JPS5937045A - Precision machining - Google Patents

Precision machining

Info

Publication number
JPS5937045A
JPS5937045A JP57149600A JP14960082A JPS5937045A JP S5937045 A JPS5937045 A JP S5937045A JP 57149600 A JP57149600 A JP 57149600A JP 14960082 A JP14960082 A JP 14960082A JP S5937045 A JPS5937045 A JP S5937045A
Authority
JP
Japan
Prior art keywords
raw material
processing method
precision
layer
supporting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57149600A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nagaura
善昭 長浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57149600A priority Critical patent/JPS5937045A/en
Priority to EP83304335A priority patent/EP0100648A3/en
Publication of JPS5937045A publication Critical patent/JPS5937045A/en
Priority to US06/632,693 priority patent/US4607496A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To efficiently perform precise thinning machining and precise symmetrical degree machining of silicone wafers, etc., by interposing a freezing layer between a supporting surface and a raw material and freezingly depositing the raw material onto the supporting surface and machining the material in this state. CONSTITUTION:A finishing table 5 consists of a vertically movable rotary board 4 whose surface 3 faces a supporting surface 2 (table surface) of a rotary table 1. On the supporting surface 2 is placed a water-containing sheet 4a, on which silicone wafers 7 are placed and pressed against the surface 2. Further, the surface 2 is supported in water in a container and, in this state, wafers 7 are held at a certain interval apart from the surface 2, the water is frozen to form a frozen layer, the raw material 7 is freezingly deposited onto the surface 2, and in this state, the raw material 7 is machined. In this case, the frozen layer is very thin and able to maintain the bottom surface of the raw material 7 parallel to the surface 2. Thus, the precise thinning machining and precise symmetrical degree machining of raw materials can be effectively performed.

Description

【発明の詳細な説明】 させて支持面に原材料を氷結付着し、その状態において
同原材料を加工することを特徴とする精密ノ 加工法に関するものであってシリコンウェハー等の精密
薄化加工、対称度精密加工を能率良く行うことを目的と
するも°のである。
[Detailed description of the invention] This relates to a precision processing method characterized by freezing and adhering a raw material to a supporting surface and processing the raw material in that state, which is suitable for precision thinning processing of silicon wafers, etc. Its purpose is to efficiently carry out precision machining.

本発明を図面に示す実施例について説明すると、機枠に
回転台盤lを設け、同回転台盤1の支持面2(台面)に
対面する面3を有する回転盤4を昇降調節自在に設けて
なる仕上盤5において、」〕記支支持2」二に紙、布、
織物、不#!&布、スポンジ等による含水シー)4aを
載置し同シート4aJ二+彰)コンウエハ−7(薄い半
導体板)を載置しこれを支持面2に押圧する(第4図)
。又支持面2を第5図〜第11図に示すように容器l6
内の水4b中に支持しその状態においてウェハー7を支
持面2と一定間隔に支持して水4bを氷結1−で氷結層
を形成し容器l6からこれを分I?l¥ L支持面2の
支軸l7を上記回転台盤lの軸受に支持するものである
。支持面2には第12図〜第21図に示すように水溝又
は水穴l8を設は水溝又は水穴l8から表面張力によっ
て若干盛上った水をウェハー7で押えて水膜層(4〜、
7Å以上)を形成する。このようにして上記シリコンウ
ェハー7の載置部即ち仕上加工部6を一20°C以下(
−30〜一50°C以下)に保持し、同回転台盤1の支
持面2にシリコンウェハー7(薄い半導体板)を支持す
ることが出来る。氷結層は水だけでなく他の成分即ちメ
チルアルコール、液体窒素、液体酸素等により行うこと
が出来る。シリコンウェハー7に代えてガラス薄片(ウ
ェハー7へのプリント配線透写用印画又は陽画カラス薄
板)、GGG (ガドリニウム・カリウムφガーネット
)、フェライト、水晶およびセラミック、ガリュームひ
素その他の半導体および金属等の材料であっても良い。
To explain the embodiment of the present invention shown in the drawings, a rotary base plate L is provided on the machine frame, and a rotary plate 4 having a surface 3 facing the support surface 2 (base surface) of the rotary base plate 1 is provided so as to be adjustable up and down. In the finishing machine 5, which is made up of paper, cloth,
Textiles, not #! & A water-containing sheet (4a) made of cloth, sponge, etc. is placed on the same sheet (4aJ2+Akira), and a wafer 7 (thin semiconductor board) is placed thereon and pressed against the support surface 2 (Fig. 4).
. In addition, the support surface 2 is attached to the container l6 as shown in FIGS. 5 to 11.
In this state, the wafer 7 is supported in water 4b in the container 16 at a constant distance from the support surface 2, and the water 4b is frozen with 1- to form a freezing layer, and this is removed from the container 16. l¥ The support shaft l7 of the L support surface 2 is supported by the bearing of the rotary table l. As shown in FIGS. 12 to 21, water grooves or water holes 18 are provided on the support surface 2, and the water that rises slightly due to surface tension from the water grooves or water holes 18 is suppressed by the wafer 7 to form a water film layer. (4~,
7 Å or more). In this way, the temperature of the silicon wafer 7 mounting section, that is, the finishing section 6 is kept at -20°C or below (
The silicon wafer 7 (thin semiconductor board) can be supported on the support surface 2 of the rotary table 1. The freezing layer can be formed not only with water but also with other ingredients, such as methyl alcohol, liquid nitrogen, liquid oxygen, etc. In place of the silicon wafer 7, materials such as glass thin pieces (prints or positive glass thin plates for printing wiring on the wafer 7), GGG (gadolinium potassium φ garnet), ferrite, crystal and ceramics, gallium arsenide and other semiconductors and metals can be used. It may be.

