JPS5935690A - Low hydrogen overvoltage cathode - Google Patents

Low hydrogen overvoltage cathode

Info

Publication number
JPS5935690A
JPS5935690A JP57142601A JP14260182A JPS5935690A JP S5935690 A JPS5935690 A JP S5935690A JP 57142601 A JP57142601 A JP 57142601A JP 14260182 A JP14260182 A JP 14260182A JP S5935690 A JPS5935690 A JP S5935690A
Authority
JP
Japan
Prior art keywords
cathode
hydrogen overvoltage
high hydrogen
low hydrogen
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57142601A
Other languages
Japanese (ja)
Inventor
Toshimasa Okazaki
岡崎 利昌
Akihiro Sakata
昭博 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP57142601A priority Critical patent/JPS5935690A/en
Publication of JPS5935690A publication Critical patent/JPS5935690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To provide a titled cathode which can maintain a low hydrogen overvoltage characteristic for a long period of time, by the constitution wherein the parts of a high hydrogen overvoltage are dispersed on the electrolytic surface placed oppositely to an anode and the deterioration of an active cathode owing to the impurities in the catholyte is prevented. CONSTITUTION:A material of a low hydrogen overvoltage such as metals of Pt groups, Ni, Co, Cu, Ag, etc., or their alloys, compds., etc. is installed by spraying or the like on an electrode base material of iron or the like, whereby an active cathode is obtd. Materials of a high hydrogen overvoltage such as metals or various compds. of Ni, Ti, Ag, etc. are adhered here and there by spraying or the like on the side of the active cathode facing oppositely to the anode. The parts of the high hydrogen overvoltage are provided preferably at about <=50% of the entire surface of the cathode, and the size of the spot is made preferably about <=20mm. and the distribution thereof approximately uniform. The impurities in the catholyte deposit as acicular crystals in these parts of the high hydrogen overvoltage, whereby the activity of the cathode is maintained for a long period of time.

Description

【発明の詳細な説明】 本発明は低水素過電、圧陰極、特に水溶液中において、
優れた低水素過電圧特性を長期に亘って維持することの
出来る電解のための陰ffK関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a low hydrogen overcharge, pressure cathode, especially in an aqueous solution.
The present invention relates to a negative ffK for electrolysis that can maintain excellent low hydrogen overvoltage characteristics over a long period of time.

従来より陰極で水素ガスを発生する技術として隔膜(ア
スベストの如き多孔性r隔膜、及びイオン交換膜の如き
密隔膜を含む)を使用したアルカリ金属塩水m液の電解
が知られており、又水電解等もこれに該当する。
Conventionally, electrolysis of an alkali metal salt solution using a diaphragm (including a porous diaphragm such as asbestos diaphragm and a dense diaphragm such as an ion exchange membrane) has been known as a technique for generating hydrogen gas at a cathode. This also applies to electrolysis, etc.

近年省エネルギーの観点から、この種の技術において電
解電圧の低減化が望まれて来ており、かへる電解電圧低
減の手段として、各種活性陰極が提案されている。
In recent years, from the viewpoint of energy saving, it has been desired to reduce the electrolysis voltage in this type of technology, and various active cathodes have been proposed as a means for reducing the electrolysis voltage.

これら活性陰極は、電解に有効圧寄与するが一般的に云
って劣化が早く、比較的短期間で使用に耐えなくなるも
のが多い。現在か〜る延命策として新規なコーティング
材料の選定や加工方法、陰極形状など各種の方面からの
検討がなされている。
Although these active cathodes contribute to effective pressure for electrolysis, they generally deteriorate quickly and often become unusable in a relatively short period of time. Currently, various aspects such as the selection of new coating materials, processing methods, and cathode shapes are being investigated as life-extending measures.

本発明者等は、活性陰極劣化の原因として溶液中の不純
物による影響について種々検討し、陰極表面の一部に特
定の性質を付与することによって、劣化防止に貢献する
ことを認めた。
The present inventors have conducted various studies on the influence of impurities in the solution as a cause of deterioration of the active cathode, and have recognized that imparting specific properties to a portion of the cathode surface can contribute to prevention of deterioration.

