JPS5937438B2 - Method of recovering heat from exhaust gas - Google Patents

Method of recovering heat from exhaust gas

Info

Publication number
JPS5937438B2
JPS5937438B2 JP16241079A JP16241079A JPS5937438B2 JP S5937438 B2 JPS5937438 B2 JP S5937438B2 JP 16241079 A JP16241079 A JP 16241079A JP 16241079 A JP16241079 A JP 16241079A JP S5937438 B2 JPS5937438 B2 JP S5937438B2
Authority
JP
Japan
Prior art keywords
heat
exhaust gas
heat exchanger
temperature
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16241079A
Other languages
Japanese (ja)
Other versions
JPS5685696A (en
Inventor
幹夫 茂木
安二 千海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP16241079A priority Critical patent/JPS5937438B2/en
Publication of JPS5685696A publication Critical patent/JPS5685696A/en
Publication of JPS5937438B2 publication Critical patent/JPS5937438B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は焼却炉等の排ガス処理排出通路に介設される排
熱回収系での熱回収に供される熱媒体としてその沸点を
熱交換器に流入するガス温度より高い熱媒体を用いて熱
回収をなす排ガスからの熱回収方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a heat medium used for heat recovery in an exhaust heat recovery system installed in an exhaust gas treatment discharge passage of an incinerator, etc., and the boiling point of the heat medium is lower than the temperature of the gas flowing into the heat exchanger. The present invention relates to a method of recovering heat from exhaust gas using a high heat medium.

従来においても、焼却炉等から排出される排ガスは乾式
ガス処理された後廃熱ボイラーへ供給されて熱回収が行
われている。
Conventionally, exhaust gas discharged from an incinerator or the like is subjected to dry gas treatment and then supplied to a waste heat boiler for heat recovery.

そして、この廃熱ボイラーからの排ガスは電気集塵器に
て排ガス中のダストを除去してから煙突から大気中へ放
出されている。
Then, the exhaust gas from the waste heat boiler is discharged into the atmosphere from the chimney after removing dust from the exhaust gas in an electrostatic precipitator.

電気集塵器の出口排ガス温度は従来の焼却プラントでは
一般に300℃前後にある。
The exhaust gas temperature at the exit of the electrostatic precipitator is generally around 300°C in conventional incineration plants.

従って、電気集塵器の出口排ガスは省エネルギーの観点
からするといまだなお大量の熱量を保有している。
Therefore, the exhaust gas at the outlet of the electrostatic precipitator still retains a large amount of heat from the viewpoint of energy conservation.

このような熱量の回収を企図して熱回収系を電気集塵器
の下流に構成する場合に種々の問題がある。
There are various problems when configuring a heat recovery system downstream of the electrostatic precipitator in order to recover such heat.

先ず、熱交換器で生ずる低温腐食が問題となり、次は、
焼却炉等からの排ガスの保有する熱量はその性質上、上
述の如く熱回収系の負荷変動とは一般に無関係にあるか
ら、排ガス流量をバイパス経路などを設けて制御するこ
となく熱回収系でその制御をしようとすると、例えば熱
媒体として水を用いた場合には、熱回収系負荷がほとん
ど無くなった時水の蒸発による熱回収系内の圧力上昇を
来たし、交換熱量を自由に制御出来ないこととなり、更
には、水を熱媒体として用いた場合には1、回収し得た
熱の利用範囲が狭いこと等が挙げられる。
First, low-temperature corrosion that occurs in heat exchangers became a problem, and secondly,
Due to its nature, the amount of heat held by the exhaust gas from an incinerator, etc. is generally unrelated to load fluctuations in the heat recovery system, as described above. If you try to control it, for example, when water is used as a heat medium, when the load on the heat recovery system is almost gone, the pressure in the heat recovery system will increase due to water evaporation, making it impossible to freely control the amount of heat exchanged. Furthermore, when water is used as a heat medium, the range of utilization of the recovered heat is narrow.

