance value and total capacitance value of the entire three-phase AC system. It is now possible to measure the overall total insulation resistance value and total static capacitance value.

しかしながら、三相交流系統の絶縁管理において重要な
データとなるA相、B相、C相夫々の各相別対地絶縁抵
抗値を測定することは不可能であつた。従つて、本発明
の目的は平衡三相交流系統全体j の各相別対地絶縁抵
抗値及び各相別対地静電容量値を測定する方法を提供す
ること、及び計器として実用的な絶縁抵抗測定装置を提
供することである。
However, it has been impossible to measure the ground insulation resistance values of each of the A, B, and C phases, which are important data in insulation management of a three-phase AC system. Therefore, an object of the present invention is to provide a method for measuring each phase-to-ground insulation resistance value and each phase-to-ground capacitance value of the entire balanced three-phase AC system j, and to provide a method for measuring insulation resistance that is practical as an instrument. The purpose is to provide equipment.

以下本発明を図面を参照して説明する。The present invention will be explained below with reference to the drawings.

なお、・ 本発明は平衡電源時にのみ適用できかつ説明
を簡単にするため主に平衡三相交流中性点抵抗接地系統
に関して説明する。第1図は本発明の絶縁抵抗測定の測
定原理を説明するための測定回路図である。
Note that the present invention can be applied only to balanced power sources, and to simplify the explanation, the description will mainly be given to a balanced three-phase AC neutral point resistance grounding system. FIG. 1 is a measurement circuit diagram for explaining the measurement principle of insulation resistance measurement of the present invention.

この測定回路の左半分(図中一点鎖線の左側)は被泗淀
系統の三相交流電源と対地インピーダンスの等価回路で
あり、右半分(図中一点鎖線の右側)は本発明の絶縁抵
抗辿淀の原理を説明するための等価回路である。図中及
び以下の説明に使用する記号を第1表に規定する。
The left half of this measurement circuit (to the left of the dashed-dotted line in the figure) is an equivalent circuit of the three-phase AC power supply and ground impedance of the system to be connected, and the right half (to the right of the dashed-dotted line in the figure) is the equivalent circuit of the insulation resistance trace of the present invention. This is an equivalent circuit for explaining the Yodo principle. Symbols used in the figures and in the following description are specified in Table 1.

第1図の測定回路でSWOオン時の等価回路を第2に示
し、SWlオン時、SW2オン時及びSW3Aン時につ
いては類似の回路になるためSWlオン時の等価回路の
みを第3図に示す。
The equivalent circuit when SWO is on in the measurement circuit of Fig. 1 is shown in the second figure, and since the circuits are similar when SWl is on, SW2 is on, and SW3A is off, only the equivalent circuit when SWl is on is shown in Fig. 3. show.

これらの等価回路はインピーダンスYA,YB.,YC
?びYを次のように規定すればが成立する。
These equivalent circuits have impedances YA, YB. ,YC
? and Y are defined as follows.

ただし三相交流では次の関係式が常に成立している。●
●●● 各電圧AZVBi,VCL及びVE!(但しi=0,1
,2,3)は互いに位相差を有しているので、各電圧を
ベクトルとして考え任意の二相の間の線●●間電圧例え
ばEB−Ecを基準ベクトルにとり、●●第4図に示す
ように各電圧ベクトルAt,VBz,Ci,iは基準ベ
クトルとの位相差をθAt,θBi,θCt,θE・i
とし大きさをVAi,VBi,O2,ELとすれば以下
の式が成立する。
However, in three-phase AC, the following relational expression always holds. ●
●●● Each voltage AZVBi, VCL and VE! (However, i = 0, 1
, 2, and 3) have a phase difference from each other, so consider each voltage as a vector and take the voltage between any two phases, for example, EB-Ec as a reference vector, and calculate the voltage as shown in Figure 4. Each voltage vector At, VBz, Ci, i has a phase difference with the reference vector as θAt, θBi, θCt, θE・i
If the sizes are VAi, VBi, O2, and EL, then the following equation holds true.