即ち、より具体的には、塩化アルカリ水溶液電解におけ
ろ陰極液中の不純物による活性陰極の劣化防止の検討に
おいて、活性陰極の陽極に対向する側が劣化、し易く、
この面のはy全面に亘って進行するが、この面に水素過
電圧の高い部分を存在させることにより劣化の進行を大
巾に遅延出来ることを見出し、これに基づいて本発明を
完成するに至った。
That is, more specifically, in studying how to prevent deterioration of the active cathode due to impurities in the catholyte in alkaline chloride aqueous solution electrolysis, it was found that the side of the active cathode facing the anode tends to deteriorate;
Although the deterioration of this surface progresses over the entire y surface, it was discovered that the progress of deterioration could be significantly delayed by providing a portion with a high hydrogen overvoltage on this surface, and based on this, the present invention was completed. Ta.

本発明は、陽極と対向する電解面に水素過電圧の商い部
分を散在させてなる低水素過電圧陰極を骨子とするもの
で、以下これについて詳述する。
The main feature of the present invention is a low hydrogen overvoltage cathode in which hydrogen overvoltage sections are interspersed on the electrolytic surface facing the anode, and this will be described in detail below.

本発明に使用する電極基材としては、鉄、銅、ニッケル
及びこれらを含む合金やバルブ金属など多くのものが使
用出来る。
As the electrode base material used in the present invention, many materials such as iron, copper, nickel, alloys containing these, and valve metals can be used.

これらの基材上に陰極活性、即ち水素過電圧の低い物質
が各種の方法で設置される。
Substances with cathodic activity, ie, low hydrogen overvoltage, are placed on these substrates by various methods.

基材上に設置4.する方法としては、熱分解によるもの
沼射、溶融物への浸漬、1b、気メッキ、密着など多(
の方法を挙げることが出来ろ、水素過ik圧を低下させ
ろl物質としては、例えばpt族N1、CO。Cu A
、gの金属、合金、化合物(酸化物、硫化物、炭化物、
ホウ化物、窒化物會命)など多くのものが使用1丁能で
あろ−これらの物質より作られた活性陰極は、そのま〜
の状態で使用すると、溶液中の不純物によって劣化を生
ずる。活性陰極を劣化さす溶液中の不純物としては、H
g、 Fe、Pb、 Ni 、Coなどを挙げろことが
出来る。
Installed on the base material 4. There are many methods to do this, including pyrolysis, immersion in molten material, 1b, air plating, and adhesion.
Examples of the method for lowering the hydrogen overpressure include PT group N1 and CO. Cu A
, g metals, alloys, compounds (oxides, sulfides, carbides,
Many materials such as borides and nitrides can be used - active cathodes made from these materials can be used as is.
If used in this condition, impurities in the solution will cause deterioration. Impurities in the solution that degrade the active cathode include H.
Examples include Fe, Pb, Ni, Co, etc.

一般的には陰極材質又は陰極室材質として使用されるも
のは鉄合金が多く、又鉄はアルカリ性において溶解度が
大きいなどの点から、不純物の代表的なものとしてFe
を挙げることが出来る。
In general, many iron alloys are used as cathode materials or cathode chamber materials, and since iron has a high solubility in alkalinity, Fe is a typical impurity.
can be mentioned.

かNる不純物濃度が劣化へ及ぼず影響については一般的
に不純物濃度が低(なるに従って劣化の程度も減少する
が、l OOppbn−グーでも影響は認められる。
Generally speaking, the impurity concentration has no effect on the deterioration, and the degree of deterioration decreases as the impurity concentration becomes low (the degree of deterioration decreases as the impurity concentration increases, but the influence is observed even in lOOppbn-goo).