本発明の目的は熱回収系の熱交換器へ供給される排ガス
温度より沸点の高い熱媒体を熱交換器へ供給して熱回収
するこ により、熱交換器の低温腐食の防止、また熱媒
体の流量制御による自由な熱交換量制御、回収熱の多目
的利用等を達成し得る排ガスからの熱回収方法を提供す
るにある。
The purpose of the present invention is to prevent low-temperature corrosion of the heat exchanger and to recover the heat by supplying a heat medium with a boiling point higher than the exhaust gas temperature supplied to the heat exchanger of the heat recovery system to the heat exchanger. An object of the present invention is to provide a method for recovering heat from exhaust gas, which can freely control the amount of heat exchange by controlling the flow rate of the exhaust gas, and achieve multipurpose use of the recovered heat.

以下、添付図面を参照しながら、本発明の好適−実施例
を説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明方法を実施した装置例のブロック図を示
す図である。
FIG. 1 is a block diagram of an example of an apparatus implementing the method of the present invention.

焼却炉1等からの排ガスを処理する、乾式ガス処理手段
2a、廃熱ボイラ2b、電気集塵器2c及び煙突2dか
ら成る排ガス処理通路2の、電気集塵器2cと煙突2d
との間に熱交換器3が介設されている。
An electrostatic precipitator 2c and a chimney 2d of an exhaust gas processing passage 2 that processes exhaust gas from an incinerator 1, etc., and is composed of a dry gas treatment means 2a, a waste heat boiler 2b, an electrostatic precipitator 2c, and a chimney 2d.
A heat exchanger 3 is interposed between the two.

熱交換器3の熱媒体流出口は必要に応じて設けられる補
助熱交換器例えば蒸気式熱交換器4を経て熱負荷装置5
へ連通されている。
The heat medium outlet of the heat exchanger 3 is connected to a heat load device 5 via an auxiliary heat exchanger such as a steam heat exchanger 4 provided as necessary.
is connected to.

そして、熱負荷装置5の排出口ま熱交換器3の流入口へ
連結されて熱回収循環系6を構成している。
The outlet of the heat load device 5 is connected to the inlet of the heat exchanger 3 to form a heat recovery circulation system 6.

蒸気式熱交換器4は廃熱ボイラー2bからの蒸気を受け
て熱交換器3での熱媒体の加熱量の不足分を補う手段で
ある。
The steam heat exchanger 4 is a means for receiving steam from the waste heat boiler 2b to compensate for the shortage in the heating amount of the heat medium in the heat exchanger 3.

熱媒体へ熱エネルギーを与えて凝縮した復水タンク(図
示せず)へ送られる4a′。
4a' which imparts thermal energy to the heat medium and is sent to a condensate tank (not shown) for condensation;

熱媒体としては、沸点が熱交換器の排ガス流入口へ流入
する排ガス温度(電気集塵器の出口での排ガス温度は通
常300℃前後である。
The heat medium has a boiling point at the exhaust gas temperature at which it flows into the exhaust gas inlet of the heat exchanger (the exhaust gas temperature at the outlet of the electrostatic precipitator is usually around 300°C).

)より高い温度例えば沸点が330℃のKSK−01L
330(商品名)が用いられる。
) higher temperature e.g. KSK-01L with a boiling point of 330°C
330 (product name) is used.

そして、熱交換器3へ流入する熱媒体温度を、熱交換器
での低温腐食を生ぜしめない温度例えば130℃以上に
保たれるように熱回収循環系6は構成されている。
The heat recovery circulation system 6 is configured so that the temperature of the heat medium flowing into the heat exchanger 3 is maintained at a temperature, for example, 130° C. or higher, which does not cause low-temperature corrosion in the heat exchanger.

第2図には、上述の熱回収循環系6内に循環ポンプユニ
ットγ及び熱媒体膨張槽8を介設したより詳細な構成が
示されている。
FIG. 2 shows a more detailed configuration in which a circulation pump unit γ and a heat medium expansion tank 8 are interposed in the heat recovery circulation system 6 described above.

第2図に示される如く、循環ポンプユニットγは並設さ
れた2台のポンプγa及び1b、これらのポンプの吐出
口へ連通された制御可能な3方弁1c、ポンプ1a及び
γbの吐出口と3方弁1cの第1の吐出口との間に介設
されたバイパス弁BY並びに3方弁の第1の吐出口及び
バイパス弁BVの吐出口と熱交換器5の吐出口とへ夫々
連通された2つの流入口及び蒸気式熱交換器4の熱媒体
流入口へ連通された流出口を有する混合チャンバγdか
ら成る。
As shown in FIG. 2, the circulation pump unit γ includes two pumps γa and 1b arranged in parallel, a controllable three-way valve 1c communicating with the discharge ports of these pumps, and discharge ports of the pumps 1a and γb. and the first discharge port of the three-way valve 1c, the first discharge port of the three-way valve, the discharge port of the bypass valve BV, and the discharge port of the heat exchanger 5, respectively. It consists of a mixing chamber γd having two communicating inlets and an outlet communicating with the heat medium inlet of the steam heat exchanger 4.

