JPS5935842B2 - Method for recovering useful substances from chromic acid aging solution - Google Patents

Method for recovering useful substances from chromic acid aging solution

Info

Publication number
JPS5935842B2
JPS5935842B2 JP53078525A JP7852578A JPS5935842B2 JP S5935842 B2 JPS5935842 B2 JP S5935842B2 JP 53078525 A JP53078525 A JP 53078525A JP 7852578 A JP7852578 A JP 7852578A JP S5935842 B2 JPS5935842 B2 JP S5935842B2
Authority
JP
Japan
Prior art keywords
solution
chromic acid
water
chromium oxide
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53078525A
Other languages
Japanese (ja)
Other versions
JPS558402A (en
Inventor
実 服部
亮一 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP53078525A priority Critical patent/JPS5935842B2/en
Publication of JPS558402A publication Critical patent/JPS558402A/en
Publication of JPS5935842B2 publication Critical patent/JPS5935842B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02W30/54

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は、クロムめっき工場から発生する不純物の蓄
積された濃厚クロム酸溶液である廃棄寸前の老化液中の
クロム酸分を酸化クロムの形で回収する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for recovering the chromic acid content in the form of chromium oxide from an aged liquid that is about to be discarded and is a concentrated chromic acid solution with accumulated impurities generated from a chromium plating factory. be.

めっき工場では、近年、公害防止対策の実施に加えて諸
費材の高騰や、水道料金の大巾値上げ等が相次ぎ、これ
等がめつきコストに大きな影響を及ぼすようになったた
め、めっき工程のクローズド化が研究されだし、めっき
液のくみ出しを少なくする作業や、積極的にくみ出し液
を回収してめっき浴に戻す方法が採られるようになった
In recent years, in addition to the implementation of pollution prevention measures, plating factories have seen a series of rapid increases in the cost of various materials and large increases in water rates, which have had a significant impact on plating costs, so the plating process has become closed. Research has begun on this, and methods have been adopted to reduce the amount of plating solution pumped out, or to proactively collect the pumped solution and return it to the plating bath.

その結果として不純物はめつき液中に残って蓄積し、め
っき液は次第に老化して、ばては使用に耐えなりナル。
As a result, impurities remain in the plating solution and accumulate, causing the plating solution to gradually age and become unusable.

この不純物の蓄積されたクロム酸老化液を利用する有効
な方法が開発されることは強く要望されているし、又同
様に亜鉛クロメート処理においても、定期的に液を更新
するため多量のクロム酸老化液が発生し、この利用が強
く要望されている。
It is strongly desired that an effective method be developed to utilize this aged chromic acid solution with accumulated impurities, and similarly, in zinc chromate treatment, large amounts of chromic acid are required to periodically renew the solution. Aging fluid is generated, and its utilization is strongly desired.

この利用法については、2つの考え方があり、その1つ
はその老化液中から不純物を除去することであり、他の
1つはその老化液中の有用物質を抽出して利用すること
である。
There are two ways of thinking about this usage; one is to remove impurities from the aged liquid, and the other is to extract and use useful substances in the aged liquid. .

現在実施されている方法のうち、不純物除去の方法とし
ては、電解処理による鉄分除去法とイオン交換樹脂によ
る陽イオン除去法がある。
Among the methods currently in use for removing impurities, there are two methods: an iron removal method using electrolytic treatment and a cation removal method using an ion exchange resin.

前者は、老化液を素焼円筒の隔膜を使って電解し、蓄積
している鉄及び3価のクロムを除去してめっき浴として
再使用する方法であるが、電解効率が不良なうえ、こう
した再生浴のめつき特性が不良な場合もあって技術的に
完成したプロセスになっておらず、ごく一部でしか試み
られていなかった。
The former method involves electrolyzing the aging solution using an unglazed cylindrical diaphragm to remove accumulated iron and trivalent chromium and reusing it as a plating bath, but the electrolytic efficiency is poor, and this type of regeneration is In some cases, the plating properties of the baths were poor, so the process was not technically complete, and only a few attempts had been made.

