JPS5937343B2 - High temperature wear resistant sintered alloy - Google Patents

High temperature wear resistant sintered alloy

Info

Publication number
JPS5937343B2
JPS5937343B2 JP5431680A JP5431680A JPS5937343B2 JP S5937343 B2 JPS5937343 B2 JP S5937343B2 JP 5431680 A JP5431680 A JP 5431680A JP 5431680 A JP5431680 A JP 5431680A JP S5937343 B2 JPS5937343 B2 JP S5937343B2
Authority
JP
Japan
Prior art keywords
alloy
hard phase
wear
temperature wear
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5431680A
Other languages
Japanese (ja)
Other versions
JPS56152947A (en
Inventor
徹 中田
弘之 遠藤
政利 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP5431680A priority Critical patent/JPS5937343B2/en
Priority to US06/237,906 priority patent/US4422875A/en
Publication of JPS56152947A publication Critical patent/JPS56152947A/en
Priority to US06/522,663 priority patent/US4552590A/en
Publication of JPS5937343B2 publication Critical patent/JPS5937343B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本説明は、高温における耐摩耗性に優れ、特に自動車な
どの内燃機関の弁座材に適する焼結合金に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present description relates to a sintered alloy that has excellent wear resistance at high temperatures and is particularly suitable for valve seat materials for internal combustion engines such as automobiles.

内燃機関の弁座には、以前は特殊鋳鉄や耐熱鋼が使用さ
れていたが、環境保護のため排ガス規制が数次にわたっ
て強化されたのに伴い、内燃機関もこれらの規制に適合
し、更に低燃費、高性能なものへと改良が重ねられた。
In the past, special cast iron and heat-resistant steel were used for the valve seats of internal combustion engines, but as exhaust gas regulations have been tightened several times to protect the environment, internal combustion engines have also become compliant with these regulations. Improvements have been made to achieve lower fuel consumption and higher performance.

そして、それに伴い弁座の使用条件が次第に過酷になり
、前述の従来材はもとより、初期の規制に対応して開発
された諸材料も使用に耐えない状況になってきた。
As a result, the conditions under which valve seats are used have become increasingly severe, and not only the conventional materials mentioned above, but also various materials developed in response to the early regulations, have become unusable.

本件出願人は、先に特願昭53−144325で述べた
ように、下記組成のへ合金部分が25〜75%と、B合
金部分が75〜25%とが互いにまだらに存在する組織
の焼結鋼を開発して実用に供してきた。
As previously stated in Japanese Patent Application No. 53-144325, the applicant of the present application has developed an sintered structure in which 25 to 75% of the He alloy portion and 75 to 25% of the B alloy portion of the following composition exist in patches with each other. We have developed steel compacts and put them into practical use.

この材料は、すでに開発された諸材料に較べて優れた耐
摩耗性をもっているが、最近のきびしい使用条件下では
時に以上摩耗が発生し、耐摩耗性をさらに強化すること
が必要になってきた。
This material has superior abrasion resistance compared to other materials that have already been developed, but under recent harsh usage conditions it sometimes wears out, making it necessary to further strengthen its abrasion resistance. .

耐摩耗性向上のためには、硬質物質を基材中に分散させ
るのが有効である。
In order to improve wear resistance, it is effective to disperse a hard substance into the base material.

発明者らは硬質物質として45〜60%Co −33〜
36 %Mo −8iおよび45〜60%Fe−33〜
36%M。
The inventors used 45 to 60% Co as a hard substance.
36% Mo-8i and 45-60% Fe-33~
36%M.

−8iの3元金属間化合物(ともに合金粉として市販さ
れている。
-8i ternary intermetallic compound (both are commercially available as alloy powders).

)を選び、これを各種の基材に添加して耐摩耗性を調べ
た結果、この硬質物質を前記先願の合金に3〜15係添
加した場合とくに大きな効果を示すことを見出した。
) was added to various base materials to examine its wear resistance, and as a result, it was found that a particularly large effect was exhibited when this hard substance was added to the alloy of the earlier application in an amount of 3 to 15 times.

エンジン台上テストにおいて、前記先願の合金で作った
弁座が異常摩耗を生じる試験条件下でも、本発明の合金
の場合は正常摩耗の域に止まる。
In an engine bench test, even under test conditions in which the valve seat made of the alloy of the prior application causes abnormal wear, the alloy of the present invention shows only normal wear.

以下、実施例について本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to Examples.

