JPS5935937A - Composite abrasion-resisting member - Google Patents

Composite abrasion-resisting member

Info

Publication number
JPS5935937A
JPS5935937A JP14668282A JP14668282A JPS5935937A JP S5935937 A JPS5935937 A JP S5935937A JP 14668282 A JP14668282 A JP 14668282A JP 14668282 A JP14668282 A JP 14668282A JP S5935937 A JPS5935937 A JP S5935937A
Authority
JP
Japan
Prior art keywords
cemented carbide
composite
iron
resisting member
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14668282A
Other languages
Japanese (ja)
Inventor
雅也 三宅
亀田 諒二
平山 壽一
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14668282A priority Critical patent/JPS5935937A/en
Publication of JPS5935937A publication Critical patent/JPS5935937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は薄い超硬合金部材と鋼部材とが接合された金型
素材等に使用される耐摩耗性複合部材に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a wear-resistant composite member used for mold materials, etc., in which a thin cemented carbide member and a steel member are joined.

(ロ)技術の背景 金型素材は精密部品の打抜き加工に使用するダイス、パ
ンチ等に利用されるものであり、放電加工、ワイヤーカ
ット等によって目的形状に加工して用いられるものであ
る。金型素材は高い硬度耐摩耗性及び耐衝撃性が要求さ
れるものであり、高速度鋼、ダイス鋼などが用いられて
いたが、硬度、寿命の点で不充分でありこれに替って超
硬合金が利用されるようになったが、超硬合金だけで素
材とする場合、極めて高価であり、又加工し難いため加
工費も高く形状にも制約される問題がある。
(b) Background of the technology Mold materials are used for dies, punches, etc. used for punching precision parts, and are processed into the desired shape by electrical discharge machining, wire cutting, etc. Mold materials are required to have high hardness, wear resistance, and impact resistance, and high-speed steel, die steel, etc. have been used, but they are insufficient in terms of hardness and life, so alternatives have been developed. Cemented carbide has come into use, but if cemented carbide is used alone as a material, it is extremely expensive and difficult to process, resulting in high processing costs and limited shapes.

そのため従来、必要部分にのみ超硬合金を用い、他は鋼
材を用い両者を鑞付等によって接合した複合素材が使用
されている。しかしながら、このような素材は金型用の
如く広い面積を鑞付するため超硬合金と鋼との熱膨張係
数の差によって冷却時に超硬合金に引張応力が働いて鑞
付けずれが生じたり、超硬合金に亀裂が生じるなどの問
題が多発していた。この問題を防止するために、超硬合
金部分を何部かに分割することによってその引張り応力
を分散しているが、加工工数が増し好ましくない。
For this reason, conventionally, a composite material has been used in which cemented carbide is used only in the necessary parts, steel is used in other parts, and the two are joined by brazing or the like. However, since such materials are soldered over a wide area, such as those used for molds, the difference in thermal expansion coefficient between the cemented carbide and steel can cause tensile stress to act on the cemented carbide during cooling, resulting in misalignment of the brazing. There were many problems such as cracks forming in the cemented carbide. In order to prevent this problem, the tensile stress is dispersed by dividing the cemented carbide part into several parts, but this increases the number of processing steps, which is undesirable.

(ハ)発明の開示 本発明は上記の超硬合金複合素材の問題点を解決し、超
硬合金部分を分割することなく製作可能fxR付はずれ
が無く、亀裂も発生しない複合耐摩耗性部材を提供する
ものである。
(C) Disclosure of the Invention The present invention solves the above-mentioned problems with cemented carbide composite materials, and provides a composite wear-resistant member that can be manufactured without dividing the cemented carbide part, does not come off with fxR, and does not generate cracks. This is what we provide.

即ち、超硬合金と鉄系部材が強固に接合された複合部材
において、該超硬合金の組成及び構造を特定することに
よって目的を達するものである。
That is, the objective is achieved by specifying the composition and structure of the cemented carbide in a composite member in which a cemented carbide and an iron-based member are firmly joined.

本発明の特徴は、WCと他の化合物から成る硬質相と結
合金属からなる超硬合金中のWC粒度を0.3μ 以上
1μ以下にすること及び鉄族金属の結合金属が総量で1
5重量%以上30%以下であることにある。
The characteristics of the present invention are that the grain size of WC in the cemented carbide, which consists of a hard phase consisting of WC and other compounds, and a binding metal, is set to 0.3μ or more and 1μ or less, and that the total amount of binding metals of iron group metals is 1μ or less.
The content should be 5% by weight or more and 30% or less.