そして回転合椛lおよび回転盤4を第1図に示すように
矢印の方向に適当な圧力で相対運動させ研磨剤を用いて
上記によりウェハー7の上面を摩耗と研削の両件用によ
り磨きかつ同ウェハー7の厚さを300ル以下に形成す
ることか出来る。その後電磁波その他の手段により上記
氷結を溶解し同ウェハー7を支持面2から分離し同つエ
/\−7を反転して上述同様に同ウェハー7を四面2に
支持し上述同様に同ウェハー7の上面を磨き同つエ/\
一7の表裏両面を支持面2と対面3の平行精度と同一精
度の平行面に仕上げることが出来る。支持面2は第1図
〜第21図に示すように平面であるが第22図および第
23図に示すように球面又は曲面であってもよい。尚図
中8で示すものは回転吸引チャック、9は可削材、2a
は球面による支持面、10は水晶による発振素子、11
は什−に面、l2は回転風チャック、13は水晶発振素
子、14は水晶発振素子13の支持可削材、l5は球面
加工用カーブゼネレーター、第4図中16は塵埃微粒子
である。
Then, as shown in FIG. 1, the rotary plate 1 and the rotary disk 4 are moved relative to each other in the direction of the arrow with appropriate pressure, and the upper surface of the wafer 7 is polished by both abrasion and grinding using an abrasive. The thickness of the wafer 7 can be formed to be 300 μl or less. Thereafter, the ice is melted by electromagnetic waves or other means, the wafer 7 is separated from the support surface 2, the wafer 7 is inverted, the wafer 7 is supported on all sides 2 in the same manner as described above, and the wafer 7 is Polish the top surface of /\
Both the front and back sides of 17 can be finished into parallel surfaces with the same parallel accuracy as the support surface 2 and the facing surface 3. The support surface 2 is a flat surface as shown in FIGS. 1 to 21, but may be a spherical or curved surface as shown in FIGS. 22 and 23. In addition, what is shown by 8 in the figure is a rotary suction chuck, 9 is a machinable material, and 2a
10 is a spherical support surface, 10 is a crystal oscillation element, and 11 is a spherical support surface.
12 is a rotary wind chuck, 13 is a crystal oscillation element, 14 is a machinable material supporting the crystal oscillation element 13, 15 is a curve generator for machining a spherical surface, and 16 in FIG. 4 is a dust particle.

従来支持面2にト記つエノ飄−7を接着剤によって接着
したものである。ところが接着剤は柔軟であるためウェ
ハー7の下面と支持面2とを平行に保持し難く、かつ接
着剤は蒔くすると分子構造の限界に達して接着力を失,
う欠陥があった。
In this case, the conventional ENO-7 is adhered to the supporting surface 2 using an adhesive. However, since the adhesive is flexible, it is difficult to hold the lower surface of the wafer 7 and the support surface 2 parallel to each other, and when the adhesive is spread, it reaches the limit of its molecular structure and loses its adhesive strength.
There was a defect.