特に、不純物がFeの場合罠ついて、イオン交換膜性苛
性ソーダの製造例について説明すれば苛性ソーダ中のL
i”eが0.5 pp戦の場合においては、活性でない
陰極においては、Feは陰極の膜面側活性を有している
間には、陰極面へは非常にわずかに付(のみで、剣状の
結晶は認められない。
In particular, when the impurity is Fe, L in the caustic soda becomes a trap.
When i'e is 0.5 pp, in the case of an inactive cathode, while Fe has activity on the membrane surface of the cathode, it is only slightly attached to the cathode surface. Sword-shaped crystals are not recognized.

この活性陰極の膜面側に水素過電圧の高い部分を点在さ
せると、この部分に針状のFe結晶が付(が、活性陰極
面への付着は、水素過電圧の高い部分が存在しない場合
に比べると著しく減少する。
If areas with high hydrogen overvoltage are scattered on the membrane side of the active cathode, needle-shaped Fe crystals will form in these areas (however, they will not adhere to the active cathode surface unless there are areas with high hydrogen overvoltage). This decreases significantly in comparison.

苛性ソーダ中のFeが0.lppm以下の場合に評い【
、長期間連続運転を行うと、活性陰極のみの場合と、水
素過電圧が高い部分を散在させた陰極とでは、後者の方
がより長期間にわたって陰極活性が持続する。
Fe in caustic soda is 0. Evaluated when less than lppm [
When continuous operation is performed for a long period of time, the cathode activity continues for a longer period of time between the case of only an active cathode and the case of a cathode with scattered areas of high hydrogen overvoltage.

こ〜で水素過電圧が高い部分とは、同じW、流密度で低
水素過電圧部分に対して0.05V以上、Ofましくけ
0.10 V以上高いものを言う。
In this case, the part where the hydrogen overvoltage is high means the part which is higher by 0.05 V or more, or more preferably by 0.10 V or more, than the low hydrogen overvoltage part at the same W and flow density.

これらの水素過電圧が品い部分け2、好二Fしくけ陰極
表面全体の50チ以下、電槽電圧に影響を及ぼさない程
度として、特に好ま1−<は60チ以下である。又好ま
しい下限は01%以上であり、特に好ましくは1%以上
であり、水素過電圧が高い点が過度に少ないと、本発明
の効果P11ち、低水素過電圧特性の持続効果を発揮し
なくなる傾向となり、逆洗過度に多いと陰極自体の低水
素過電圧特性を失うことになり好ましくない。
The hydrogen overvoltage is preferably 50 cm or less on the entire surface of the cathode, and 1-< is preferably 60 cm or less as it does not affect the cell voltage. Further, the preferable lower limit is 0.01% or more, particularly preferably 1% or more, and if the number of high hydrogen overvoltage points is too small, the effect P11 of the present invention, that is, the sustained effect of low hydrogen overvoltage characteristics, tends to not be exhibited. If the amount of backwashing is too large, the cathode itself will lose its low hydrogen overvoltage characteristics, which is not preferable.

点在の形状は線状、円状、角状等の適当7.Cものとす
ることが出来るが、これらの分布は大きい面積を有する
活性陰極にあっては、略均−な分布を−することが望ま
しい。余り不均一な分布では全体的な電流分布が不均一
となり、このために摺電圧上昇の原因となる。
7. The shape of the dots may be linear, circular, angular, etc. However, in the case of an active cathode having a large area, it is desirable to have a substantially uniform distribution. If the distribution is too non-uniform, the overall current distribution will be non-uniform, which will cause an increase in sliding voltage.

又これらの点の大きさく線状の場合は線の巾、円状の場
合は直径、角状の場合は短辺の長さ)は、用途により異
なるがイオン交換脱法塩化アルカリ水溶液の電解などに
おいては、好ましくは20間以下、特に好ましくは5朋
以下であり、又好ましい下限は陰極製作の面より05朋
程度である。
The size of these points (the width of the line if it is linear, the diameter if it is circular, and the length of the short side if it is square) varies depending on the application, but it is preferably 20 or less, particularly preferably 5 or less, and the preferable lower limit is about 05 or less from the viewpoint of cathode production.