簡単にするため と置く。for simplicity Put it as.

総合絶縁抵抗値Rと総合静電容量値Cを求めるためには
上記の央2),(3),(4),(5)の内2式が必要
十分であり、この2式の選び方としてはSWOオン時の
式(2)のみが他の3式と形が異なるために式(3),
(4),(5)の3式から2式を選ぶ第1の選び方と式
(3),(4),(6)の3式からの1式と式(2)と
を選ぶ第2の選び方とがある。第1の選び方で例えば式
(4),(5)を選んだとき(9)式を利用すればYは
代表的には次のように表わせる。
In order to obtain the total insulation resistance value R and the total capacitance value C, two formulas from the above middle 2), (3), (4), and (5) are necessary and sufficient, and how to select these two formulas is as follows. Since only equation (2) when SWO is on is different from the other three equations, equation (3),
The first selection method selects two equations from the three equations (4) and (5), and the second selection method selects equation (2) and one equation from the three equations (3), (4), and (6). There are ways to choose. For example, when formulas (4) and (5) are selected in the first selection method, Y can be typically expressed as follows by using formula (9).

ー方第2の選び方では例えば式(2),(3)を選んだ
とき同様にしてYは代表的には次のように表わせる。
In the second selection method, for example, when formulas (2) and (3) are selected, Y can typically be expressed as follows.

今、電源は平衡しているので 但し、VOは各相電圧の絶対値 が成立し、EB−Ecを基準ベクトルにとるためB相と
C相の間の線間電圧BCはとなる。
Since the power supply is now balanced, however, the absolute value of each phase voltage is established for VO, and since EB-Ec is taken as the reference vector, the line voltage BC between the B phase and C phase is as follows.

従つて式(10)を用いる場合式(13)を氏(10)
に代入すれぱとなり、この式(14)の実部と虚部をそ
れぞれ比較すると総合絶縁抵抗値Rと総合静電容量値C
が以下の式のように得られる。
Therefore, when using equation (10), equation (13) can be changed to (10)
Comparing the real and imaginary parts of equation (14), we obtain the total insulation resistance value R and the total capacitance value C.
is obtained as shown below.

また式(11)を用いてR,Cを求めることも可能であ
り、式(11)に式(7),(8),(12)を代入す
れば次の式が得られこの式(7)の実部と虚部をそれぞ
れ比較すれば次の式でR<!:.Cが求められる。
It is also possible to obtain R and C using equation (11), and by substituting equations (7), (8), and (12) into equation (11), the following equation is obtained, and this equation (7 ) and compare the real and imaginary parts of R<! :. C is required.

次に本発明の目的である各相別絶縁抵抗値をSW2オン
時とSW3タン時の関係式を用いて求める。
Next, the insulation resistance value for each phase, which is the object of the present invention, is determined using the relational expressions when SW2 is on and when SW3 is on.

今、{(4)×B3−(5)XVB2を式(6)を利用
して整理するととなり、式(20)′.は式(1),(
7),(12)を用いて実部虚部に分けて整理すると次
のようになる。
Now, if we rearrange {(4)×B3−(5)XVB2 using equation (6), we get equation (20)'. is the formula (1), (
7) and (12) and divide it into real and imaginary parts and get the following.

ここで各相の対地静電容量は等しいとシけるのでが成立
し、式(21)の右辺をP+JQと置けば(21)はと
なり、この式(23)よりωCOが消去できるので次の
式が得られる。
Here, the ground capacitance of each phase is assumed to be equal, so it holds true, and if we set the right side of equation (21) as P + JQ, then (21) becomes, and from this equation (23), ωCO can be eliminated, so the following equation is obtained.