実施例 先ず、前記A合金とB合金との割合が1=1になるよう
に、各々の組成から炭素を除いた組成の側合金粉末と黒
鉛粉とを混合しておき、これに硬質相Cとして55%C
o−35%Mo−8iなる組成の粉末を0〜20%添加
して所定の形状に形成し、保護雰囲気中1200℃にて
20分間焼結して、硬質相の含有量が異なる数種類の試
料を作成した。
Example First, a side alloy powder having a composition excluding carbon from each composition and graphite powder are mixed so that the ratio of the A alloy to the B alloy is 1=1, and then a hard phase C is mixed with the graphite powder. as 55%C
A powder with a composition of o-35% Mo-8i was added from 0 to 20%, formed into a predetermined shape, and sintered at 1200°C for 20 minutes in a protective atmosphere to produce several types of samples with different hard phase contents. It was created.

次に、これらの試料について大連式摩耗試験機による摩
耗テストを行なったが、得られたデータのうち硬質相C
の含有量が0. 5. 10%の試料のものを第1図に
示す。
Next, abrasion tests were conducted on these samples using a Dalian type abrasion tester, and among the obtained data, the hard phase C
The content of is 0. 5. A 10% sample is shown in FIG.

このグラフから、摩耗が著しく大きくなるような条件域
が存在すること、および、その悪条件下においても、硬
質相の添加によって摩耗が著しく軽減されることがわか
る。
It can be seen from this graph that there is a condition range in which wear is significantly increased, and that even under such adverse conditions, wear is significantly reduced by the addition of a hard phase.

次に第2図のグラフは、基材中の硬質相含有率が圧環強
さおよび耐摩耗性に及ぼす影響を示したもので、硬質相
の増77IllIにつれて摩耗量が減少する反面、強度
も低下することを示している。
Next, the graph in Figure 2 shows the influence of the hard phase content in the base material on the radial crushing strength and wear resistance.As the hard phase increases, the amount of wear decreases, but the strength also decreases. It shows that.

ところで弁座の取り付けは、一般にシリンダーヘッドに
設けた孔に圧入または冷し低めされているに過ぎないの
で、その強度が不足な場合は稼動中に脱落するおそれが
ろる。
By the way, since the valve seat is generally attached by simply being press-fitted into a hole provided in the cylinder head or being cooled down, if its strength is insufficient, there is a risk that it will fall off during operation.

そこで硬質相の含有量冗ついては、摩耗の面からは3係
以上を必要とし、他方強度の面からは15チ以下に止め
る必要がある。
Therefore, the content of the hard phase needs to be 3 or more from the viewpoint of wear, and on the other hand, from the viewpoint of strength, it is necessary to keep it to 15 or less.

これは台上耐久テストの結果からも首肯されることで、
即ち第3図に示すように、硬質相を含有しない基材では
持たないような試験条件下でも、3%含有するものの摩
耗はほぼ正常の値でるって充分使用に耐える。
This is confirmed by the results of the bench durability test.
That is, as shown in FIG. 3, even under test conditions that a base material that does not contain a hard phase would not have, the wear of a material that contains 3% of the hard phase is approximately normal and is sufficiently durable for use.

なお、15チまでは硬質相の増加に伴い摩耗も減少する
が、それを越えてさらに増量しても摩耗面での有意差は
認められない。
Note that up to 15 inches, wear decreases as the hard phase increases, but even if the amount is further increased beyond that, no significant difference in wear is observed.

次に基材の材料と硬質相の有無との相互関係を調べるた
めに、A合金単味の基材、B合金単味の基材、それに両
合金各等量の基材の3種につき、それぞれ硬質相Cを含
有しない試料と10多含有する試料とを作成して比較し
た結果を次の表に示す。
Next, in order to investigate the interrelationship between the material of the base material and the presence or absence of a hard phase, three kinds of base materials were prepared: a base material containing only A alloy, a base material containing only B alloy, and a base material containing equal amounts of both alloys. A sample containing no hard phase C and a sample containing 10 hard phase C were prepared and compared, and the results are shown in the following table.

即ち、硬質相をA合金単味またはB合金単味の基材に添
加した場合に比べて、両合金の共存する基材への添加の
方が摩耗量の絶対値からみても、また効果の度合い、即
ちその基材における添加による摩耗の減少からみても勝
っている。
In other words, compared to the case where the hard phase is added to the base material of only alloy A or alloy B, adding it to the base material where both alloys coexist is more effective in terms of the absolute value of the amount of wear. It is also superior in terms of the degree of wear reduction due to its addition in the base material.

なお、本発明における基材中のA合金とB合金との割合
については、両合金各々単味の耐摩耗性は、後者の方が
優れている。
Regarding the ratio of alloy A and alloy B in the base material in the present invention, the latter has better wear resistance than the other alloys.