陽極と対向する陰極面上における水素過電圧の低い部分
と、高い部分の位置は高い部分が陽極側に突出している
こと、同一平面上にあること、および凹んでいることの
いずれでもよいが、僅かに突出していることが好ましい
The positions of the low hydrogen overvoltage part and the high hydrogen overvoltage part on the cathode surface facing the anode may be such that the high part protrudes toward the anode side, is on the same plane, or is recessed, but may be slightly Preferably, it protrudes.

低い水素過電圧を持つ陰極に旨い水素過電圧の部分を散
在させる方法としては、水素過電圧の高い物質を溶射、
溶接、メッキ等の方法で点々と付けることや、水素過v
L川の旨い薄い多孔性の網などを溶着すること、或は低
水素過電圧陰極の所定部位を削り高い部分を露出させる
ことなど種々の方法が採用出来る。
One way to scatter areas with good hydrogen overvoltage on the cathode, which has low hydrogen overvoltage, is to spray a material with high hydrogen overvoltage,
Welding, plating, etc. may be used to attach dots, or hydrogen permeation may be applied.
Various methods can be adopted, such as welding a thin porous mesh such as L River, or cutting off a predetermined part of the low hydrogen overvoltage cathode to expose a high part.

水素過電圧が高い物質としては、Ni、Ag、Ti  
等の金属−や各種の化合物を挙げることが出来ろが、こ
れらの物質を存在させる場合には、その表面が出来ろだ
け均一で、表面積が増加しないようにすべきである。あ
まり表面積が増大した状態で存在させると、その効果に
より過電圧が低下するので注意を要する。
Substances with high hydrogen overvoltage include Ni, Ag, and Ti.
If these substances are present, the surface should be as uniform as possible and the surface area should not increase. If the surface area is increased too much, the overvoltage will decrease due to this effect, so care must be taken.

本発明陰極の最も好適な使用例は苛性アルカリ水溶液中
におけろ適用であり、多孔性の基祠(エクスパンテッド
メタル、織成網、メツ’/ ユ網、パンチングプレート
など)として耐アルカリ性を考慮してNi含賞1 [1
L%以上のNi合金が好ましく使用され、その表面を活
性化処理して低い水素過電圧火付与し、陽極と対向する
面に耐アルカリ性の高い水素過電圧の部分を所望の部位
に形成させることにより良好な結果を得るこが出来る。
The most suitable example of the use of the cathode of the present invention is in aqueous caustic solution, and it is used as a porous substrate (expanded metal, woven net, mesh, punched plate, etc.) to provide alkali resistance. Considering Ni-containing award 1 [1
A Ni alloy with a concentration of L% or more is preferably used, and the surface is activated to give a low hydrogen overvoltage ignition, and a hydrogen overvoltage part with high alkali resistance is formed at a desired location on the surface facing the anode. You can get good results.

以上説明したように、本発明は陽極に対向する面に水素
過電圧が高い部分を点在させることにより、溶液中の不
純物による劣化を減少させた長寿命の水素発生用活性陰
極を得ることが出来るもので利用価値の頗る高い発明で
ある。
As explained above, the present invention makes it possible to obtain a long-life active cathode for hydrogen generation in which deterioration due to impurities in the solution is reduced by dotting the surface facing the anode with areas with high hydrogen overvoltage. This is an invention with extremely high utility value.

以下に実施例及び比較例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples and Comparative Examples.

実施例1および比較例1 32朋〆Ni丸棒をサンドブラスト処理後、こ又へNi
 −A1,6 : 4重量比、平均粒径2〜3μの粒子
を厚さ約150μにプラズマを用いて溶射(−だ。
Example 1 and Comparative Example 1 After sandblasting a 32-meter round Ni round bar, apply Ni to Komata.
-A1,6:4 weight ratio, particles with an average particle size of 2 to 3μ are sprayed to a thickness of about 150μ using plasma (-).

浴射後650℃×6HのAr雰囲気で焼成後、80℃、
50 % NaOH中に2411浸漬した。
After bath irradiation, baking in Ar atmosphere at 650℃ x 6H, 80℃,
2411 soaked in 50% NaOH.

ら1(11%を露出させ、残りはテフロンチーブデープ
とテフロンチューブを用いて被覆した。
1 (11% was exposed, and the rest was covered using Teflon tube depth and Teflon tube.

このもの瓦陰&1に位を6oχ;2oチK(用中で20
 A / ds” テHg/Hg□mJtjヲ基準11
Cl、 テ測定した。(初期電位) 次いでF  が40キ//含まれる30%Na1l中で
、相手極をNi板と]−て、電流密度10[]A/dn
2で水素発生を5011行って陰極電位を測定した。(
中間電位J 次いで更に50 H水素発生を行って陰極電位の測定を
行った<4終電位)(実施例1)先端部5%の位置にN
1紳0.5””$をイ1けてないもの(比較例1)との
結果を第1表に示ず。
This thing has a position of 6 o x; 2 o chi K (in use, 20
A/ds” TeHg/Hg□mJtjwo Standard 11
Cl, was measured. (Initial potential) Next, in 30% Na11 containing 40 kg of F, the opposing electrode was a Ni plate, and the current density was 10 A/dn.
2, hydrogen generation was performed 5011 times and the cathode potential was measured. (
Intermediate potential J Then, 50 H hydrogen was generated and the cathode potential was measured <4 final potential) (Example 1) N
Table 1 does not show the results for those that did not exceed 0.5"" $1 (Comparative Example 1).

第 1 表 実施例2および比較例2 6.2間φNi丸神をサンドブラスト処fff、こ〜へ
Ni粒子3μをプラズマをJ、f、1いて約150 t
t次いで几11試薬をエチルアルコールに81/1(R
hとして)に溶解した液1olllにラペノダーを21
111!加えて混合したものをコーテイング液とし、こ
れを上記丸棒に塗布して5511℃×5分電気炉中で析
出させた。この操作を15回繰り返し、最後は3D分間
焼成した。
Table 1 Example 2 and Comparative Example 2 φNi Marukami was sandblasted for 6.2 minutes.
Next, dilute 11 reagent with ethyl alcohol in 81/1 (R
Add rapenodar to 1 olll of solution dissolved in
111! The mixture was added and mixed to form a coating liquid, which was applied to the above-mentioned round bar and deposited in an electric furnace at 5511°C for 5 minutes. This operation was repeated 15 times, and the final firing was performed for 3D minutes.

この丸棒の先端5%の位置に0.5w−t、のNi線を
付けたもの(実施例2)と付けないもの(比較例2)に
ついて実施例1と同じ実験を行った。
The same experiment as in Example 1 was conducted on the round bar with a 0.5 wt Ni wire attached to 5% of the tip (Example 2) and without it (Comparative Example 2).

その結果は第2表の通りであった。The results were as shown in Table 2.

第2表 実施例6および比較例6 6.2朋φノニソケル九棒を用いて、これに下記の処方
および処理条件による分散メッキ、およびNi−8;−
ツキ(含硫黄Niメッキ浴を用いたメッキ)を次の通り
反覆して施した。
Table 2 Example 6 and Comparative Example 6 Using 6.2 mm φ Nonisokel nine rods, dispersion plating was applied to it according to the following recipe and processing conditions, and Ni-8;
Plating (plating using a sulfur-containing Ni plating bath) was applied repeatedly as follows.