熱交換器3は同−又は異種の間接式熱交換器3a、3b
及び3cから成る。
The heat exchanger 3 is the same or different type of indirect heat exchanger 3a, 3b
and 3c.

この熱交換器3は図式的に示されており、熱交換器3を
通過する排ガスは第2図では左から右へ、矢印中の如く
流れる。
This heat exchanger 3 is shown diagrammatically, and the exhaust gas passing through the heat exchanger 3 flows from left to right in FIG. 2 as indicated by the arrows.

蒸気式熱交換器4は熱媒体を加熱するためのクンク4a
内の蒸気注入空間4alを廃熱ボイラ2bへ制御可能な
弁4bを経て連通し、タンク4a内の熱媒体加熱室4a
2を上述の如く混合チャンバーγdの流出口へ連通し、
そして熱媒体加熱室4a3を熱負荷装置5の流入口へ連
通ずる一方、熱媒体加熱室4aaの流出口に温度指示調
節計(TIC)4cが連結されて構成されている。
The steam heat exchanger 4 has a heat exchanger 4a for heating a heat medium.
The steam injection space 4al in the tank 4a is connected to the waste heat boiler 2b via a controllable valve 4b, and the heat medium heating chamber 4a in the tank 4a is connected to the waste heat boiler 2b.
2 to the outlet of the mixing chamber γd as described above;
The heat medium heating chamber 4a3 is communicated with the inlet of the heat load device 5, while a temperature indicating controller (TIC) 4c is connected to the outlet of the heat medium heating chamber 4aa.

調節計TICの出力は制御可能な弁4bの制御入力へ接
続され、その出力信号によって弁4bの弁開度が調節さ
れる。
The output of the controller TIC is connected to the control input of the controllable valve 4b, and the opening degree of the valve 4b is adjusted by its output signal.

又、調節計’I” I Cの出力は制御可能な3方弁1
cの制御入力へ接続され、その出力信号によって3方弁
γCの制御がなされる。
In addition, the output of the controller 'I' I C is controlled by a three-way valve 1.
The three-way valve γC is controlled by its output signal.

又、蒸気式熱交換器4から熱負荷装置5への給送路9に
圧力指示調節計PIC10が接続されており、調節計P
ICの出力は給送路9と、熱負荷装置5から循環ポンプ
ユニットγへのり帯頃路11との間に介設された制御可
能な弁12の制御入力へ接続されている。
In addition, a pressure indicating controller PIC10 is connected to the feed line 9 from the steam heat exchanger 4 to the heat load device 5, and the controller P
The output of the IC is connected to the control input of a controllable valve 12 interposed between the feed line 9 and the belt line 11 from the thermal load device 5 to the circulation pump unit γ.

上述までのところで説明してない参照文字BY。Reference character BY not explained above.

BV、はバイパス弁、■は開閉弁、TGは温度計、PG
は圧力計、Cはトラップ、LGはレベル計である。
BV is bypass valve, ■ is on-off valve, TG is thermometer, PG
is a pressure gauge, C is a trap, and LG is a level gauge.

第1図及び第2図に示される如く構成される装置例を用
いて本発明方法を以下に説明する。
The method of the present invention will be explained below using an example of an apparatus configured as shown in FIGS. 1 and 2.

焼却路等1からの排ガスは乾式ガス処理手段2aにおけ
るHClガスの除去後廃熱ボイラー2bへ通気される。
The exhaust gas from the incineration path etc. 1 is vented to the waste heat boiler 2b after HCl gas is removed in the dry gas treatment means 2a.

廃熱ボイラー2bで吸熱されて排出されて来た排ガスは
電気集塵器2cで除塵され、清浄化される。
The exhaust gas that has been exhausted after absorbing heat by the waste heat boiler 2b is removed and purified by the electric precipitator 2c.