後者は、老化液中に蓄積した陽イオンを陽イオン交換樹
脂を用いて吸着除去する方法であり、完全に実施すれば
理論的には新液と同様になる筈であるが、クロム酸濃度
が濃いときはイオン交換樹脂が損傷されるので薄める必
要があり、又亜鉛クロメート液では蓄積する陽イオンが
多い為、多量のイオン交換樹脂が必要である等と問題が
多(、一部テスト的に実施されてはいるが、必ずしも経
済的でなく、処理方法も繁雑である為実用化されている
とは言えない。
The latter method uses a cation exchange resin to adsorb and remove the cations accumulated in the aged solution, and if fully implemented, it should theoretically be the same as the new solution, but the chromic acid concentration If concentrated, the ion exchange resin will be damaged, so it must be diluted.Also, zinc chromate solution accumulates a lot of cations, so a large amount of ion exchange resin is required. Although it has been carried out, it is not necessarily economical and the processing method is complicated, so it cannot be said that it has been put into practical use.

一方老化液中の有用物質を抽出して利用する方法として
は、老化液を苛性ソーダにより中和し、Fe3+、cr
3+、ZT12+、cu2+、Ni2+等を水酸化物と
して沈殿させ、これをろ過してろ液をクロム酸ソーダ液
として回収し、クロメート処理用薬剤として利用したり
、重クロム酸ソーダ製造工場において中間原料として混
合利用する方法が実施されている。
On the other hand, as a method for extracting and utilizing useful substances in the aged liquid, the aged liquid is neutralized with caustic soda, Fe3+, cr
3+, ZT12+, cu2+, Ni2+, etc. are precipitated as hydroxides, filtered, and the filtrate is recovered as a sodium chromate solution, which can be used as a chromate treatment agent or as an intermediate raw material at a sodium dichromate manufacturing factory. A mixed use method is being implemented.

しかしこの方法は、クロメート処理用薬剤としての需要
が少ないし、重クロム酸ソーダ製造に向けた場合は、比
較的稀薄な液であるため、その評価値よりも輸送費が高
くなる場合が多く、割り高な処分方法にならざるを得な
い。
However, this method has little demand as a chromate treatment agent, and when used to produce sodium dichromate, the shipping cost is often higher than the evaluated value because the liquid is relatively dilute. This has no choice but to be an expensive disposal method.

又、中和ろ過の方法では、フッ化物、硝酸塩、塩酸塩、
硫酸塩等が除去されないため、これらで汚染されたクロ
ム酸ソーダとなって製品ラインの品質に悪影響を与える
などの欠陥があった。
In addition, in the neutralization filtration method, fluoride, nitrate, hydrochloride,
Since sulfates, etc. are not removed, sodium chromate becomes contaminated with these, which has a negative impact on the quality of the product line.

以上の通り、有効な利用法は現在確立されていない為、
還元中和した沈殿物を廃棄処分する方法が一般に実施さ
れているが、この方法には還元中※利用の亜硫酸ソーダ
や苛性ソーダ等の高価な薬品が必要な上に、二次公害発
生の懸念が残り、問題があったし、沈殿物の再資源化に
ついても、不純分の多い混合スラッジである為、その用
途は閉ざされていた。
As mentioned above, effective usage methods have not been established at present.
Generally, the method of disposing of the reduced and neutralized precipitate is carried out, but this method requires expensive chemicals such as sodium sulfite and caustic soda, which are used during reduction*, and there are concerns about secondary pollution. However, there were still problems, and the recycling of the sediment was a mixed sludge with a high content of impurities, so its use was limited.

クロムめっき老化液は、メッキの目的により、又、各メ
ーカーの操業方法により不純物の種類や含有量も様々で
あり、分析例としては次のような組成である。
The type and content of impurities in the aging chromium plating solution vary depending on the purpose of plating and the operating method of each manufacturer, and an analysis example has the following composition.

このほかに硫酸が無水クロム酸に対して、一定の比率で
使用され、これは重量比で100:1を標準とされてい
るが、実際には100:2〜100:0.5の範囲にわ
たって含有される。
In addition, sulfuric acid is used in a certain ratio to chromic anhydride, and the standard weight ratio is 100:1, but in practice it ranges from 100:2 to 100:0.5. Contains.

また他にフッ素の化合物その他が含有されている。It also contains fluorine compounds and other substances.

又、亜鉛クロメート液のクロム酸老化液は次の標準液に
亜鉛その他が溶解し多量に蓄積した溶液である。
In addition, the chromic acid aging solution of the zinc chromate solution is a solution in which zinc and other substances are dissolved in the following standard solution and accumulated in large amounts.

本発明の目的は、このようなりロム酸老化液を利用し、
この中に溶存している重金属類と揮発性物質を分離除去
して有用物質であるクロム酸分を酸化クロムの形で回収
し、産業上有用かつ、クロム塩類中でも高価な商品を生
産することによるクロム酸老化液の有効な利用法を提供
することである。
The purpose of the present invention is to utilize such a romic acid aging solution,
By separating and removing the heavy metals and volatile substances dissolved in this chromium salt, and recovering the useful chromic acid content in the form of chromium oxide, we can produce products that are industrially useful and expensive among chromium salts. An object of the present invention is to provide an effective method for using a chromic acid aging solution.

本発明者等は、老化液をアンモニアで中和すれば、重金
属類は水酸化物に化学変化して沈殿物となり、クロム酸
分は重クロム酸アンモニウムとして、又硫酸分は硫安と
して溶解していることを見出した。
The inventors have discovered that by neutralizing the aging liquid with ammonia, heavy metals will chemically change to hydroxides and form precipitates, chromic acid will dissolve as ammonium dichromate, and sulfuric acid will dissolve as ammonium sulfate. I found out that there is.

このようにして得られた中和液から沈殿物をろ別して得
られたろ液を加熱し、蒸発濃縮乾個させ、引続き熱を加
えると分解反応が始まり激しく熱を出しながら緑色の酸
化クロムの粉末となり、更にこの分解物を昇温すればC
r2O3分が向上し、8分が減少する。
The precipitate is filtered out from the neutralized solution obtained in this way, and the resulting filtrate is heated, evaporated and concentrated to dryness. When heat is subsequently applied, a decomposition reaction begins and a green chromium oxide powder is produced, producing intense heat. If this decomposition product is further heated, C
r2O3 minutes improves and 8 minutes decreases.

更に水又は酸溶液で洗浄すれば8分が著しく減少する。Further washing with water or acid solution significantly reduces the time of 8 minutes.

例えば、1000℃に昇温すればJI8 2号品に相当
する酸化クロム製品が得られ、更に水又は酸溶液で洗浄
すれば、8分の含有量が特に少ないことが要求される金
属クロム原料としての特性を有する酸化クロム製品が得
られることを見出して、この発明を完成したものである
For example, if the temperature is raised to 1000°C, a chromium oxide product equivalent to JI8 No. 2 product can be obtained, and if it is further washed with water or an acid solution, it can be used as a metallic chromium raw material that requires a particularly low content of 8. This invention was completed by discovering that a chromium oxide product having the following characteristics could be obtained.

この発明を更に詳述すれば、老化液中の有用物質の回収
法は、中和工程、ろ過工程、蒸発濃縮乾個工程、分解昇
温工程からなる。
To explain this invention in more detail, the method for recovering useful substances from aged liquid includes a neutralization step, a filtration step, an evaporation concentration drying step, and a decomposition and temperature raising step.

※まず、中和工程は、老化液にアンモ
ニアを加え、溶解重金属を水酸化物に化学変化させて沈
殿物とすることを目的とする工程であるが、易溶性アン
モニア錯塩の形成を最小限にとどめ、できる限り完全に
沈殿させるため、一般的な中和剤である苛性ソーダを使
用する場合と異なり、中和は、適切かつ狭い範囲のPH
で行なわねばならない。
*First, the neutralization process is a process in which ammonia is added to the aged liquid to chemically change dissolved heavy metals into hydroxides and form a precipitate. Unlike using caustic soda, a common neutralizing agent, neutralization is carried out using an appropriate and narrow range of pH.
It must be done.

発明者等の実験によれば、中和PH値と液中に溶存の重
金属濃度関係は表1の通りであり、適切な中和PHはそ
の老化液中の重金属物の種類により変るが6〜7であり
、好ましくは60〜65である。
According to experiments conducted by the inventors, the relationship between the neutralization pH value and the concentration of heavy metals dissolved in the solution is shown in Table 1, and the appropriate neutralization pH varies depending on the type of heavy metals in the aged solution, 7, preferably 60-65.

装飾クロムメッキの老化液(クロム酸321 ?/l
)を濃アンモニア水で中和 この工程において、老化液中に不純物分が著しく濃い場
合は、ドロドロの中和液となり次に続くろ過が困難とな
る場合がある。
Decorative chrome plating aging solution (chromic acid 321?/l
) is neutralized with concentrated ammonia water.In this step, if the aged liquid is extremely rich in impurities, the neutralized liquid may become mushy and the subsequent filtration may be difficult.

又、クロム酸濃度が濃過ぎるときは生成した重クロム酸
アンモニウムの全部が溶解出来ないで一部析出すること
がある。
Furthermore, when the chromic acid concentration is too high, all of the generated ammonium dichromate may not be dissolved and a portion may precipitate.

これらのような現象を避ける為に、必要に応じて中和前
又は、中和しながら、又は中和完了後に水を加える。
In order to avoid such phenomena, water is added as necessary before, during, or after neutralization.

この添加水については、次のろ過工程で、ケークに付着
の重クロム酸アンモニウム分を回収する為に水洗する場
合はその洗浄水で補給するのが良い。
Regarding this added water, if the cake is washed with water in order to recover ammonium dichromate adhering to the cake in the next filtration step, it is preferable to replenish it with the washing water.

生成した重クロム酸アンモニウムを全量溶解させる条件
としては、ろ液中の重クロム酸アンモニウムの濃度が表
2に示す(NH4)2Cr207の溶解濃度以下になる
ように調整することである。
The conditions for dissolving the entire amount of generated ammonium dichromate are to adjust the concentration of ammonium dichromate in the filtrate to be less than the dissolved concentration of (NH4)2Cr207 shown in Table 2.

例えば40°Cの場合はろ液中の重クロム酸アンモニウ
ムの濃度は36.9%以下にする必要がある。
For example, at 40°C, the concentration of ammonium dichromate in the filtrate needs to be 36.9% or less.

中和用アンモニアは、アンモニアガスを吹き込んでも良
いし、アンモニア水を加えても良いが老化液中のクロム
酸や不純物の濃度が薄い場合はアンモニアガスで中和す
る方が濃縮工程で蒸発する水量が減るので有利である。
For neutralizing ammonia, you can blow in ammonia gas or add ammonia water, but if the concentration of chromic acid or impurities in the aged liquid is low, it is better to neutralize with ammonia gas because the amount of water that evaporates during the concentration process can be reduced. This is advantageous because it reduces

一方、クロム酸や不純物の濃度が濃(水を加える必要が
ある場合はどちらで中和しても良(、アンモニア水を使
用したときは、加える水量が減るだけである。
On the other hand, if the concentration of chromic acid or impurities is high (if you need to add water, you can neutralize it with either), but if you use ammonia water, the amount of water you add will only decrease.

ろ過工程は、公知の一般的に使用されている真空フィル
ターやフィルタープレスでろ過することが出来る。
In the filtration step, filtration can be performed using a known and commonly used vacuum filter or filter press.

有用分を出来るだけ回収する為に、ろ過ケークを水洗す
ることが好ましく、このとき得られた重クロム酸アンモ
ニウムの薄い溶液は、次回の中和工程の添加水として使
用するのが好ましい。
In order to recover as much useful content as possible, the filter cake is preferably washed with water, and the dilute solution of ammonium dichromate obtained at this time is preferably used as addition water in the next neutralization step.

蒸発濃縮乾個工程は、公知の一般的ドライヤーでも良い
が、蒸発から乾個まで連続して実施する為に、適当な容
器に入れて乾燥する棚式乾燥器や、蒸気間接加熱の溝型
ドライヤーが更に適当である。
The evaporation concentration drying process can be carried out using a known general dryer, but in order to carry out the process from evaporation to drying continuously, a shelf-type dryer that is placed in a suitable container for drying, or a groove-type dryer that uses indirect steam heating may be used. is even more appropriate.

分解昇温工程は、前工程で得られた乾個物に適当な手段
を用いて点火するか、又は乾個物を約240℃に昇温す
れば、激しく熱を出しながら分解して緑色の酸化クロム
の粉末が生成する。
In the decomposition and temperature raising step, the dry matter obtained in the previous step is ignited using an appropriate means, or if the dry matter is heated to about 240°C, it decomposes while producing intense heat, producing a green color. Chromium oxide powder forms.

この分解反応は、ろ液中に存在していた重クロム酸アン
モニウムが次の反応式で分解したものと考えられる。
This decomposition reaction is thought to be due to the decomposition of ammonium dichromate present in the filtrate according to the following reaction formula.

(NH4)2Cr207→Cr2O3+N2↑±4H2
0↑この分解反応は、上記の分解のみでは、完全に酸化
クロムまで進行しないが、引続き昇温することにより分
解反応は進行し酸化クロム純分が向上することが判明し
た。
(NH4)2Cr207→Cr2O3+N2↑±4H2
0↑It has been found that this decomposition reaction does not completely progress to chromium oxide by the above decomposition alone, but by continuing to raise the temperature, the decomposition reaction progresses and the purity of chromium oxide increases.

更にこのようにして得られた生成物を水又は酸溶液で洗
浄することにより、酸化クロム純分は向上し8分につい
ては減少することが判明した。
Furthermore, it was found that by washing the product thus obtained with water or an acid solution, the chromium oxide purity was improved and decreased by 8 minutes.

例えば、分解反応後、電気加熱炉で1000〜1100
℃で1時間加熱し、JIS2号品相当の酸化クロム製品
を得ることができ、更に水洗することにより8分の著し
く少ない金属クロム原料として好ましい酸化クロムを得
ることができた。
For example, after decomposition reaction, 1000 to 1100
By heating at .degree. C. for 1 hour, it was possible to obtain a chromium oxide product equivalent to JIS No. 2 product, and by further washing with water, it was possible to obtain chromium oxide, which is suitable as a raw material for metallic chromium and has an extremely low content of 8 minutes.

次にこの発明を実施例により説明する。Next, the present invention will be explained with reference to examples.

これらの実施例中の酸化クロムのCr2O3分、8分の
分析法はいずれもJISKI 401−1969の方法
で行なった。
The analytical methods for Cr2O3 and 8 minutes of chromium oxide in these Examples were all conducted in accordance with the method of JISKI 401-1969.

実施例 1 装飾クロムめっきの老化液(クロム酸321t/l、C
r3+6.899/l、Fe 1.81 ?/l、5o
41.73グ/、e)11.にアンモニアガスを吹き込
み、PH6,0に中和し、應5Bろ紙を装着したヌツチ
ェで真空吸引ろ過をした。
Example 1 Decorative chrome plating aging solution (chromic acid 321t/l, C
r3+6.899/l, Fe 1.81? /l, 5o
41.73g/, e) 11. Ammonia gas was blown into the solution to neutralize it to pH 6.0, and vacuum suction filtration was performed using a Nutsche equipped with 5B filter paper.

ろ液の温度は50℃で重クロム酸アンモニウム濃度は3
0.3%であり溶解濃度以下であった。
The temperature of the filtrate was 50°C, and the ammonium dichromate concentration was 3.
It was 0.3%, which was below the dissolved concentration.

ケーク付着の有用成分回収の為に、水200rILlを
ケークの上に注ぎ、同様に真空吸引ろ過し、ろ液と一緒
にガラスビーカーに入れ、ウオターパス中で、加熱し蒸
発濃縮乾個させた。
In order to recover useful components adhering to the cake, 200 rIL of water was poured onto the cake and similarly filtered under vacuum suction, placed in a glass beaker together with the filtrate, heated in a water pass, and evaporated to dryness.

このようにして得られた乾個物に少量のエチルアルコー
ルを滴下しマツチの火で点火すると乾個物は激しく反応
して分解し、緑色の粉末状分解物になった。
When a small amount of ethyl alcohol was added dropwise to the dried solids obtained in this manner and ignited with a matchstick, the dry solids reacted violently and decomposed to become a green powdery decomposition product.

このとき分解物の温度は520℃に上昇した。At this time, the temperature of the decomposed product rose to 520°C.

この分解物の分析値は表3の通りであり酸化クロムを主
成分とする物であることを確認した。
The analytical values of this decomposed product are shown in Table 3, and it was confirmed that the decomposed product was mainly composed of chromium oxide.

更にこのようにして得られた分解物を磁性ルツボに移し
、電気加熱炉で、700℃、800℃、900℃、10
00°C11100℃の夫々の温度で1時間加熱して、
表4に示すCr2O3分と表5に示す8分の酸化クロム
を得た。
Further, the decomposition product obtained in this way was transferred to a magnetic crucible and heated in an electric heating furnace at 700°C, 800°C, 900°C for 10
Heating at each temperature of 00°C, 11,100°C for 1 hour,
Chromium oxide of 3 parts of Cr2O shown in Table 4 and 8 parts of chromium oxide shown in Table 5 were obtained.