本発明は上記欠陥に鑑みなされたものであって、本発明
は上述のように支持面と原材料との間に氷結層を介在さ
せて支持面に原材料を氷結付着し、その状態において同
原材料を加工することを特徴とする精密加工法であるか
ら、支持面と原材料とは水その他の成分の凍結層によっ
て密着し凍結層はきわめて薄く(水の場合4〜7人)支
持面2と原材料7の下面とを平行に保持し得て原材料7
の対称精度および平行精度を向上しかつ同原材料7の厚
さを著しく減少し得る効果がある。
The present invention has been made in view of the above-mentioned defects, and as described above, a freezing layer is interposed between the supporting surface and the raw material, the raw material is frozen and adhered to the supporting surface, and the raw material is frozen and adhered to the supporting surface in that state. Since this is a precision processing method characterized by processing, the supporting surface and the raw material are in close contact with each other through a frozen layer of water and other components, and the frozen layer is extremely thin (4 to 7 people in the case of water) and the supporting surface 2 and the raw material 7. The raw material 7 can be held parallel to the bottom surface of the raw material 7.
This has the effect of improving the symmetry accuracy and parallelism accuracy of the material 7, and significantly reducing the thickness of the raw material 7.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による加工状態を示す正面図,第2図は
原材ネ1支持面の平面図、第3図および第4図はそれぞ
れ原材料支持状態の正面図、第5図は支持面とウェハー
との容器内氷結状態の止面図、第6図、第7図、第8図
、第9図、第10図および第11図はそれぞれ第5図の
他の実施例であって支持面とウェハーとの容器内氷結状
態の正面図、第12図は支持面の他の実施例の平面図、
第13図は第12図の正面図、第14図は支持面の他の
実施例の平面図、第15図は第14図の正面図、第16
図は支持面の他の実施例の平面図、第17図は第16図
の正面図、第18図は支持面の他の実施例の平面図、第
19図は第18図の拡大正面図、第20図は支持面の他
の実施例の平面図、第21図は第20図の拡大正面図、
第22図および第23図はそれぞれ曲面付着状態側面図
である。 2・・支持面、7・・原材料。 特許出願人 長 浦 善 昭
Figure 1 is a front view showing the processing state according to the present invention, Figure 2 is a plan view of the supporting surface of the raw material 1, Figures 3 and 4 are front views of the raw material supporting state, and Figure 5 is the supporting surface. 6, 7, 8, 9, 10, and 11 are other embodiments of FIG. A front view of the surface and the wafer in a frozen state in the container, FIG. 12 is a plan view of another embodiment of the support surface,
13 is a front view of FIG. 12, FIG. 14 is a plan view of another embodiment of the support surface, FIG. 15 is a front view of FIG. 14, and FIG. 16 is a front view of FIG.
17 is a plan view of another embodiment of the support surface, FIG. 17 is a front view of FIG. 16, FIG. 18 is a plan view of another embodiment of the support surface, and FIG. 19 is an enlarged front view of FIG. 18. , FIG. 20 is a plan view of another embodiment of the support surface, FIG. 21 is an enlarged front view of FIG. 20,
FIGS. 22 and 23 are side views of the curved surface attached state, respectively. 2. Support surface, 7. Raw material. Patent applicant Yoshiaki Nagaura

Claims (1)