分散メッキ(411分)   Ni−8メツキ(20分
)→分散メッキ(40分)→Nj−8メッキ(40分)
く分散メッキ〉 硫酸ニッケル   849/1 塩化ニツケル   5011/1 ホ    ウ    酸       5 0 11/
1塩化カリ  611/1 塩化アノモン   4.5g/l 活  性  炭    20 g/l (二相化学KK製KV−5) 硫  醗  銅    4rlO”V/l!メッキ浴円
(35 相手極       電解ニッケルプレー ト温  度
       40℃ メッキ電流密度    4八/d午2 (Ni−8メツキ〉 分散メッキから活τを炭と硫酸銅を除いたものでそれに
代ってグーオ尿素を20171の濃度に添加したもので
その他の条件は同じ。
Dispersion plating (411 minutes) Ni-8 plating (20 minutes) → Dispersion plating (40 minutes) → Nj-8 plating (40 minutes)
Dispersion plating> Nickel sulfate 849/1 Nickel chloride 5011/1 Boric acid 50 11/
Potassium monochloride 611/1 Anomone chloride 4.5 g/l Activated carbon 20 g/l (KV-5 manufactured by Duphasical Chemical KK) Sulfur Copper 4rlO"V/l! Plating bath circle (35 Mating electrode Electrolytic nickel plate Temperature: 40°C Plating current density: 48/d 2 (Ni-8 plating) Dispersion plating with activated τ removed from charcoal and copper sulfate, replaced with urea added to a concentration of 20171, and other The conditions are the same.

この丸棒の先端より5朋の(、’r−1幻をナイフを用
いて約1間中で全周に亘って分散メッキ層を取り除き、
Ni素地を露出させた。(実施例3)実施例1と同じ条
件で各電位の測定を行い。
From the tip of this round bar, remove the dispersed plating layer from the entire circumference for about 1 minute using a 5mm ('r-1 phantom) knife.
The Ni base material was exposed. (Example 3) Each potential was measured under the same conditions as in Example 1.

先端忙おいてNi素地を露出させないもの(比較例3)
と対比させた結果を第5表に示−1゜第3表 実施例4および比較例4 1 di (+ OOmmx l 00mm)のSUS
製ラス網(網目の短手力向長さく 8 W ) 3 m
m ×網目の長手力向長さくLW)8闘x厚さくt)1
mm×刻み巾(s)1.5w+ay)に実施例1と同様
のNi −AI  プラズマ溶射し両面に約1.0 (
1μの被覆を施した。これを同様に焼成し、Na(用中
に′V消し、た。
One that does not expose the Ni base material when the tip is closed (Comparative Example 3)
Table 5 shows the results compared with -1゜Table 3 Example 4 and Comparative Example 4
Made of lath net (length of the mesh in the short side force direction: 8 W) 3 m
m x mesh longitudinal length LW) 8 length x thickness t) 1
The same Ni-AI plasma spray as in Example 1 was applied to the area (mm
A 1μ coating was applied. This was calcined in the same manner, and Na ('V was removed during use).

かくて1]・た陰極の陽極に向5面に1朋φのNi溶接
棒をt++いて10間ピッチ(千鳥配列)で点々と点イ
1け1.た。
Thus, 1] - Dot a Ni welding rod of 1 mm φ on the anode of the cathode on the 5th side at a pitch of 10 (staggered arrangement). Ta.

点イ」げの大きさは15〜2.1朋φであり晶さは陰極
面から0.2〜12間突出していた、この陰極4・イオ
ン交換膜電解槽に取付けて9o℃、ろ0%NaOH−3
(lA/diの条件でNa1JL水溶液の電解運転を行
ブjつだ。(実施例4)この電解槽の陰極液中のt’e
ρ度は2.3〜04叩/lであり、運転開始前と運転6
01−1後の宙。
The size of the dots was 15 to 2.1 mm, and the crystallinity was 0.2 to 12 mm protruding from the cathode surface.The cathode 4 was installed in an ion exchange membrane electrolytic cell at 9oC and filtered at 0. %NaOH-3
(Example 4) Electrolytic operation of Na1JL aqueous solution was carried out under the conditions of lA/di. (Example 4)
The rho degree is 2.3 to 04 strokes/l, and before the start of operation and after operation 6
Sora after 01-1.

位をNi0点付けを行なわj、tい陰極による電解例(
比較例4)ど共に第4表に示′t、。
An example of electrolysis using a small cathode (
Comparative Example 4) Both are shown in Table 4.