従つて、B相の対地絶縁抵坑値RBは式(15),(2
4)より次の式で求められる。
Therefore, the ground insulation resistance value RB of the B phase is expressed by equations (15) and (2
4), it can be obtained using the following formula.

同様にして{(4)XVC3−(5)XVC2を式(6
)を利用して整理するとが得られ、この式を式(1),
(7),(12)を用いて実部虚部に分けて整理すると
が得られる。
Similarly, {(4)XVC3-(5)XVC2 is expressed as
), we get
By using (7) and (12) and dividing into real and imaginary parts, we obtain the following.

式(22)が成立しているので式(27)の右辺を M
+JNと置けばとなり、この式(28)よりωCOが消
去できるので次の式が得られる従つて、C相の対地絶縁
抵抗値R。
Since Equation (22) holds true, the right side of Equation (27) can be written as M
+JN, and since ωCO can be eliminated from this equation (28), the following equation can be obtained.Therefore, the ground insulation resistance value R of the C phase.

められる。I can't stand it.

は次の式で求 最後にA組の対地絶縁抵抗値RAは式(25),(30
)で得られたRB,Rcより次式で求められる。
is the following formula.Finally, the ground insulation resistance value RA of group A is determined by formulas (25) and (30
) is determined by the following formula from RB and Rc.

以上のようにして各相の対地絶縁抵抗値は式(15),
(25),(30),(31)より求められる。
As described above, the ground insulation resistance value of each phase is calculated by formula (15),
It is obtained from (25), (30), and (31).

また各相の対地静電容量は式(16),(22)より次
式で求められる。一方、SWOオン時とSWlオン時の
関係式を用いて各相の対地絶縁抵抗値を求めることも町
能であり、前記のSW2オン時とSW3オン時につjい
ての解法と同様にして求めることができる。
Further, the ground capacitance of each phase can be obtained from equations (16) and (22) using the following equation. On the other hand, it is also possible to find the ground insulation resistance value of each phase using the relational expression when SWO is on and when SWl is on, and it is found using the same method as the above solution for when SW2 is on and SW3 is on. be able to.

結局、本発明の絶縁抵抗測定方法では、既知数γ,γ0
,ω,ρの値以外に最少限必要な検出値は次の通りであ
る。1)三相の内任意の二相の間の線間電圧値1個 町
(例:JVO)2) SWOオン時、SWlオン時、S
W2オン時、SW3オン時の内任意の2つの時の夫々に
ついて、各相の対地電圧A,3,O及びN−E間の対地
電圧Eの4個の電圧の内任意の2個の対地電圧値4個(
例:B,,B3,゜!2 ・VC3) 3) 1)の線間電圧と2)の対地電圧との位相差4個
(例:52・53,θC2・θ03)従つて、本発明の
絶縁抵抗測定方法では、各相別対地絶縁抵抗値及び各相
別対地静電容量値を測定するためにA組、B組、C組の
各相の少なくとも1相に測定抵抗γを接続したり離した
りして各相の電圧バランスをくずし、4個の対地電圧(
A相、B相、C相、及び申性点の対地電圧)の比を少な
くとも2種類の値に変化させて、そのときの4個の対地
電圧の内2個の対地電圧と基準ベクトル(例えばVBC
)との位相差を検出することが必要である。
In the end, in the insulation resistance measuring method of the present invention, the known numbers γ, γ0
, ω, and ρ, the minimum required detection values are as follows. 1) One line voltage value between any two of the three phases (e.g. JVO) 2) When SWO is on, when SWl is on, S
For any two times when W2 is on and when SW3 is on, any two of the four voltages to ground of each phase's voltage to ground A, 3, O, and voltage to ground E between NE 4 voltage values (
Example: B,,B3,゜! 2 ・VC3) 3) 4 phase differences between the line voltage in 1) and the ground voltage in 2) (Example: 52・53, θC2・θ03) Therefore, in the insulation resistance measurement method of the present invention, each phase is In order to measure the ground insulation resistance value and the ground capacitance value for each phase, the voltage balance of each phase is balanced by connecting or disconnecting a measurement resistor γ to at least one phase of each phase of group A, group B, and group C. and the four ground voltages (
A, B, C, and polar point ground voltages) are changed to at least two different values, and two of the four ground voltages at that time and a reference vector (e.g. VBC
) is necessary to detect the phase difference between the two.

本発明は、以上に説明した平衡電源三相交流中性点抵抗
接地系統に使用できるだけでなく以下に述べるような応
用及び変更が可能である。
The present invention can not only be used in the balanced power supply three-phase AC neutral point resistance grounding system described above, but also can be applied and modified as described below.

1)本発明は中性点抵抗接地の他に非接地系統にも使用
することができ、そのときは中性点接地抵抗γ。
1) The present invention can be used not only for neutral point resistance grounding but also for ungrounded systems, in which case the neutral point grounding resistance γ.

を無限大として考えて上記の式は1/γo=0としてそ
のまま使用できる。ただし非接地系統の場合Eを用いて
各相別絶縁抵抗値等を測定することはできない。2)本
発明は中性点リアクトル接地系統にも使用することがで
き、そのときは中性点接地抵抗γ。
Considering that is infinite, the above equation can be used as is by setting 1/γo=0. However, in the case of a non-grounded system, E cannot be used to measure the insulation resistance value of each phase. 2) The present invention can also be used in a neutral reactor grounding system, in which case the neutral grounding resistance γ.

をリアクタンスj(t)Lに置き換えるだけでよい。3
)前記の本発明の説明VC}いてはA,B,C各相に接
続される測定抵抗γの値は同一値であるが、測定抵抗を
接続する目的は各相及び中性点の対地電圧のバランスを
くずしその対地電圧比を少なくとも2種類の値に変化さ
せることにあるため、各相に接続する測定抵抗γの値は
同一値である必要はない。
It is sufficient to simply replace j(t)L with reactance j(t)L. 3
) The value of the measuring resistor γ connected to each phase of A, B, and C is the same value, but the purpose of connecting the measuring resistor is to measure the ground voltage of each phase and the neutral point. Since the purpose is to upset the balance of the ground voltage and change the ground voltage ratio to at least two different values, the values of the measurement resistors γ connected to each phase do not need to be the same value.

従つて例えば第5図のような測定抵抗の接続方法が可能
である。第5図のA,b,cはA,B,C各相の内任意
の1相に測定抵抗を接続したり離したりする方法であり
、第5図dはA,B,C各相に接続する測定抵抗の値が
異なる場合の方法である。4)前記の本発明の説明に}
いては測定抵抗γは実抵抗としているが、リアクタンス
あるいはキャパシタンスを含むインピーダンス素子で置
き換えることもでき、前記の方法と同様にしてR,Cが
求められる。
Therefore, for example, a method of connecting the measuring resistor as shown in FIG. 5 is possible. A, b, and c in Figure 5 are methods for connecting or disconnecting the measuring resistor to any one of the A, B, and C phases, and Figure 5 d is a method for connecting or disconnecting the measuring resistor to any one of the A, B, and C phases. This is a method when the values of the connected measurement resistors are different. 4) To the above description of the present invention}
In this case, the measurement resistance γ is a real resistance, but it can be replaced with an impedance element including reactance or capacitance, and R and C can be obtained in the same manner as in the above method.

5)前記の本発明の説明にシいてはA,B,C各相全て
に電圧計を接続しているが、少なくとも2相に電圧計を
設けるだけでもよく各相全てに設ける必要はない。
5) In the above description of the present invention, voltmeters are connected to all of the A, B, and C phases, but it is sufficient to provide voltmeters to at least two phases, and it is not necessary to provide voltmeters to all phases.