温度が高い程Cr2O3分が向上し、8分が低下する傾
向にあり、1000℃加熱でJIS 2号品相当の酸
化クロムを得ることが出来た。
There was a tendency that the higher the temperature, the higher the Cr2O3 content and the lower the 8 minute content, and it was possible to obtain chromium oxide equivalent to JIS No. 2 product by heating at 1000°C.

更に前記の操作で得られた分解物及び、夫々の温度で1
時間加熱して得られた生成物夫々について放冷後重量に
して約10倍量の15°Cの水、又は40℃の水、又は
IN塩酸水、又はIN硝酸水で、リパルプし、A、 5
Bろ紙を装着したヌツチェで真空吸引ろ過をし洗浄液
を分別し、再度ケークを新な同量の室温の水でリパルプ
し同様に洗浄液を分別した。
Furthermore, the decomposition products obtained in the above operation and 1 at each temperature
The products obtained by heating for a period of time are allowed to cool and then repulped with about 10 times the weight of 15°C water, 40°C water, IN hydrochloric acid water, or IN nitric acid water, 5
Vacuum suction filtration was carried out using a nutsche equipped with B filter paper to separate the washing liquid, and the cake was repulped again with the same amount of fresh water at room temperature, and the washing liquid was separated in the same manner.

この様に洗浄したケークをステンレス容器に移し箱型乾
燥器110℃の温度で恒量になるまで乾燥して、表4に
示すCr2O3分と表5に示す8分の酸化クロムを得た
The thus washed cake was transferred to a stainless steel container and dried in a box type dryer at a temperature of 110° C. until a constant weight was obtained, thereby obtaining 3 minutes of Cr2O shown in Table 4 and 8 minutes of chromium oxide shown in Table 5.

いずれの場合も洗浄することによりCr2O3分は向上
し、8分が低下する。
In either case, cleaning improves Cr2O3 and decreases 8.

特に、1000°C加熱物を洗浄した酸化クロムは8分
は0.00%であり金属クロム原料として好ましいもの
であった。
In particular, the chromium oxide that was washed at 1000° C. after 8 minutes was 0.00%, which is preferable as a raw material for metallic chromium.

(上記において、塩酸水、硝酸水の場合は分解物と10
00°Cの場合だげにとどめた。
(In the above, in the case of hydrochloric acid water and nitric acid water, the decomposition product and 10
The temperature was limited to 00°C.

)実施例 2 装飾クロムめっきの老化液(クロム酸321? /、e
、 Cr3+6.89 fl/L Fe 1.81
?/l。
) Example 2 Decorative chrome plating aging solution (chromic acid 321?/, e
, Cr3+6.89 fl/L Fe 1.81
? /l.

5o41.73 ?/l: ) 1 lに28%アンモ
ニア水267rrLlを加え、PH6,3に中和し、A
5Bろ紙を装着したヌツチェで真空吸引ろ過をした。
5o41.73? /l: ) Add 267rrLl of 28% aqueous ammonia to 1l, neutralize to pH 6.3, and
Vacuum suction filtration was performed using a Nutsche equipped with 5B filter paper.

ろ液の温度は40℃で重クロム酸アンモニウム濃度は2
7.1%であり溶解濃度以下であった。
The temperature of the filtrate was 40°C, and the ammonium dichromate concentration was 2.
It was 7.1%, which was below the dissolved concentration.

ケーク付着の有用成分回収の為に、水200m1をケー
クの上に注ぎ、同様に真空吸引ろ過し、前記のろ液と一
緒にガラスビーカーに入れ、約240 ’Cのサンドバ
ス上で加熱して蒸発濃縮乾個させると、直ちに激しく反
応して分解し、緑色の粉末状分解物になった。
In order to recover the useful components attached to the cake, 200 ml of water was poured onto the cake, filtered with vacuum suction in the same way, placed in a glass beaker together with the filtrate, and heated on a sand bath at about 240'C. When it was evaporated and concentrated to dryness, it immediately reacted violently and decomposed to become a green powdery decomposition product.

この分解物の分析値とこのようにして得られた分解物を
磁性ルツボに移し電気加熱炉で1000℃1時間加熱し
たときの分析値は表6の通りで酸化クロムであることを
確認した。
The analytical values of this decomposed product and the analytical values obtained when the thus obtained decomposed product was transferred to a magnetic crucible and heated at 1000° C. for 1 hour in an electric heating furnace are shown in Table 6, and it was confirmed that it was chromium oxide.

実施例 3 硬質クロムめっきの老化液(クロム酸183?/L C
r3+19.8 ?/L Fe 7.71 ?/ l、
5o43.36 ff/l ) 11VC77モニ7ガ
スを吹き込み、PH=6.5に中和し、扁5Bろ紙を装
着したヌツチェで真空吸引ろ過をした。
Example 3 Aging solution for hard chrome plating (chromic acid 183?/L C
r3+19.8? /L Fe 7.71? / l,
5o43.36 ff/l) 11VC77 Moni7 gas was blown into the solution to neutralize it to pH=6.5, and vacuum suction filtration was carried out using a Nutsche equipped with flat 5B filter paper.

ろ液の温度は42℃で重クロム酸アンモニウム濃度は1
5.6%であり、溶解濃度以下であった。
The temperature of the filtrate was 42°C, and the ammonium dichromate concentration was 1.
It was 5.6%, which was below the dissolved concentration.

ケーク付着の有用成分回収の為に、水200罰をケーク
の上に注ぎ、同様に真空吸引ろ過し、前記のろ液と一緒
にガラスビーカーに入れ、ウオターバス中で加熱して蒸
発濃縮乾個させた。
In order to recover the useful components attached to the cake, pour 200 g of water onto the cake, vacuum filtrate it in the same way, put it in a glass beaker together with the filtrate, and heat it in a water bath to evaporate and concentrate to dryness. Ta.

このようにして得られた乾個物に少量のエチルアルコー
ルを滴下し、マツチの火で点火すると乾個物は激しく反
応して分解し、緑色の粉末状分解物になった。
A small amount of ethyl alcohol was added dropwise to the dried solids thus obtained, and when ignited with a matchstick, the dry solids reacted violently and decomposed to become a green powdery decomposition product.

この分解物の分析値と、このようにして得られた分解物
を磁性ルツボに移し、電気加熱炉で、800°C110
00℃、1100℃の夫々の温度で1時間加熱したとき
の分析値は表7の通りである。
The analysis value of this decomposed product and the decomposed product thus obtained were transferred to a magnetic crucible and heated to 800°C110 in an electric heating furnace.
Table 7 shows the analytical values when heated at 00°C and 1100°C for 1 hour.

実施例 4 亜鉛クロメート液の老化液(クロム酸82.3?/l、
Cr3+9.94 ?/L Zn 28.1 ?/l
5o422.5グ/1)11にアンモニアガスを吹き込
み、PH=6.4’に中和しA5Bろ紙を装着したヌツ
チェで真空吸引ろ過をした。
Example 4 Aging solution of zinc chromate solution (chromic acid 82.3?/l,
Cr3+9.94? /L Zn 28.1? /l
5o422.5g/1) Ammonia gas was blown into 11 to neutralize it to pH=6.4', and vacuum suction filtration was performed using a Nutsche equipped with A5B filter paper.

ろ液の温度は44℃で重クロム酸アンモニウム濃度は7
%であり溶解濃度以下であった。
The temperature of the filtrate was 44°C and the ammonium dichromate concentration was 7.
%, which was below the dissolved concentration.

ケーク付着の有用成分回収の為に、水200m1をケー
クの上に注ぎ、同様に真空吸引ろ過し、前記のろ液と一
緒にガラスビーカーに入れ、ウォーターバス中で加熱し
て蒸発濃縮乾個させた。
In order to recover the useful components attached to the cake, 200 ml of water was poured onto the cake, filtered with vacuum suction in the same manner, and placed in a glass beaker together with the filtrate, heated in a water bath to evaporate and concentrate to dryness. Ta.

このようにして得られた乾個物に少量のエチルアルコー
ルを滴下し、マツチの火で点火すると乾個物は激しく反
応して分解し、緑色の粉末状分解物になった。
A small amount of ethyl alcohol was added dropwise to the dried solids thus obtained, and when ignited with a matchstick, the dry solids reacted violently and decomposed to become a green powdery decomposition product.

この分解物の分析値と、このようにして得られた分解物
を磁性ルツボに移し電気加熱炉で、800℃、1000
℃、1100°Cの夫々の温度で1時間加熱したときの
分析値は表8の通りである。
The analysis value of this decomposition product and the decomposition product thus obtained were transferred to a magnetic crucible and heated at 800℃ and 1000℃ in an electric heating furnace.
Table 8 shows the analytical values when heated for 1 hour at temperatures of 1100°C and 1100°C.

Claims (1)

【特許請求の範囲】[Claims] 1 クロム酸老化液を、その生成中和液が適当な流動性
を示し、かつ生成した重クロム酸アンモニウムが十分に
溶解する濃度になるように濃度調整を行ないながらPH
6〜7の範囲にアンモニアで中和し、得られたスラリー
溶液から沈殿物を分離した後、その溶液を加熱して蒸発
濃縮乾個させ、引続き加熱により分解させて酸化クロム
を得ることを特徴とするクロム酸老化液中の有用物質の
回収法。
1. The pH of the chromic acid aged solution is adjusted so that the neutralized solution produced has appropriate fluidity and the ammonium dichromate produced is sufficiently dissolved.
It is characterized by neutralizing with ammonia to a range of 6 to 7, separating the precipitate from the obtained slurry solution, heating the solution to evaporate and concentrate it to dryness, and then decomposing it by heating to obtain chromium oxide. A method for recovering useful substances from chromic acid aged liquid.
JP53078525A 1978-06-30 1978-06-30 Method for recovering useful substances from chromic acid aging solution Expired JPS5935842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53078525A JPS5935842B2 (en) 1978-06-30 1978-06-30 Method for recovering useful substances from chromic acid aging solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53078525A JPS5935842B2 (en) 1978-06-30 1978-06-30 Method for recovering useful substances from chromic acid aging solution

Publications (2)

Publication Number Publication Date
JPS558402A JPS558402A (en) 1980-01-22
JPS5935842B2 true JPS5935842B2 (en) 1984-08-31

Family

ID=13664331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53078525A Expired JPS5935842B2 (en) 1978-06-30 1978-06-30 Method for recovering useful substances from chromic acid aging solution

Country Status (1)

Country Link
JP (1) JPS5935842B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328001Y2 (en) * 1986-08-29 1991-06-17
RO117687B1 (en) * 2000-10-30 2002-06-28 I. Petrişor Paul Lungulescu Process and installation for recovering metal from waste chromium plating solutions

Also Published As

Publication number Publication date
JPS558402A (en) 1980-01-22

Similar Documents

Publication Publication Date Title
RU2454368C1 (en) Method of producing vanadium oxide using ion exchange to recycle waste water
CN102634673B (en) Method for deeply removing iron ions from chromium-containing waste residue pickle liquor
CN108862365A (en) A kind of circuit board acidic and alkaline waste etching solution recovery processing technique
US3961029A (en) Process for recovering chromic acid solution from a waste liquor containing chromic ions
KR101773439B1 (en) Manufacturing method of lithium carbonate from waste solution containing lithium
KR101771596B1 (en) Manufacturing method of lithium salt from waste solution containing lithium
CN107720801A (en) A kind of method that blanc fixe is prepared using titanium white waste acid
JPH0741976A (en) Regenerating method for waste sulfuric acid containing metal sulfide
CN106276935A (en) Waterglass co-producing white carbon black cleanly production technique
US4045340A (en) Method for recovering and exploiting waste of the chromic anhydride production
JPS5935842B2 (en) Method for recovering useful substances from chromic acid aging solution
US5665324A (en) Recovery of valuable substances
US5279804A (en) Vanadium removal in aqueous streams
US4108596A (en) Recovery of chromium values from waste streams by the use of alkaline magnesium compounds
RU2289638C1 (en) Method for waste acidic solution regeneration after etching titanium alloys
JPH01176228A (en) Production of chromium chloride water solution having high concentration
JP2680024B2 (en) Method for producing high-purity iron oxide
JP3105347B2 (en) How to treat phosphate sludge
US2639222A (en) Treatment of acid waste liquors
US4282190A (en) Process for the manufacture of iron and aluminum-free zinc chloride solutions
US4146575A (en) Preparation of sodium tripolyphosphate
RU2262544C1 (en) Method of processing quartz leucoxene concentrate
KR0136191B1 (en) Refining method of iron oxide
US2403248A (en) Iron hydrate and the manufacture and of use the same
JPS5950031A (en) Method for purifying iron oxide powder