第4表 実施例5および比較例5 実施例6の各メッキ浴を月4い、同様のメッキ条件でl
dm寸法の5US310s製ラス網(SW3mxLW5
g×t ImmxSl、5闘)に分散メッキとNi−8
メツキを反覆して施した。
Table 4 Example 5 and Comparative Example 5 Each plating bath of Example 6 was applied 4 times a month under the same plating conditions.
DM size 5US310s lath net (SW3mxLW5
g×t ImmxSl, 5 battles) with dispersion plating and Ni-8
The matsuki was applied repeatedly.

メッキ後、この陰極の縦方向に10闘ピツチで1朋φの
Ni溶接を施した。
After plating, Ni welding of 1 mm diameter was performed in 10 pitches in the vertical direction of this cathode.

か〜る陰極を用いて実施例4と同様の電解運転を行った
。(実施例5)この電解における各電位の結果を、Ni
の点溶接を行わない陰極を用と いた同様の電解例(比較例5)における結果〜貞に 1表に示す。
Electrolytic operation similar to that in Example 4 was carried out using such a cathode. (Example 5) The results of each potential in this electrolysis were
The results of a similar electrolysis example (Comparative Example 5) using a cathode without spot welding are shown in Table 1.

第5表 特許出願人の名称 東亜合成化学工業株式会社Table 5 Patent applicant name Toagosei Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、 陽極と対向する電解面に水素過電圧の高い部分を
散在させてなる低水素過電圧陰極。
1. A low hydrogen overvoltage cathode with high hydrogen overvoltage areas scattered on the electrolytic surface facing the anode.
JP57142601A 1982-08-19 1982-08-19 Low hydrogen overvoltage cathode Pending JPS5935690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142601A JPS5935690A (en) 1982-08-19 1982-08-19 Low hydrogen overvoltage cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142601A JPS5935690A (en) 1982-08-19 1982-08-19 Low hydrogen overvoltage cathode

Publications (1)

Publication Number Publication Date
JPS5935690A true JPS5935690A (en) 1984-02-27

Family

ID=15319099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142601A Pending JPS5935690A (en) 1982-08-19 1982-08-19 Low hydrogen overvoltage cathode

Country Status (1)

Country Link
JP (1) JPS5935690A (en)

Similar Documents

Publication Publication Date Title
US4024044A (en) Electrolysis cathodes bearing a melt-sprayed and leached nickel or cobalt coating
KR100554588B1 (en) Electrode for Generation of Hydrogen
US4169025A (en) Process for making catalytically active Raney nickel electrodes
JPH0694597B2 (en) Electrode used in electrochemical process and manufacturing method thereof
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
EP0031948B1 (en) A hydrogen-evolution electrode
JPS5944392B2 (en) Electrolytic cathode with cobalt/zirconium dioxide fused spray coating
EP0044035A1 (en) Electrode
FI81613C (en) Cathodes suitable for hydrogen-generating electrochemical processes
JPH0633492B2 (en) Electrolytic cathode and method of manufacturing the same
JPH0790664A (en) Low hydrogen overvoltage cathode and production thereof
GB2046795A (en) Porous nickel electrode and process for its production
EP0226291B1 (en) Method for extending service life of a hydrogen-evolution electrode
EP0129231A1 (en) A low hydrogen overvoltage cathode and method for producing the same
JP2002317289A (en) Hydrogen generating electrode
JPS5935690A (en) Low hydrogen overvoltage cathode
US4190514A (en) Electrolytic cell
CA1235386A (en) Process for making raney nickel coated cathode, and product thereof
JP3332264B2 (en) Electrode for electrolysis
JP2019210541A (en) Method of manufacturing electrode for generating hydrogen and electrolysis method using electrode for generating hydrogen
JPS6364518B2 (en)
EP0048284B1 (en) Improved raney alloy coated cathode for chlor-alkali cells and method for producing the same
JPS59100280A (en) Cathode for generating hydrogen
GB2023659A (en) Cathode for the electrolytic treatment of alkali halide
JPS5959890A (en) Method for preventing deterioration in activity of ferrous cathode of electrolytic cell