そしてB合金単味にA合金を添加してゆくと、A合金が
25チ以上で摩耗が減少し、40〜60%で最小値を示
したのち再び斬増し、75%を超えるとB合金単味より
も耐摩耗性が低下する。
When A alloy is added to B alloy alone, the wear decreases when A alloy is 25 or more, reaches a minimum value at 40 to 60%, and then increases again, and when it exceeds 75%, B alloy wear decreases. Abrasion resistance is worse than taste.

これが両合金同志の割合を一方が25〜75%、他方は
その残部と定める理由でるる。
This is the reason why the ratio of both alloys is set at 25 to 75% for one and the remainder for the other.

また、以上は硬質相Cの場合について説明したが、その
一部または全部を硬質相りに置換した場合にも同様の効
果が得られている。
Moreover, although the case of hard phase C has been described above, similar effects can be obtained even when part or all of it is replaced with hard phase.

次に第4図のグラフおよび顕微鏡写真は、本発明に係る
合金を焼結する際の焼結温度と得られる焼結材の耐摩耗
性、圧環強さおよび金属組織との関係を示したもので、
これらの各項目を綜合すると、焼結温度は1200℃を
中心とし、その前後20℃の範囲内が好ましいことがわ
かる。
Next, the graph and micrograph in Figure 4 show the relationship between the sintering temperature when sintering the alloy according to the present invention and the wear resistance, radial crushing strength, and metallographic structure of the obtained sintered material. in,
Combining these items, it can be seen that the sintering temperature is preferably centered around 1200°C and within a range of 20°C around it.

なお第2の発明は、第1の発明の焼結材の空孔内に鉛を
溶浸して固体潤滑作用を付加したものであって、内燃機
関の稼動条件が特にきびしい場合に有用なものである。
The second invention adds solid lubricating effect by infiltrating lead into the pores of the sintered material of the first invention, and is useful when the operating conditions of an internal combustion engine are particularly severe. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硬質相の含有量が異なる各試料について摩擦速
度と摩耗との関係を示すグラフ、第2図は硬質相の含有
量と摩耗および圧環強さとの関係を示すグラフ、第3図
は台上耐久テストの結果を示すグラフ、第4図は焼結温
度が焼結材の耐摩耗性、圧環強さおよび金属組織に及ぼ
す影響を示すグラフならびに顕微鏡写真である。
Figure 1 is a graph showing the relationship between friction speed and wear for samples with different hard phase contents, Figure 2 is a graph showing the relationship between hard phase content, wear and radial crushing strength, and Figure 3 is a graph showing the relationship between hard phase content and wear and radial crushing strength. FIG. 4 is a graph showing the results of the bench durability test, and a graph showing the influence of sintering temperature on the wear resistance, radial crushing strength, and metal structure of the sintered material, and a micrograph.

Claims (1)

【特許請求の範囲】 1 重量比にてCrO,5〜3%、Co1.3〜5.7
チ、M o 0.2〜2.4%、N i O,1〜2.
3%、Vo、05〜0.3%、C0,6〜1.2%およ
びFe残部からなり、且つ下記組成のA合金部分25〜
75チとB合金部分75〜25%とが互いにまだらに存
在する基地中に、下記の硬質相Cおよび硬質相りの少な
くとも一方が3〜15係分散していることを特徴とする
高温耐摩耗性焼結合金。 A合金 B合金 Cr 2〜4 % Co 5.5〜7.54M
o 0.2〜0.4% Ni O,5〜3 %
V O,2〜0.4% Mo 0.5〜3 %
CO,6〜1.2チ CO,。 6〜1.2チFe 残部 Fe 残部 硬質相C:45〜60チCo−33〜36%Mo−8i
硬質相D=45〜60%Fe−33〜36%Mo−8i
2 重量比にてCr065〜3%、Co1.3〜5.7
チ、Mo0.2〜2.4%、N i O,1〜2.3
%、Vo、05〜0.3%、C0,6〜1.2%および
Fe残部からなり、且つ下記組成のA合金部分25〜7
5チとB合金部分75〜25チとが互いにまだらに存在
する基地中に下記の硬質相Cおよび硬質相りの少なくと
も一方が3〜15係分散している焼結鋼であって、その
空孔内に鉛が含浸されていることを特徴とする高温耐摩
耗性焼結合金。 A合金 B合金 Cr 2〜4 % Co 5.5〜7.5%Mo
0.2〜0.4% Ni O,5〜3 %V
O,2〜0.4% Mo 0.5〜3%CO96〜
1.2係 C0,6〜1.2%Fe 残部 Fe
残部 硬質相C: 45〜60%Co−33〜36%Mo−8
i硬質相D=45〜60%Fe−33〜36%Mo−8
[Claims] 1. CrO, 5-3%, Co1.3-5.7 by weight
H, Mo 0.2-2.4%, N i O, 1-2.
3%, Vo, 0.5~0.3%, C0.6~1.2%, and the balance of Fe, and the A alloy part 25~ has the following composition.
High-temperature wear resistance characterized in that at least one of the following hard phase C and hard phase is dispersed in a ratio of 3 to 15% in a matrix in which 75% to 25% of alloy portions 75 and B are present in patches. Sintered alloy. A alloy B alloy Cr 2-4% Co 5.5-7.54M
o 0.2-0.4% NiO, 5-3%
VO, 2-0.4% Mo 0.5-3%
CO, 6~1.2chi CO,. 6-1.2% Fe, balance Fe, remainder hard phase C: 45-60% Co-33-36% Mo-8i
Hard phase D = 45-60% Fe-33-36% Mo-8i
2 Cr065-3%, Co1.3-5.7 in weight ratio
H, Mo0.2-2.4%, N i O, 1-2.3
%, Vo, 05 to 0.3%, C0, 6 to 1.2%, and the balance of Fe, and the A alloy part 25 to 7 has the following composition.
A sintered steel in which at least one of the following hard phases C and hard phases is dispersed in a matrix of 3 to 15 degrees in a matrix in which 5 degrees and B alloy portions of 75 to 25 degrees exist in patches, A high-temperature wear-resistant sintered alloy whose pores are impregnated with lead. A alloy B alloy Cr 2-4% Co 5.5-7.5% Mo
0.2-0.4% NiO, 5-3%V
O, 2~0.4% Mo 0.5~3% CO96~
Section 1.2 C0.6~1.2%Fe Balance Fe
Remaining hard phase C: 45-60% Co-33-36% Mo-8
i Hard phase D = 45-60% Fe-33-36% Mo-8
i
JP5431680A 1980-04-25 1980-04-25 High temperature wear resistant sintered alloy Expired JPS5937343B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5431680A JPS5937343B2 (en) 1980-04-25 1980-04-25 High temperature wear resistant sintered alloy
US06/237,906 US4422875A (en) 1980-04-25 1981-02-25 Ferro-sintered alloys
US06/522,663 US4552590A (en) 1980-04-25 1983-08-12 Ferro-sintered alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5431680A JPS5937343B2 (en) 1980-04-25 1980-04-25 High temperature wear resistant sintered alloy

Publications (2)

Publication Number Publication Date
JPS56152947A JPS56152947A (en) 1981-11-26
JPS5937343B2 true JPS5937343B2 (en) 1984-09-08

Family

ID=12967174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5431680A Expired JPS5937343B2 (en) 1980-04-25 1980-04-25 High temperature wear resistant sintered alloy

Country Status (1)

Country Link
JP (1) JPS5937343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294167B2 (en) 2003-11-21 2007-11-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100008812A1 (en) 2008-07-03 2010-01-14 Hitachi Powdered Metals Co., Ltd. Hard phase forming alloy powder, wear resistant sintered alloy, and production method for wear resistant sintered alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294167B2 (en) 2003-11-21 2007-11-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy
US7601196B2 (en) 2003-11-21 2009-10-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy

Also Published As

Publication number Publication date
JPS56152947A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
US4552590A (en) Ferro-sintered alloys
US7273508B2 (en) Iron-based sintered alloy material for valve seat
EP0130604B1 (en) Valve-seat insert for internal combustion engines
US4505988A (en) Sintered alloy for valve seat
JPH03247732A (en) Sliding material
KR0127658B1 (en) VALVE GUIDE MEMBER FORMED OF Fe-BASED SINTERED ALLOY HAVING EXCELLENT WEAR AND ABRASION
JP3327663B2 (en) High temperature wear resistant sintered alloy
JPH0453944B2 (en)
JPH0360897B2 (en)
JP3614237B2 (en) Valve seat for internal combustion engine
JPS5937343B2 (en) High temperature wear resistant sintered alloy
JP2706561B2 (en) Valve seat material for internal combustion engine and method of manufacturing the same
JPS6210244A (en) Sintered alloy excellent in wear resistance at high temperature
JPH0233848B2 (en) KOONTAIMAMOSEIBARUBUSHIITO
JPH0143022B2 (en)
JPH0541693B2 (en)
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPH0555592B2 (en)
JPS61117254A (en) Ferrous sintered alloy for valve seat
JPS62207847A (en) Ferrous sintered alloy for valve seat
JPS5871355A (en) Sintered alloy as valve seat material for diesel engine
JPH0288749A (en) Ferrous sintered alloy having high-temperature wear resistance
JPS625985B2 (en)
CA1068130A (en) Iron base sintered alloy for valve seat
JPH01178712A (en) Valve seat made of iron-based sintered alloy