A,B,C各相全てに電圧計を設けない場合前記の式(
1)に}いて電圧計を設けない相の内部抵抗ρを無限大
と}けば前記の方法と同様にして解析することができる
。第6図に本発明による絶縁抵抗測定装置の一実施例の
プロツク図を示す。A,B,C各相に設けられた各相電
圧計31,32,33の内A相とB相の二相の電圧計3
1,32を選ぶ。これらの各相電圧計31,32はA相
、B相の対地電圧値の信号を出力する。これらの出力信
号を受けた線間電圧計34はA相とB相の線間電圧値の
信号を出力する。各相電圧計31の出力信号と線間電圧
計34の出力信号とを受けた位相差計35はA相の対地
電圧とA−B間の線間電圧(基準ベクトル)との位相差
の信号を出力する。各相電圧計32の出力信号と線間電
圧計34の出力信号とを受けた位相差計36はB相の対
地電圧とA−B間の線間電圧との位相差の信号を出力す
る。これらの各相電圧計31,32、線間電圧計34、
位相差計35,36の出力信号を受けた演算装置37は
これらの検出値から各相の対地絶縁抵抗置RA,RB,
Rc、及び各相の対地静電容量C。を演算しその演算値
の信号を出力する。演算装置37からの出力信号を受け
た表示装置38は演算値Rぇ.,RBL,RC,COを
例えば等価抵抗値に等一して表示する。また演算装置3
7からの出力信号を受けた記録装置39は演算値を連続
的に記録し経時変化を示す。な}、諸電圧値の測定に}
いてはA,B,C各相の対地静電容量CA,CB,CC
の放電時間を考慮すべきであり、諸電圧値はその電圧変
動が訃さまつてから測定することが望ましい。以上説明
したように本発明によれば三相交流系統全体の各柵1対
地絶縁抵抗値及び各相別対地静電容量値を活線下に}い
て測定することが可能となり、これによつて系統の各相
の絶縁管理ができるようになり、また絶縁値の連続モニ
ターにより絶縁測定及び点検の省力化が可能である。
If voltmeters are not installed on all phases A, B, and C, the above formula (
If the internal resistance ρ of the phase in which no voltmeter is installed in 1) is assumed to be infinite, analysis can be performed in the same manner as the above method. FIG. 6 shows a block diagram of an embodiment of the insulation resistance measuring device according to the present invention. Of the phase voltmeters 31, 32, and 33 provided for each phase of A, B, and C, two-phase voltmeter 3 for phase A and phase B
Choose 1,32. These phase voltmeters 31 and 32 output signals of A-phase and B-phase ground voltage values. The line voltmeter 34 that receives these output signals outputs signals of A-phase and B-phase line voltage values. The phase difference meter 35 receives the output signal of each phase voltmeter 31 and the output signal of the line voltmeter 34, and outputs a signal indicating the phase difference between the A-phase ground voltage and the line voltage (reference vector) between A and B. Output. The phase difference meter 36 receives the output signal of each phase voltmeter 32 and the output signal of the line voltmeter 34 and outputs a signal representing the phase difference between the B-phase ground voltage and the line voltage between A and B. These phase voltmeters 31, 32, line voltmeter 34,
The arithmetic unit 37 that receives the output signals of the phase difference meters 35 and 36 determines the ground insulation resistance settings RA, RB, and RA of each phase from these detected values.
Rc, and the ground capacitance C of each phase. is calculated and a signal of the calculated value is output. The display device 38 which received the output signal from the calculation device 37 displays the calculation value Re. , RBL, RC, and CO are expressed as equivalent resistance values, for example. Also, calculation device 3
The recording device 39 that receives the output signal from 7 continuously records the calculated values to show changes over time. For measuring various voltage values
and the ground capacitance CA, CB, CC of each phase of A, B, and C.
The discharge time of the battery should be considered, and it is desirable to measure the various voltage values after the voltage fluctuations have subsided. As explained above, according to the present invention, it is possible to measure the ground insulation resistance value of each fence and the ground capacitance value of each phase in the entire three-phase AC system by placing it under the live wire. It is now possible to manage the insulation of each phase of the system, and it is also possible to save labor in insulation measurements and inspections by continuously monitoring insulation values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明するための測定回路図。 第2図は第1図の測定回路に訃いてSWOオン時の等価
回路。第3図は第1図の測定回路に卦いてSWlオン時
の等価回路。第4図はEBEcを基準ベクトルにとつた
ときの対地電圧ベクトル図。第5図は沖淀抵抗γの接続
力法を示す図。第6図は本発明による絶縁抵抗測定装置
0一実施例のプロツク図。〔符号説明〕 31,32,
33・・・各相電圧計、34・・・線間電圧計、35,
36・・・位相差計。 37・・・演算装置、38・・俵示装置、39・・・記
録装置。
FIG. 1 is a measurement circuit diagram for explaining the principle of the present invention. Figure 2 is an equivalent circuit of the measurement circuit shown in Figure 1 when SWO is on. Figure 3 is an equivalent circuit of the measurement circuit in Figure 1 when SWl is on. FIG. 4 is a ground voltage vector diagram when EBEc is taken as a reference vector. FIG. 5 is a diagram showing the connection force method for Okiyodo resistance γ. FIG. 6 is a block diagram of an embodiment of the insulation resistance measuring device 0 according to the present invention. [Number explanation] 31, 32,
33...Each phase voltmeter, 34...Line voltmeter, 35,
36...Phase difference meter. 37... Arithmetic device, 38... Bale display device, 39... Recording device.

Claims (1)

【特許請求の範囲】 1 三相交流系統の各相別対地絶縁抵抗値と各相別対地
静電容量値とを測定する方法において、イ)A相、B相
、C相、及び電源中性点の各対地電圧の間の比を少なく
とも2つの異なつた比に変化させる段階と、ロ)前記対
地電圧の比が第1の比のとき及び第2の比のときの各々
の場合について、A相、B相、C相の三相の内選択した
二相の間の線間電圧と、A相、B相、C相、及び電源中
性点の4つの内選択した2つの対地電圧と、前記線間電
圧と前記2つの対地電圧との位相差とを測定する段階と
、ハ)前記の測定値を用いて各相別対地絶縁抵抗値と各
相別対地静電容量値とを演算する段階と、から成る絶縁
抵抗測定方法。 2 三相交流系統のA相、B相、C相及び電源中性点の
各対地電圧の間の比を少なくとも2つの異なつた比に変
化させるために使用する少なくとも一個の測定用インピ
ーダンスと、該測定用インピーダンスをA相、B相、C
相の内少なくとも一相に接続したり離したりする切替装
置と、三相の内選択した二相の間の線間電圧を測定する
線間電圧測定装置と、三相と電源中性点の4つの内選択
した2つの対地電圧を測定する対地電圧測定装置と、前
記線間電圧と前記2つの対地電圧との位相差を夫々測定
する位相測定装置と、及び前記電圧比が第1の比のとき
及び第2の比のときに前記線間電圧装置と前記対地電圧
装置と及び前記位相測定装置より得られる測定値を用い
て三相交流配線の各相別対地絶縁抵抗値及び各相別対地
静電容量値を演算する装置と、から成る絶縁抵抗測定装
置。
[Claims] 1. A method for measuring each phase-to-ground insulation resistance value and each phase-to-ground capacitance value of a three-phase AC system, comprising: a) phase A, phase B, phase C, and power supply neutral; (b) changing the ratio between each of the ground voltages at the points to at least two different ratios, and (b) for each case when the ratio of the ground voltages is a first ratio and a second ratio Line voltage between two phases selected from three phases, A phase, B phase, C phase, and two ground voltages selected from four phases, A phase, B phase, C phase, and power supply neutral point, measuring the phase difference between the line voltage and the two ground voltages, and c) calculating each phase ground insulation resistance value and each phase ground capacitance value using the measured values. An insulation resistance measurement method consisting of steps. 2. At least one measuring impedance used to change the ratio between the A-phase, B-phase, C-phase and each ground voltage of the power supply neutral point of a three-phase AC system to at least two different ratios; The impedance for measurement is A phase, B phase, C
A switching device that connects or disconnects at least one of the phases, a line voltage measuring device that measures the line voltage between two selected phases out of the three phases, and a line voltage measuring device that measures the line voltage between the three phases and the power supply neutral point. a ground voltage measuring device that measures two ground voltages selected from among the ground voltages; a phase measuring device that measures a phase difference between the line voltage and the two ground voltages, and the voltage ratio is a first ratio. and the second ratio, each phase-to-ground insulation resistance value and each phase-to-ground insulation resistance value of the three-phase AC wiring are determined using the measured values obtained from the line voltage device, the ground voltage device, and the phase measuring device. An insulation resistance measuring device consisting of a device for calculating capacitance values.
JP53137563A 1978-11-08 1978-11-08 Insulation resistance measurement method and device Expired JPS5937470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53137563A JPS5937470B2 (en) 1978-11-08 1978-11-08 Insulation resistance measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53137563A JPS5937470B2 (en) 1978-11-08 1978-11-08 Insulation resistance measurement method and device

Publications (2)

Publication Number Publication Date
JPS5563765A JPS5563765A (en) 1980-05-14
JPS5937470B2 true JPS5937470B2 (en) 1984-09-10

Family

ID=15201638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53137563A Expired JPS5937470B2 (en) 1978-11-08 1978-11-08 Insulation resistance measurement method and device

Country Status (1)

Country Link
JP (1) JPS5937470B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372668A (en) * 1976-12-10 1978-06-28 Sumitomo Metal Ind Insulation resistance measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372668A (en) * 1976-12-10 1978-06-28 Sumitomo Metal Ind Insulation resistance measuring device

Also Published As

Publication number Publication date
JPS5563765A (en) 1980-05-14

Similar Documents

Publication Publication Date Title
EP0671011B1 (en) A method and a device for determining the distance from a measuring station to a fault on a transmission line
US3248646A (en) Location of cable faults by comparing a section of the faulted cable with a part of the section
US20100131215A1 (en) Insulation monitoring system &amp; insulation detecting method for electric power supply system
CA1063174A (en) Method and apparatus for locating a fault on a line
CN100348988C (en) On line detecting system with double Y connection wire power capacitor set
EP0599648A1 (en) Three-phase power analyzer
US4261038A (en) Protection of electrical power supply systems
CA1305217C (en) Device for locating internal faults in a high-voltage capacitor battery
US4023101A (en) Multiple function electrical measuring and indicating apparatus
JPS5937470B2 (en) Insulation resistance measurement method and device
CN107957568A (en) Secondary Circuit of Potential Transformer multipoint earthing Quick positioning instrument and lookup method
JPH10132890A (en) Method and device for locating failure point
JPS5937469B2 (en) Insulation resistance measurement method and device
JPS5934980B2 (en) Insulation resistance measurement method and device
RU2823691C1 (en) Method of determining the point of damage on overhead power transmission line by measuring currents from its two ends
JPH0692997B2 (en) Measuring device for ground capacitance of power system
US1929289A (en) Electrical instrument
JPH05172891A (en) Detection of grounding of electric line and device therefor
RU2828439C1 (en) Method of determining point of damage on overhead power transmission line by measuring currents from its two ends
Hart Characterising the power system at a load busbar by measurement
SU1019375A1 (en) Meter of distance to short-circuit locations
US3723872A (en) Three-wire, three-phase watt-varmeter
JPH0428065Y2 (en)
JP2023155635A (en) Insulation monitoring device
SU1725136A1 (en) Method of determination of voltage of touch