電気集塵器2cからの排ガスは排ガス発生源である焼却
炉等の種類を問わず、一般に300°C前後のガス温度
で排出されて来る。
The exhaust gas from the electrostatic precipitator 2c is generally discharged at a gas temperature of about 300°C, regardless of the type of incinerator or the like that is the exhaust gas generation source.

この排ガスはその保有する熱エネルギーを、熱交換器3
へ流入し流出していく熱媒体に与え、それ白シは温度降
下して煙突2dから大気中へ放出される。
This exhaust gas transfers its retained thermal energy to the heat exchanger 3.
The temperature of the heat medium is lowered, and the heat medium is released into the atmosphere from the chimney 2d.

熱媒体はその温度が間接式熱交換器3に低温腐食を生ぜ
しめない温度例えば130℃以上に、熱回収循環系6に
て、維持されつつ、循環ポンプユニット7(第2図参照
)から熱交換器3へ圧送される。
The heat medium is maintained in the heat recovery circulation system 6 at a temperature that does not cause low-temperature corrosion to the indirect heat exchanger 3, for example, 130 degrees Celsius or higher, and the heat is transferred from the circulation pump unit 7 (see Fig. 2). It is sent under pressure to the exchanger 3.

従って、間接式熱交換器3の管壁温度は150℃以上に
保たれ、熱交換器3が低温腐食さ3′Lることはない。
Therefore, the tube wall temperature of the indirect heat exchanger 3 is maintained at 150° C. or higher, and the heat exchanger 3 is prevented from undergoing low-temperature corrosion.

従って、低温腐食に対する対策を考慮しなくても済む。Therefore, there is no need to consider measures against low-temperature corrosion.

循環ポンプユニットγから熱交換器3への流入量は、蒸
気式熱交換器4が設けられる場合には、その温度指示調
節計TlC4cによって制御される弁7cによって調節
される。
When the steam heat exchanger 4 is provided, the flow rate from the circulation pump unit γ to the heat exchanger 3 is regulated by a valve 7c controlled by its temperature indicating controller TIC4c.

この制御形式は制御可能な弁4bからの流入量が零又は
所定流量に弁4bが設定された状態においては調節計4
0の制御の下にある弁1cにより弁γCから混合チャン
バ1dへのバイパス流量を調節しつつ熱交換器3への流
入量を調整し、このような調節の下においてバイパス流
量が零になる〔弁1cの混合チャンバ1dへの吐出口全
閉〕場合には弁4bの弁開度を調節計4cにより調節し
て熱媒体の熱交換器3への流量制御と、熱交換器3へ給
液可能な最大熱媒体流量が熱交換器3へ給液された状態
における熱的不足分を蒸気式熱交換器4cで補う制御と
を遂行する如きものである。
In this control type, when the inflow rate from the controllable valve 4b is zero or the valve 4b is set to a predetermined flow rate, the controller 4
The flow rate into the heat exchanger 3 is adjusted while the bypass flow rate from the valve γC to the mixing chamber 1d is adjusted by the valve 1c under the control of the valve 1c, and under such regulation, the bypass flow rate becomes zero [ When the discharge port of the valve 1c to the mixing chamber 1d is fully closed, the opening degree of the valve 4b is adjusted by the controller 4c to control the flow rate of the heat medium to the heat exchanger 3 and to supply liquid to the heat exchanger 3. This control is performed so that the steam type heat exchanger 4c compensates for the thermal deficiency in a state where the maximum possible flow rate of the heat medium is supplied to the heat exchanger 3.

このように、熱交換器3へ給液される熱媒体流量は可変
的に調節され交換熱量が制御される。
In this way, the flow rate of the heat medium supplied to the heat exchanger 3 is variably adjusted to control the amount of heat exchanged.

熱交換器3の交換熱量が最大の条件下でさらに熱量的に
不足する場合には、その熱媒体はさらに熱交換器4へ通
気されている蒸気と熱交換され、熱的に高レベルの熱媒
体と化される。
If the amount of heat exchanged by the heat exchanger 3 is at its maximum and the amount of heat is further insufficient, the heat medium is further heat exchanged with the steam vented to the heat exchanger 4, and a high level of heat is generated. Becomes a medium.

上述の如き調節により、熱交換される熱量を可変的に調
節出来る、換言すれば熱負荷の変動に対処し得ると同時
に、熱媒体の沸点を電気集塵器の出口温度(一般に30
0°C前後)より高い熱媒体を熱交換器に通しているか
ら、熱負荷の極少又は零時に熱媒体が蒸発して熱回収循
環系6内の圧力を異常に上昇させてしまう虞れは全くな
い。
By adjusting as described above, it is possible to variably adjust the amount of heat exchanged, in other words, it is possible to cope with fluctuations in heat load, and at the same time, the boiling point of the heating medium can be adjusted to the exit temperature of the electrostatic precipitator (generally 30°C).
Since a heat medium with a temperature higher than 0°C (approximately 0°C) is passed through the heat exchanger, there is a risk that the heat medium may evaporate and abnormally increase the pressure in the heat recovery circulation system 6 when the heat load is minimal or zero. Not at all.

又、上述の如くして、熱交換器で熱的に高いレベルとさ
れた熱媒体は熱の多目的利用に供しつる。
Also, as described above, the heat medium brought to a high thermal level by the heat exchanger can be used for multiple purposes.

熱負荷装置として、例えば吸収式冷凍機吸収式冷温水器
、温水器、フロンタービンを用い得、熱エネルギーを冷
暖房、発電に利用することが出来る。
As the heat load device, for example, an absorption chiller, an absorption chiller/heater, a water heater, or a fluorocarbon turbine can be used, and the thermal energy can be used for air conditioning, heating, and power generation.

熱交換器3で熱的に高いレベル化された熱媒体は、弁I
Cにてバイパスされている場合には、その熱的に低いレ
ベルの熱媒体と混合チャンバγdで混合され、用いられ
ることのある補助熱交換器4へ送られる。
The heat medium that has been thermally elevated in the heat exchanger 3 is transferred to the valve I.
If it is bypassed at C, it is mixed with the thermally lower level heat medium in the mixing chamber γd and sent to the auxiliary heat exchanger 4 that may be used.

熱交換器4が熱回収循環系6内に必要に応じて加入され
る場合には、上述の如き制御態様で熱媒体の熱的レベル
を高めるのに用いられる。
If a heat exchanger 4 is optionally included in the heat recovery circuit 6, it is used to increase the thermal level of the heating medium in a controlled manner as described above.

補助熱交換器4を必要としない場合には、バイパス弁B
V1を開弁じ、弁■を閉弁すればよい。
If auxiliary heat exchanger 4 is not required, bypass valve B
All you have to do is open the valve V1 and close the valve ■.

又、圧力指示調節計11は熱負荷装置5へ通ずる給送路
9内の圧力が熱負荷装置5の許容圧力以上に上昇すると
、弁12の弁開度を制御するように働き、異常圧力上昇
から熱負荷装置5の保護する。
Furthermore, when the pressure in the feed path 9 leading to the heat load device 5 rises above the allowable pressure of the heat load device 5, the pressure indicating regulator 11 works to control the valve opening of the valve 12, thereby preventing an abnormal pressure rise. Protects the heat load device 5 from

又、熱交換器3へ流入する熱媒体温度の調節は熱回収循
環系へ温度調節用分岐点を設は又は設けずして、熱回収
循環系及び温度調節用分岐点の双方又はいずれか一方を
制御することによって遂行することが出来る。
Further, the temperature of the heat medium flowing into the heat exchanger 3 can be adjusted by using the heat recovery circulation system and/or the temperature control branch point, with or without providing a temperature control branch point in the heat recovery circulation system. This can be accomplished by controlling the

以上の説明から明らかなように、本発明によれば次の如
き優れた効果を発揮する。
As is clear from the above description, the present invention exhibits the following excellent effects.

(1)低温腐蝕を防止することができる。(1) Low-temperature corrosion can be prevented.

(2)排ガス中のダストが熱交換器に付着することを可
及的に防止することができると共にダスト付着による腐
蝕を防止することができる。
(2) Dust in exhaust gas can be prevented from adhering to the heat exchanger as much as possible, and corrosion due to dust adhesion can be prevented.

(3)熱の多目的利用を達成し得る。(3) Multipurpose use of heat can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図は熱
回収循環系をより詳細に示す図である。 図中、1は焼却炉等、2は排ガス処理通路、3は熱交換
器、5は熱負荷装置、6は熱回収循環系である。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the heat recovery circulation system in more detail. In the figure, 1 is an incinerator, etc., 2 is an exhaust gas treatment passage, 3 is a heat exchanger, 5 is a heat load device, and 6 is a heat recovery circulation system.