WC粒度が0.3μ 以下では超硬合金の焼結性が不安
定であり異常粒子が出現し易くチッピングに悪影響を及
ぼし好ましくなく、1μ以上では刃先のシャープさがな
くなり耐摩耗性が劣る。
If the WC particle size is less than 0.3 μm, the sinterability of the cemented carbide is unstable and abnormal particles are likely to appear, which adversely affects chipping, which is undesirable. If the WC grain size is more than 1 μm, the cutting edge loses its sharpness, resulting in poor wear resistance.

結合金属が15%以下であると刃先の靭性がなく、30
%以」二になると超硬合金としての強度及び耐摩耗性が
低下する。又、結合金属が15%以下では鉄系部材との
接合応力によって超硬合金に割れが発生する。
If the bond metal content is less than 15%, the cutting edge will have no toughness, and the
If the content exceeds 2%, the strength and wear resistance of the cemented carbide will decrease. Furthermore, if the bonding metal content is less than 15%, cracks will occur in the cemented carbide due to bonding stress with iron-based members.

超硬合金に接合する鉄系部材としてはSCM材、ダイス
鋼、高速度鋼あるいは鉄系焼結体のいずれでも良い。
The iron-based member to be joined to the cemented carbide may be SCM material, die steel, high-speed steel, or iron-based sintered body.

又接合方法は特に限定されるものではないが、Niある
いはCuに上る鑞伺法、電子ビーム溶接法あるいは鉄系
焼結体との接合では銅系溶浸材による溶浸と同時の拡散
接合法でもよい。
Furthermore, the joining method is not particularly limited, but may include a driving method for Ni or Cu, an electron beam welding method, or a diffusion joining method simultaneously with infiltration with a copper-based infiltrant when joining iron-based sintered bodies. But that's fine.

」ユ記本発明の複合部材は、接合一体化したのちワイヤ
ーカット、放電加工等によって目的形状に加工して金型
素材に供することができ、高靭性、耐摩耗性が高く、刃
先のチッピングの問題もなく寿命も長いことが明らかに
なった。
After the composite member of the present invention is joined and integrated, it can be processed into a desired shape by wire cutting, electrical discharge machining, etc., and used as a mold material.It has high toughness and wear resistance, and is resistant to chipping at the cutting edge. It turned out that there were no problems and it had a long lifespan.

従来の金型部材では、繰返しの荷重により刃先部に引張
と圧縮の応力が作用し、同時に衝撃力が加わるので摩耗
、チッピング等が生じ、金型寿命が著しく短かくしてい
たが、本発明品ではこれらの問題点が解消された。
In conventional mold members, tensile and compressive stresses act on the cutting edge due to repeated loads, and at the same time impact force is applied, resulting in wear and chipping, which significantly shortens the mold life.However, with the product of the present invention, These problems have been resolved.

又加工精度の面でも厳しい要求に対応し得ることも本発
明品の特徴である。
Another feature of the product of the present invention is that it can meet strict requirements in terms of processing accuracy.

に)発明を実施するための最良の形態 実施例 0.7μ  のWC粉末78%、2μのTaC2%と1
μのCo 粉末を20重量%混合し、型押後焼結するこ
とにより100 X 100 X 8mmの超硬合金板
を製造した。この超硬合金板に5KDll  のブロッ
ク]00X100X50mxをNiロウを用いて真空鑞
付けを行った。接合されたブロックからワイヤーカット
により、硅素鋼板の打抜き用パンチを製作し打抜きテス
トを行ったところダイス鋼の20倍の寿命であった。又
、超硬合金として2−5μ粒度のWCの88%−12%
COを用いて上記と同様に製作したパンチに比較して8
倍の寿命を示した。従来の超硬合金と本発明の超硬合金
の特性は第1表の通りであり、本発明の合金は従来の合
金と比べて同一硬度であるが靭性が高く、耐チッピング
性に強いためであることがわかる。
B) Best Mode for Carrying Out the Invention Example 0.7μ WC powder 78%, 2μ TaC 2% and 1
A 100 x 100 x 8 mm cemented carbide plate was manufactured by mixing 20% by weight of μ Co powder and sintering after stamping. To this cemented carbide plate, a block of 5KDll x 00x100x50mx was vacuum brazed using Ni solder. A punch for punching a silicon steel plate was manufactured by wire cutting from the joined blocks, and a punching test was conducted, and the life was 20 times longer than that of die steel. Also, as a cemented carbide, 88%-12% of WC with a grain size of 2-5μ
8 compared to the punch made in the same manner as above using CO.
It showed twice the lifespan. The properties of the conventional cemented carbide and the cemented carbide of the present invention are shown in Table 1, and the alloy of the present invention has the same hardness as the conventional alloy, but has higher toughness and strong chipping resistance. I understand that there is something.