【特許請求の範囲】 1)支持面と原材料との間に氷結層を介在させて支持面
に原材料を氷結付着し、その状態において同原材料を加
工することを特徴とする精密加工法。 2)支持面が平面である特許請求の範囲第1項記載の精
密加工法。 3)支持面が球面である特許請求の範囲第1項記載の精
密加工法。 4)支持面が回転台面である特許請求の範囲第1項記載
の精密加工法。 5)原材料が薄い半導体板(ウニ/\−)である特許請
求の範囲第1項記載の精密加工法。 6)原材料がシリコンウエノ\−である特許請求の範囲
tfj1項記載の精密加工法。 7)原材料がカラスである特許請求の範囲第1項記載の
精密加工法。 8)原材才゛lがGGGである特許請求の範囲第1項記
載の精密加工法。 9)原材料がフェライトである特、i1請求の範囲第1
項記載の精密加工法。 10)原材料が水晶である特許請求の範囲第1 sn記
載の精密加工法。 +1)原材料がセラミックである特許請求の範囲第1項
記載の精密加工法。 12)原材料がカリュームひ素である特許請求の範囲第
1項記載の精密加工法。 13)氷結層が含水シー)・により形成されている特許
請求の範囲第1項記載の精密加工法。 +4)氷結層か氷結水層である特許請求の範囲第1項記
載の精密加工法。 15)氷結層が液体窒素である特許請求の範囲第1項記
載の精密加工法。 16)氷結層が液体酸素である特許請求の範囲第1項記
載の精密加工法。
[Claims] 1) A precision processing method characterized by interposing a freezing layer between the supporting surface and the raw material, freezing and adhering the raw material to the supporting surface, and processing the raw material in this state. 2) The precision machining method according to claim 1, wherein the supporting surface is flat. 3) The precision machining method according to claim 1, wherein the supporting surface is a spherical surface. 4) The precision machining method according to claim 1, wherein the support surface is a rotary table surface. 5) The precision processing method according to claim 1, wherein the raw material is a thin semiconductor plate (urchin/\-). 6) The precision processing method according to claim 1, wherein the raw material is silicone urethane. 7) The precision processing method according to claim 1, wherein the raw material is crow. 8) The precision processing method according to claim 1, wherein the raw material material is GGG. 9) Particularly, the raw material is ferrite, i1 Claim 1
Precision machining method described in section. 10) The precision processing method according to claim 1 sn, wherein the raw material is crystal. +1) The precision processing method according to claim 1, wherein the raw material is ceramic. 12) The precision processing method according to claim 1, wherein the raw material is potassium arsenic. 13) The precision processing method according to claim 1, wherein the frozen layer is formed of a water-containing layer. +4) The precision machining method according to claim 1, which is a frozen layer or a frozen water layer. 15) The precision processing method according to claim 1, wherein the freezing layer is liquid nitrogen. 16) The precision machining method according to claim 1, wherein the frozen layer is liquid oxygen.
JP57149600A 1982-07-29 1982-08-26 Precision machining Pending JPS5937045A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57149600A JPS5937045A (en) 1982-08-26 1982-08-26 Precision machining
EP83304335A EP0100648A3 (en) 1982-07-29 1983-07-27 Holding a workpiece
US06/632,693 US4607496A (en) 1982-07-29 1984-07-23 Method of holding and polishing a workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149600A JPS5937045A (en) 1982-08-26 1982-08-26 Precision machining

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP59206629A Division JPS6099561A (en) 1984-10-01 1984-10-01 Precision working
JP59206628A Division JPS6099560A (en) 1984-10-01 1984-10-01 Precision working

Publications (1)

Publication Number Publication Date
JPS5937045A true JPS5937045A (en) 1984-02-29

Family

ID=15478742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149600A Pending JPS5937045A (en) 1982-07-29 1982-08-26 Precision machining

Country Status (1)

Country Link
JP (1) JPS5937045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114874A (en) * 1986-05-16 1988-05-19 サイベック システムズ Assembly for treating wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150787A (en) * 1978-05-19 1979-11-27 Kokusai Electric Co Ltd Workpiece fixing method
JPS5511767A (en) * 1978-07-12 1980-01-26 Shin Etsu Handotai Co Ltd Mirror finishing method of semiconductor wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150787A (en) * 1978-05-19 1979-11-27 Kokusai Electric Co Ltd Workpiece fixing method
JPS5511767A (en) * 1978-07-12 1980-01-26 Shin Etsu Handotai Co Ltd Mirror finishing method of semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114874A (en) * 1986-05-16 1988-05-19 サイベック システムズ Assembly for treating wafer

Similar Documents

Publication Publication Date Title
EP0147094B1 (en) Vacuum suction device
JP3055401B2 (en) Work surface grinding method and device
TW379389B (en) A method to polish semiconductor wafers
JP3925580B2 (en) Wafer processing apparatus and processing method
JP2539156B2 (en) Wafer polishing jig
TWI424484B (en) Wafer grinding method and wafer
JPH10180599A (en) Thin plate work surface grinding device and method thereof
JPS6022500B2 (en) Positioning and mounting method
JPH1199458A (en) Plate-like member corner edge chamfering device
JPS5937045A (en) Precision machining
JPS57170538A (en) Polishing method for one side of semiconductor wafer
JPH06208980A (en) Polishing apparatus
JPH0236066A (en) Abrasive cloth and polishing device
JPH10156710A (en) Thin plate polishing method and polishing device
JPH0567371B2 (en)
JPH11333703A (en) Polishing machine
JP2588060B2 (en) Polishing chuck for semiconductor wafer
JP2000052242A (en) Work holder
JPS5924960A (en) Accurate method of machining
JPS6099561A (en) Precision working
JPS6099560A (en) Precision working
JPS5930633A (en) Precision processing method
JPS54123148A (en) Bonding method of specimen to be polished
JPH0775829B2 (en) Precision polishing method
JPS5942264A (en) Precision machining method