Claims (1)

【特許請求の範囲】 1 焼却炉等の排ガス処理系内の排ガスから熱を回収す
る方法において、前記排ガス処理系の電気集塵器の下流
に排ガスと熱媒体との熱交換器を設けるとともに該熱交
換後の熱媒体から熱を回収して再び該熱交換器に戻す熱
回収循環系を構成し、沸点が前記電気集塵器の排ガス温
度より高い熱媒体を前記熱回収循環系内に循環させて熱
回収することを特徴とする排ガスからの熱回収方法。 2 前記熱媒体の前記熱交換器への流入温度を前記熱交
換器に低温腐蝕を生ぜしめない温度より高い温度に保つ
ことを特徴とする特許請求の範囲第1項記載の排ガスか
らの熱回収方法。
[Scope of Claims] 1. A method for recovering heat from exhaust gas in an exhaust gas treatment system such as an incinerator, which includes providing a heat exchanger between the exhaust gas and a heat medium downstream of an electrostatic precipitator in the exhaust gas treatment system, and A heat recovery circulation system is configured to recover heat from the heat medium after heat exchange and return it to the heat exchanger, and the heat medium whose boiling point is higher than the exhaust gas temperature of the electrostatic precipitator is circulated within the heat recovery circulation system. A method for recovering heat from exhaust gas, which is characterized by recovering heat from exhaust gas. 2. Heat recovery from exhaust gas according to claim 1, characterized in that the temperature at which the heat medium flows into the heat exchanger is maintained at a temperature higher than a temperature that does not cause low-temperature corrosion in the heat exchanger. Method.
JP16241079A 1979-12-14 1979-12-14 Method of recovering heat from exhaust gas Expired JPS5937438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16241079A JPS5937438B2 (en) 1979-12-14 1979-12-14 Method of recovering heat from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16241079A JPS5937438B2 (en) 1979-12-14 1979-12-14 Method of recovering heat from exhaust gas

Publications (2)

Publication Number Publication Date
JPS5685696A JPS5685696A (en) 1981-07-11
JPS5937438B2 true JPS5937438B2 (en) 1984-09-10

Family

ID=15754068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16241079A Expired JPS5937438B2 (en) 1979-12-14 1979-12-14 Method of recovering heat from exhaust gas

Country Status (1)

Country Link
JP (1) JPS5937438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032736Y2 (en) * 1984-09-07 1991-01-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032736Y2 (en) * 1984-09-07 1991-01-24

Also Published As

Publication number Publication date
JPS5685696A (en) 1981-07-11

Similar Documents

Publication Publication Date Title
EP2660516B1 (en) Heat recovery and utilization system
JP2001239129A (en) Exhaust gas treatment apparatus and operation method therefor
JPS58122308A (en) Method and equipment for heat storage operation of waste heat recovery rankine cycle system
JPH0629035A (en) Co-operative control device of fuel cell power-generation plant and waste heat collection system
JPS5937438B2 (en) Method of recovering heat from exhaust gas
JPH09122438A (en) Exhaust gas treatment system and its operation method
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
JP2002115836A (en) Regenerative exhaust gas processing unit
KR20170014080A (en) A fluidized bed heat exchanger for condensing heat recovery from multi-type heat sources
JPS61268907A (en) Boiler feedwater system
JP2002156493A (en) Site heat supply equipment of nuclear power station
JP3659659B2 (en) Exhaust gas boiler
JPH10237450A (en) Heat recovery apparatus of coke dry-quenching apparatus
JPH08313053A (en) High-temperature water heating device
JPH0223928Y2 (en)
JPH0612205Y2 (en) Combined heat and power equipment
JPH10237451A (en) Heat recovery apparatus of coke dry-quenching apparatus
JPS58123015A (en) Heat medium circulation type waste heat recovery method
JPH05187606A (en) Water supply preheater for coke dry type fire fighting apparatus
JP2001041431A (en) Dust discharge device for waste heat boiler
JPS6059406B2 (en) Control method and device for power plant using low boiling point medium steam
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPH01273936A (en) Heating and cooling system using hot water in heat and power generating plant
JPS605280Y2 (en) Combustion waste gas heat recovery equipment
JPH08255623A (en) Power generating system for fuel cell