5− 」−記超硬合金板の厚みは全体厚みの1/17であるが
、1./10〜1/3の範囲が経済的であり、性能が十
分発揮できる。
5- The thickness of the cemented carbide plate is 1/17 of the total thickness, but 1. A range of /10 to 1/3 is economical and provides sufficient performance.

(ホ)産業上の利用可能性 本発明品は金型素材以外にスリッター、裁断刃、ローラ
ー、ガイド等の耐摩摺動部品、構成部材にも応用が可能
である。
(E) Industrial Applicability The product of the present invention can be applied not only to mold materials but also to wear-resistant sliding parts and structural members such as slitters, cutting blades, rollers, and guides.

6一61

Claims (1)

【特許請求の範囲】[Claims] (1)超硬合金と鉄系合金部材とが強固に接合された複
合部材において、該超硬合金中の硬質相の主成分である
WC粒度が0.3μ 以上1μ以下であり、結合金属が
鉄族金属であり、その総量が15重量%以上80重量%
以下であることを特徴とする複合耐摩耗性部材。
(1) In a composite member in which a cemented carbide and an iron-based alloy member are firmly joined, the grain size of WC, which is the main component of the hard phase in the cemented carbide, is 0.3μ or more and 1μ or less, and the bonding metal is Iron group metals, the total amount of which is 15% by weight or more and 80% by weight
A composite wear-resistant member characterized by:
JP14668282A 1982-08-23 1982-08-23 Composite abrasion-resisting member Pending JPS5935937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14668282A JPS5935937A (en) 1982-08-23 1982-08-23 Composite abrasion-resisting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14668282A JPS5935937A (en) 1982-08-23 1982-08-23 Composite abrasion-resisting member

Publications (1)

Publication Number Publication Date
JPS5935937A true JPS5935937A (en) 1984-02-27

Family

ID=15413201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14668282A Pending JPS5935937A (en) 1982-08-23 1982-08-23 Composite abrasion-resisting member

Country Status (1)

Country Link
JP (1) JPS5935937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336951B1 (en) 1998-02-20 2002-01-08 Seco Tools Ab Method of making submicron cemented carbide cutting tool inserts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336951B1 (en) 1998-02-20 2002-01-08 Seco Tools Ab Method of making submicron cemented carbide cutting tool inserts

Similar Documents

Publication Publication Date Title
JP2890592B2 (en) Carbide alloy drill
US4145213A (en) Wear resistant alloy
KR101893172B1 (en) Metal Powder for 3D Metal Printer and Shear Mold Using the same
US7300488B2 (en) Powder metal composition and method for producing components thereof
US4492846A (en) Process for the production of bonded hard alloys
JP2893886B2 (en) Composite hard alloy material
JPS5935937A (en) Composite abrasion-resisting member
JPH09111391A (en) Cemented carbide for die
DE2311400A1 (en) Alloy for vacuum brazing cemented carbides - the alloy has a high melting point and consists of copper and nickel
JP3803773B2 (en) Hard sintered body cutting tool
US4518662A (en) Copper solder containing cobalt
JP4218239B2 (en) Method of manufacturing tool steel by lamination and tool steel
JP4177467B2 (en) High toughness hard alloy and manufacturing method thereof
JPS60255953A (en) Seal bonding fe-ni alloy having high suitability to blanking
JP4039725B2 (en) Bonding material of cemented carbide and steel and manufacturing method thereof
JP2893887B2 (en) Composite hard alloy material
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JP2999355B2 (en) Manufacturing method of low thermal expansion tough cermet
US3958316A (en) Liquid phase-sintered molybdenum base alloys having additives and shaping members made therefrom
JPH07308805A (en) Cutting tool for hard sintered body
JPH08319532A (en) Sintered hard alloy for punching tool
JPS5953341B2 (en) Sintered hard alloy with excellent heat and wear resistance
JPH11323409A (en) Composite member and its production
JPH03202404A (en) Combined hard alloy material
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts