JPS593535B2 - Mild steel wire rod for ultra-fine wire - Google Patents

Mild steel wire rod for ultra-fine wire

Info

Publication number
JPS593535B2
JPS593535B2 JP54005777A JP577779A JPS593535B2 JP S593535 B2 JPS593535 B2 JP S593535B2 JP 54005777 A JP54005777 A JP 54005777A JP 577779 A JP577779 A JP 577779A JP S593535 B2 JPS593535 B2 JP S593535B2
Authority
JP
Japan
Prior art keywords
wire
steel
ultra
less
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54005777A
Other languages
Japanese (ja)
Other versions
JPS5597452A (en
Inventor
督己 船越
公雄 峰
利夫 藤田
貞夫 浅川
英雄 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP54005777A priority Critical patent/JPS593535B2/en
Publication of JPS5597452A publication Critical patent/JPS5597452A/en
Publication of JPS593535B2 publication Critical patent/JPS593535B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 093朋φ以下に伸線加工される軟鋼線材は、従来、5
05朋φの線材を熱間圧延し、該線材の表面酸化スケー
ルを剥離し、伸線前処理を施して192朋φ程度まで加
工する。
[Detailed description of the invention] Conventionally, mild steel wire rods drawn to a diameter of 093 mm or less have a diameter of 5 mm or less.
A wire rod with a diameter of 0.05 mm is hot rolled, the oxidized scale on the surface of the wire is peeled off, and a wire drawing pretreatment is performed to process the wire rod to a diameter of about 192 mm.

これを通常1次伸線と称しているが、その後の伸線は加
工硬化大なるために約650℃で1〜2時間焼鈍して軟
化しなければO、3mrnφ以下への加工ができない。
1次伸線以降の伸線を通常2次伸線と称しているが、か
くの如く2次伸線加工のためには、1次伸線を必ず中間
焼鈍、酸洗および潤滑処理しなければならなかった。
This is usually called primary wire drawing, but since wire drawing after that causes a large amount of work hardening, it is not possible to process the wire to O, 3 mrnφ or less unless it is softened by annealing at about 650° C. for 1 to 2 hours.
The wire drawing after the primary wire drawing is usually called secondary wire drawing, but in order to perform the secondary wire drawing process, the primary wire drawing must be subjected to intermediate annealing, pickling, and lubrication. did not become.

そのため2次伸線前の中間焼鈍、酸洗およびコーディン
グ等の潤滑処理費が嵩むほか、酸洗処理には廃酸処理等
の公害問題を伴ない、その費用は甚だ犬となる欠点があ
った。本発明の目的は、0.3mmφ以下の極細線材の
製造における従来技術の欠点を克服し、前記中間処理を
省き、1次伸線から極細線まで直引き可能の如く、伸線
性を向上し、伸線後の延靭性を向上させ、ダイスの寿命
の向上および断線の減少をもたらし、ひいては作業性お
よび安全性を向上できる極細線用軟鋼線材を提供しよう
とするものである。
As a result, the cost of intermediate annealing, pickling, coating, and other lubrication treatments before secondary wire drawing increases, and the pickling process involves pollution problems such as waste acid treatment, which has the drawback of making the cost extremely high. . The purpose of the present invention is to overcome the drawbacks of the conventional technology in the production of ultra-fine wire rods with a diameter of 0.3 mm or less, omit the intermediate treatment, and improve wire drawability so that direct drawing from primary wire drawing to ultra-fine wire is possible. The object of the present invention is to provide a mild steel wire rod for ultra-fine wires that can improve ductility after wire drawing, extend die life, reduce wire breakage, and improve workability and safety.

本発明の要旨とするところは次の如くである。すなわち
、重量比にてCo、O2%未満、SiO、O2%未満、
Mn0.05〜0.30%、Ai、005%以下、NO
。0040%以下を含有し、かつ下記(1)式にて示す
炭素当量Ceqが0907%以下であり、残部がFeお
よび不可避的不純物より成り、圧延線材より直引き可能
を特徴とする極細線用軟鋼線材。
The gist of the present invention is as follows. That is, Co, less than 2% by weight, SiO, less than 2% by weight,
Mn0.05-0.30%, Ai, 0.005% or less, NO
. 0,040% or less, and the carbon equivalent Ceq shown by the following formula (1) is 0,907% or less, the remainder consists of Fe and unavoidable impurities, and is characterized by being capable of being drawn directly from rolled wire rods. wire.

本発明者らが、本発明を得るに至るまでに種々の克服す
べき問題点があった。
There were various problems that the inventors had to overcome before they were able to achieve the present invention.

先づ、従来極細線用軟鋼線材の素材にはリムド鋼が用い
られていた。そのため鋼塊頭部の偏析が大きく、素材全
長に亘る均一な品質は得られない。それ故、均一な品質
を得るためには連続鋳造による鋳片を使用する必要があ
る。
First, conventionally, rimmed steel has been used as the material for mild steel wire rods for ultra-fine wires. As a result, segregation at the head of the steel ingot is large, making it impossible to obtain uniform quality over the entire length of the material. Therefore, in order to obtain uniform quality, it is necessary to use continuously cast slabs.

しかし、連続鋳造ではCが0.04%以上の溶鋼を注入
する場合、キルド鋼化しなければ鋳片のブローホール発
生を防止できず、鋳片の手入費用が犬となる。更に、キ
ルド鋼化のためにAlを0.010%以上添加すると、
発生するAl2O3によってタンディッシュのノズルを
閉鎖する問題があるほかに、大気中からのNの吸収が多
く、得られる線材のフエライト結晶粒が小さくなる。か
くの如くフエライト結晶粒が小さいこと、およびAlお
よびNの固溶硬化のために圧延線材の強度および伸線加
工後の強度が高くなり、加工脆化する危険がある。また
、アルミ、キルド鋼は伸線加工後の焼鈍時の昇温速度に
よる再結晶度合が影響され、機械的性質の変動が大きく
なるおそれがある。一方、シリコン、キルド鋼とすると
、Siの固溶硬化による強度および加工硬化率増大のた
めに延靭性の低下、曲げ加工性不良の発生をもたらし、
ダイス寿命の低下を来たす結果となる。
However, in continuous casting, when molten steel with a C content of 0.04% or more is injected, blowholes cannot be prevented from occurring in the slab unless it is made into killed steel, which increases the cost of cleaning the slab. Furthermore, if 0.010% or more of Al is added to make killed steel,
In addition to the problem of closing the nozzle of the tundish due to the generated Al2O3, a large amount of N is absorbed from the atmosphere, and the ferrite crystal grains of the resulting wire become small. Due to the small size of the ferrite crystal grains and the solid solution hardening of Al and N, the strength of the rolled wire rod and the strength after wire drawing are increased, and there is a risk of embrittlement during processing. In addition, for aluminum and killed steel, the degree of recrystallization is affected by the temperature increase rate during annealing after wire drawing, and there is a risk that the mechanical properties will fluctuate greatly. On the other hand, when using silicon and killed steel, the strength and work hardening rate increase due to solid solution hardening of Si, resulting in a decrease in ductility and poor bending workability.
This results in a reduction in die life.

かくの如く、従来の材料では直引きで0,3朋φ以下へ
の伸線加工は不可能であるので、本発明者らは、全長に
亘り均一で、かつ極細線への直引き可能な軟鋼線材を製
造するために、成分系および製造方法について研究を重
ね、伸線性良好な線材を得る成分系で、有害な介在物お
よびブローホール発生の少い鋳片を製造できることを確
認し、今日まで普通造塊材でも得られなかった圧延線材
から直引き可能な独特の極細線用線材を得ることができ
たものである。
As described above, since it is impossible to draw a wire to a diameter of 0.3 mm or less by direct drawing with conventional materials, the present inventors developed a wire that is uniform over the entire length and can be drawn directly into an ultra-fine wire. In order to manufacture mild steel wire rods, we have conducted extensive research on the composition system and manufacturing method, and have confirmed that we can manufacture slabs with fewer harmful inclusions and blowholes using a composition system that produces wire rods with good wire drawability. We were able to obtain a unique wire rod for ultra-fine wires that can be drawn directly from rolled wire rods, which could not be obtained even with ordinary agglomerated materials up until now.

軟鋼線材の伸線加工性を向上させ、特に0.3朋φ以下
の極細線へ伸線加工できるようにするためには、先づ加
工脆化、時効脆化を最大限に防止しなければならないが
、かかる見地からの従来の研究は全くなかった。
In order to improve the wire drawability of mild steel wire rods, and in particular to make it possible to draw them into ultra-fine wires of 0.3 mm or less, it is first necessary to prevent process embrittlement and aging embrittlement to the maximum extent possible. However, there has been no previous research from this perspective.

本発明者らは、加工脆化、時効脆化防止の観点からの知
見に基いて直引き可能な極細線用軟鋼線材を得た。先づ
、本発明における軟鋼線材成分の限定理由について説明
する。
The present inventors have obtained a mild steel wire rod for ultra-fine wires that can be directly drawn based on knowledge from the viewpoint of preventing work embrittlement and aging embrittlement. First, the reasons for limiting the mild steel wire rod components in the present invention will be explained.

C: Cは強度を保証するためにはある程度必要な元素である
が、本発明の目的よりこの強度確保のためには他のMn
* 81等を適当に添加することによって可能であり、
Cは絶対的に必要な元素ではない。
C: C is an element necessary to some extent to ensure strength, but for the purpose of the present invention, other Mn is required to ensure this strength.
* Possible by appropriately adding 81 etc.
C is not an absolutely necessary element.

従って、工業的には溶製上の経済的見地より0.002
%程度が下限であるが、材質の必要性からは下限はない
。一方、Cが増加すると固溶C量およびパーライト量が
増加し、フエライト結晶粒径の成長を抑制し、加工性お
よび延靭性の低下を来たし、更に連続鋳造の場合にはC
量が増加することにより溶鋼の凝固時、気泡の発生、成
長を招き鋳片の表面性状を劣化させる欠点が出る。
Therefore, industrially, from the economic point of view of melting, 0.002
The lower limit is approximately %, but there is no lower limit due to the necessity of the material. On the other hand, when C increases, the amount of solid solute C and pearlite increases, which suppresses the growth of ferrite crystal grain size, resulting in a decrease in workability and ductility.Furthermore, in the case of continuous casting, C
An increase in the amount causes the generation and growth of bubbles during solidification of molten steel, resulting in the deterioration of the surface quality of the slab.

かくの如き材質および製造上の欠点を防止するためには
Cの上限を0.02%に限定する必要がある。かくの如
く、C量を0.02%未満に規制することにより、たと
え酸素量が200ppmと高い状態でも連続鋳造法で良
好な鋳片が得られ、普通鋼塊材と同等もしくはこれ以上
の加工性、機械的性質を具備する軟鋼線材の素材を得る
ことが可能となった。Si: Siは鋼の強度および脱酸上必要な元素であるが、固溶
硬化、加工硬化に対する影響が大きく、0.03%以上
では引抜きダイスの寿命の低下、曲げ加工不良の発生等
の欠陥をもたらすので0.02係未満に限定すべきであ
る。
In order to prevent such defects in materials and manufacturing, it is necessary to limit the upper limit of C to 0.02%. As described above, by regulating the C content to less than 0.02%, even when the oxygen content is as high as 200 ppm, a good slab can be obtained by continuous casting, and it can be processed at the same level or better than ordinary steel ingots. It has now become possible to obtain a material for mild steel wire with good properties. Si: Si is an element necessary for strength and deoxidation of steel, but it has a large effect on solid solution hardening and work hardening, and if it exceeds 0.03%, it may cause defects such as shortening of the life of drawing dies and occurrence of defective bending. Therefore, it should be limited to less than 0.02 factor.

Mn: Mnは鋼の強度、脱酸、および介在物の組成調整のため
に必要な元素であるが、本発明の目的には脱酸は真空脱
ガス等で補うことができ、強度も他の元素で補うことが
可能である。
Mn: Mn is an element necessary for the strength of steel, deoxidation, and composition adjustment of inclusions, but for the purpose of the present invention, deoxidation can be supplemented by vacuum degassing, etc. It is possible to supplement with elements.

一方、0.30係を越えて多《添加される場合には、パ
ーライトの過度な生成、固溶硬化および加工硬化が大き
く、高減面率への伸線加工が不可能になるので0.30
係を上限とした。炭素当量Ceq: 〔%Si)+C%Mn) Ceq−(知〕+?(情と規定 する炭素当量Ceqが0.07%を越える場合には、加
工硬化、加工脆化が大きく、機械的性質が劣化し、断線
が増加して極細線への直引きが困難となる。
On the other hand, if the addition amount exceeds 0.30, excessive pearlite formation, solid solution hardening and work hardening will occur, making wire drawing to a high area reduction ratio impossible. 30
The upper limit was Carbon equivalent Ceq: [%Si)+C%Mn) Ceq-(chi)+?(Information) If the carbon equivalent Ceq exceeds 0.07%, work hardening and work embrittlement will be large, and the mechanical properties will deteriorate. deterioration, wire breakage increases, and direct drawing to ultra-fine wire becomes difficult.

その一例を第1図に示す。第1図は5.5朋φの1次伸
線をMD−ボラツクにて処理し15枚ダイスで800m
/Minの伸線速度で0.6朋φまで同一条件で伸線し
た場合の伸線加工度に対する捻回値の変化から捻回値が
極小値を示す加工度と炭素当量との関係を示したもので
ある。第1図より明らかなとおり、捻回値の極小値を示
す伸線加工度が低い程、伸線加工により材料が脆化した
と判断できるので、炭素当量が低いほど加工脆化が少く
、伸線限界が大きいことがわかる。第1図の基礎とした
実験において、Ceqが0.10の材料を5.5市φよ
り連続ダブルデツキ伸線機により伸線速度800m/M
inにて15枚ダイスを用いて0.6vtmφ以下まで
断線の発生もなく直引きすることができた。この図より
Ceqが0.07%以下となると明らかに伸線性が良好
となることがわかる。Al: A[は脱酸剤として有効な元素であるが、0.005係
を越えるとタンディッシュノズルの閉塞、硬いAl2O
3の生成、AlNによるフエライト結晶粒の微細化など
素材製造上および伸線加工上困難を伴なうので0.00
5%以下に限定した。
An example is shown in FIG. Figure 1 shows the primary wire drawing of 5.5 mm diameter processed with MD-borak and 800 m with 15 dies.
The relationship between the degree of work and the carbon equivalent in which the twist value shows a minimum value is shown from the change in twist value with respect to the degree of wire drawing when wire is drawn under the same conditions up to 0.6 φ at a wire drawing speed of /Min. It is something that As is clear from Figure 1, the lower the degree of wire drawing, which indicates the minimum twist value, the more embrittled the material is due to wire drawing. It can be seen that the line limit is large. In the experiment based on Fig. 1, a material with a Ceq of 0.10 was drawn at a wire drawing speed of 800 m/M from a 5.5 mm diameter using a continuous double deck wire drawing machine.
It was possible to directly draw the wire to 0.6 vtmφ or less without any breakage using 15 dies. From this figure, it can be seen that when Ceq is 0.07% or less, the wire drawability becomes clearly good. Al: A is an effective element as a deoxidizing agent, but if it exceeds 0.005, the tundish nozzle will be clogged, and hard Al2O will form.
0.00 because it involves difficulties in material manufacturing and wire drawing processing, such as the formation of 3 and the refinement of ferrite crystal grains by AlN.
It was limited to 5% or less.

N: NはAlと結合してA[Nを析出し、結晶粒の成長を抑
制するほか、固溶窒素により加工脆化および時効脆化を
もたらすので0.0040%以下であることが必要であ
る。
N: N combines with Al to precipitate A[N, suppressing the growth of crystal grains, and also causes work embrittlement and age embrittlement due to solid solution nitrogen, so it must be 0.0040% or less. be.

本発明による極細線用軟鋼線材は上記限定成分のほか残
部はFeと不可避的不純物より成るものであって、本発
明者らが加工脆化、時効脆化を最大限に防止する観点よ
り行った基礎実験結果については次のとおりである。
The mild steel wire rod for ultra-fine wire according to the present invention has the above-mentioned limited components and the remainder consisting of Fe and unavoidable impurities. The basic experiment results are as follows.

第2図は5.5朋φ1次伸線について行った炭素当量の
変化による引張強さに対する影響を本発明鋼Aと従来の
アルミキルド鋼C,リムド鋼Bとを圧延および冷却条件
をすべて同一として対比した相関図である。
Figure 2 shows the effect of changes in carbon equivalent on tensile strength during the primary wire drawing of 5.5 mm diameter for the present invention steel A, conventional aluminum-killed steel C, and rimmed steel B under the same rolling and cooling conditions. It is a correlation diagram for comparison.

第2図より明らかなとおり、全鋼種ともCeqの減少に
より固溶量とパーライト量が減少し、フエライト結晶粒
の成長が起り、引張強さが低下することが判明し、その
限度はほぼ従来のリムド鋼とほぼ同一水準である。これ
は本発明鋼ではNとAlの低減によりAlNの析出が少
いために圧延後の結晶粒の成長が十分に行なわれるため
である。次に直径D。
As is clear from Fig. 2, for all steel types, as Ceq decreases, the solid solution amount and pearlite amount decrease, ferrite crystal grains grow, and the tensile strength decreases, and the limit is almost the same as the conventional one. Almost the same level as rimmed steel. This is because in the steel of the present invention, precipitation of AlN is small due to the reduction of N and Al, so that crystal grains can grow sufficiently after rolling. Next is the diameter D.

φよりDφまで伸線加工する場合の伸線加工度(ε=2
1nDJLの変化による引張強Dさに及ぼす影響を本発
明鋼と従来のリムド鋼とを対比した相関図は第3図に示
すとおりである。
The degree of wire drawing when drawing from φ to Dφ (ε=2
FIG. 3 shows a correlation diagram comparing the influence of changes in 1nDJL on tensile strength D between the steel of the present invention and the conventional rimmed steel.

第3図より本発明鋼は従来のリムド鋼に比し加工硬化率
が小さいことが判明した。これは本発明鋼がその表面層
、中心部ともそれぞれ第4図A,BおびC,Dに示す如
く、リムド鋼よりフエライト結晶粒が大なることによる
ものである。次に、伸線加工度(ε=21n’) の
変化によりる伸線材の捻回値に及ぼす影響をほぼ同一引
張強さの本発明鋼と従来のリムド鋼とを対比した相関図
は第5図に示すとおりである。
From FIG. 3, it was found that the steel of the present invention had a lower work hardening rate than the conventional rimmed steel. This is because the steel of the present invention has larger ferrite crystal grains than the rimmed steel, as shown in FIGS. 4A, B, C, and D in both the surface layer and the center, respectively. Next, a correlation diagram comparing the influence of the change in the degree of wire drawing (ε=21n') on the twist value of the wire drawn material between the steel of the present invention and the conventional rimmed steel, which have almost the same tensile strength, is shown in Figure 5. As shown in the figure.

第5図より明らかな如く、本発明の捻回値は、低減面率
側で従来のリムド鋼よりも極端に大きく、かつその極小
値が高減面率側にあるという特徴を有している。
As is clear from FIG. 5, the torsion value of the present invention is extremely larger than that of conventional rimmed steel on the reduced area ratio side, and its minimum value is on the high area reduction side. .

上記第2図より第5図までの比較図より明らかな如く、
本発明鋼は加工硬化率が小さいことと相俟って、伸線加
工による加工脆化が起りにくく、伸線加工性が極めて良
好であり、そのために圧延材から直引で極細線まで加工
することができる材料であることを示している。
As is clear from the comparison diagrams from Figures 2 to 5 above,
Coupled with the low work hardening rate, the steel of the present invention is less susceptible to work embrittlement due to wire drawing, and has extremely good wire drawability.For this reason, it can be directly drawn from rolled material to ultra-fine wire. This shows that it is a material that can

実施例 第1表に示す化学成分を有する本発明鋼A,B,C,D
および比較鋼I,J,K,L,M,N,Oを比較鋼Lを
除き、すべて転炉で溶製し、脱ガス処理した後250朋
のモールドに注入して連続鋳造にてプルーム鋳片を製造
した。
Examples Steels A, B, C, D of the present invention having the chemical components shown in Table 1
All comparative steels I, J, K, L, M, N, and O, except comparative steel L, were melted in a converter, degassed, poured into a 250 mm mold, and plume cast by continuous casting. A piece was produced.

比較鋼Lは転炉で溶製した後、11j通常鋳型に注入し
たリムド鋼であって、これを連続鋳造による他のプムー
ム鋳片と同一の250市田のプルームに圧延したもので
ある。これらのブルームから80朋田ビレットに圧延後
5.5酎φ線材に圧延し、ステルモア処理ラインで均一
冷却を行った。
Comparative steel L is a rimmed steel that was melted in a converter and then poured into a 11J normal mold, and was rolled into a plume of 250 Ichida, which is the same as other plume slabs produced by continuous casting. These blooms were rolled into 80 Tomota billets, then rolled into 5.5 diameter wire rods, and uniformly cooled in a Stelmor processing line.

第1表より明らかなとおり、本発明鋼(4)および(B
)は極低炭素材、(Qおよび0はCO.Oxs材であっ
て(QはAlおよびNを比較鋼Kのリムド鋼と同一値に
したもの、0はAlおよびNを少し高めにした材料であ
る。比較鋼は、本発明鋼に近似するも、(I)は本発明
鋼の限定範囲よりMnが高く、(.J)はSiが高く、
卸はMn高のリムド鋼であり、υは限定値よりCが高く
、MはS1 ?Mn9Nがいずれも高く、NはAlおよ
びNが高く、(0)はNが高い材料である。
As is clear from Table 1, the invention steel (4) and (B
) is an ultra-low carbon material, (Q and 0 are CO.Oxs materials (Q is a material with Al and N equal to the rimmed steel of comparison steel K, 0 is a material with slightly higher Al and N) Although the comparative steels are similar to the inventive steel, (I) has a higher Mn than the limited range of the inventive steel, and (.J) has a higher Si,
The wholesaler is rimmed steel with high Mn, υ is higher in C than the limiting value, and M is S1? All of them are high in Mn9N, N is high in Al and N, and (0) is a material with high N.

本発明鋼のほとんどがAlを限定した関係もあって第1
表に示す如く酸素含有量が高いが、ブローホールの発生
はほとんどなく、鋳片の表面の手入も軽微ですみ、また
、非金属介在物は酸素が高い関係もあって酸化物系介在
物が幾分多いが、第6図Aに示す顕微鏡写真で明らかな
如く3μ以下の小さい介在物である。圧延材のフエライ
ト結晶粒径および引張試験値の本発明鋼と比較鋼の対比
表は第2表に示すとおりである。
In most of the steels of the present invention, Al is limited, so the first
As shown in the table, although the oxygen content is high, there are almost no blowholes, and the surface of the slab requires only minor maintenance.Also, due to the high oxygen content, non-metallic inclusions are oxide-based inclusions. Although there are somewhat many inclusions, they are small inclusions of 3 μm or less, as is clear from the micrograph shown in FIG. 6A. Table 2 shows a comparison table of the ferrite crystal grain size and tensile test value of the rolled material between the steel of the present invention and the comparative steel.

すなわち、本発明鋼のフエライト結晶粒は表面部および
中心部ともほぼ20μ以上あって大きく、比較鋼の結晶
粒径はいずれも,lとNを制御していない関係で小さく
約14μであり、比較鋼Kのリムド鋼は表面部は20μ
弱で大きいが、中心部では14μである。本発明鋼の引
張強さは、比較鋼よりも低く、絞り値が大きい特徴を有
し、伸線加工性の良好なことをうかがわせる結果を示し
ている。
That is, the ferrite crystal grains of the steel of the present invention are large, approximately 20μ or more in both the surface and center, while the grain sizes of the comparative steels are small, about 14μ, because l and N are not controlled. Rimmed steel of steel K has a surface area of 20μ.
Although it is weak and large, it is 14μ in the center. The tensile strength of the steel of the present invention is lower than that of the comparative steel, and the reduction of area is large, indicating that the steel has good wire drawability.

次に、本発明鋼および比較鋼を第3表に示す条件で伸線
して伸線加工性を調査した結果を第4表に示す。
Next, the steels of the present invention and comparative steels were drawn under the conditions shown in Table 3, and the wire drawability was investigated. Table 4 shows the results.

第4表より明らかなとおり、捻回値が極小を示す伸線加
工度については、本発明鋼はいずれも高加工度側にあり
、比較鋼よりもはるかに加工脆化の少い材料であること
を示している。また、伸線限界値は断線発生をもって定
めたものであるが、本発明鋼はすべて0.22+u+φ
以下(ε=6.43以上)まで伸線が可能であることが
判明した。次に、これらの供試伸線材のうち1.20m
mφ(ε−3.04)のものを用いて焼鈍し、本発明鋼
と従来鋼について引張強さの昇温速度依存性を調査した
結果は第7図に示すとおりである。すなわち、本発明鋼
の引張強さの昇温依存性は、従来のリムド鋼およびキル
ド鋼よりもはるかに小さいことを示している。このこと
は、通常線材の焼鈍はコイルに巻き取られた状態で熱処
理されるので、コイル内での昇温速度の変動が大きいが
、本発明鋼は、かくの如き昇温速度の変動が大きくても
、常にほぼ均一な機械的性質が得られることを示すもの
である。以上実施例によって明らかなとおり、本発明に
よる極細線用軟鋼線材は成分ならびに炭素当量を適圧に
限定したので次の如き大きな効果を収めることができた
As is clear from Table 4, all of the steels of the present invention are on the high side with respect to wire drawing workability, where the torsion value is minimal, and are materials with far less work embrittlement than the comparative steels. It is shown that. In addition, the wire drawing limit value is determined based on the occurrence of wire breakage, but all steels of the present invention have a wire drawing limit value of 0.22+u+φ
It was found that wire drawing is possible up to the following (ε=6.43 or more). Next, 1.20 m of these test wire drawn materials
Fig. 7 shows the results of an investigation of the dependence of the tensile strength on the heating rate for the steel of the present invention and the conventional steel. In other words, the temperature dependence of the tensile strength of the steel of the present invention is much smaller than that of the conventional rimmed steel and killed steel. This means that wire rods are normally annealed while being wound into a coil, so the temperature increase rate within the coil varies greatly, but the steel of the present invention has such a large temperature increase rate variation. This shows that almost uniform mechanical properties can always be obtained even when the As is clear from the examples above, the mild steel wire rod for ultra-fine wire according to the present invention had the composition and carbon equivalent limited to an appropriate pressure, and therefore was able to achieve the following great effects.

(イ)線材用素材を歩留の高い連続鋳造法で製造するこ
とができるので均一な線材を供給することができる。
(a) Since the raw material for wire rods can be manufactured using a continuous casting method with a high yield, uniform wire rods can be supplied.

(口)伸線加工においては0.3011LTAφ以.下
の極細線まで圧延線材から中間焼鈍、酸洗、潤滑処理等
の従来の中間処理を廃して直引きが可能である。
(Exposure) In wire drawing processing, 0.3011LTAφ or more. It is possible to directly draw the lower ultra-fine wire from the rolled wire by eliminating conventional intermediate treatments such as intermediate annealing, pickling, and lubrication.

09本発明による軟鋼線材は加工硬化率が小さく、その
非金属介在物も微細であるのでダイス寿命の延長が可能
となり、断線事故を著減したので(イ),(ロ)の効果
と相俟って生産性の向上、コストの著しい低減が可能と
なった。
09 The mild steel wire rod according to the present invention has a small work hardening rate and its nonmetallic inclusions are fine, making it possible to extend the die life and significantly reducing wire breakage accidents, which is combined with the effects of (a) and (b). This has made it possible to improve productivity and significantly reduce costs.

(ニ)線材用素材の成分が(イ)により均一となり、か
つ焼鈍後の引張強さの昇温速度依存性が小さいので成品
品質の均一性が確保できた。
(d) The components of the wire material became uniform due to (a), and the dependence of the tensile strength after annealing on the heating rate was small, so uniformity of product quality could be ensured.

以上の説明から明らかなごとく、本発明によれば、フエ
ライト結晶粒径の成長を促進させ、伸線性および伸線後
の延靭性を向上させることにより、圧延線材を1次伸線
から極細線まで中間処理なしで断線を生じることなく直
引きできる極細線用軟鋼線材が得られる。
As is clear from the above description, according to the present invention, by promoting the growth of ferrite crystal grain size and improving wire drawability and drawing toughness after wire drawing, rolled wire rods can be made from primary wire drawing to ultra-fine wire. A mild steel wire rod for ultra-fine wires that can be directly drawn without intermediate treatment and without wire breakage can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は捻回値が極小値を示す伸線加工度(ε−2An
D0/D)に及ぼす炭素当量の影響を示す相関図、第2
図は5.5朋φ圧延線材の引張強さに及ぼす炭素当量の
影響を示す相関図、第3図は線材の引張強さと伸線加工
度との関係を本発明鋼Aと従来のリムド鋼Bとを対比し
て示す関係図、第4図A,B,C,Dはそれぞれ本発明
鋼および従来のリムド鋼の表面層A,Bおよび中心部C
,Dにおけるフエライト結晶粒の大きさを示す顕微鏡写
真(倍率200)第5図は同一引張強さの本発明鋼Aと
従来のリムド鋼Bにおける捻回値と伸線加工度との関係
を対比する相関図、第6図A,Bはそれぞれ本発明鋼お
よび従来のリムド鋼の非金属介在物を対比する顕微鏡写
真(倍率200)、第7図は本発明鋼Aと従来のリムド
鋼B、キルド鋼Cにおける引張強さに及ぼす昇温速度の
影響を示す相関図である。
Figure 1 shows the degree of wire drawing (ε-2An
Correlation diagram showing the influence of carbon equivalent on D0/D), 2nd
The figure is a correlation diagram showing the influence of carbon equivalent on the tensile strength of a 5.5 mm diameter rolled wire rod. Figure 3 shows the relationship between the tensile strength of the wire rod and the degree of wire drawing for the invention steel A and the conventional rimmed steel. Figure 4 A, B, C, and D show the surface layers A, B, and center C of the steel of the present invention and the conventional rimmed steel, respectively.
, D. Micrograph (magnification: 200) showing the size of ferrite crystal grains in Fig. 5 compares the relationship between twist value and degree of wire drawing in inventive steel A and conventional rimmed steel B with the same tensile strength. Figures 6A and B are micrographs (magnification: 200) comparing non-metallic inclusions in the invention steel and conventional rimmed steel, respectively. Figure 7 shows the relationship between the invention steel A and the conventional rimmed steel B. FIG. 2 is a correlation diagram showing the influence of the temperature increase rate on the tensile strength of killed steel C.

Claims (1)

【特許請求の範囲】 1 重量比にてC:0.02%未満、Si:0.02%
未満、Mn:0.05〜0.03%、Al:0.005
%以下、N:0.0040%以下を含有し、かつ下記式
にて示す炭素当量Ceqが0.07%以下であり、残部
がFeおよび不可避的不純物より成り、圧延線材より直
引き可能を特徴とする極細線用軟鋼線材。 Ceq=〔%C〕+(〔%Si〕+〔%Mn〕)/5
[Claims] 1. C: less than 0.02%, Si: 0.02% by weight
less than, Mn: 0.05-0.03%, Al: 0.005
% or less, N: 0.0040% or less, and the carbon equivalent Ceq shown by the following formula is 0.07% or less, the balance consists of Fe and unavoidable impurities, and it is characterized by being able to be drawn directly from a rolled wire rod. Mild steel wire rod for ultra-fine wire. Ceq=[%C]+([%Si]+[%Mn])/5
JP54005777A 1979-01-18 1979-01-18 Mild steel wire rod for ultra-fine wire Expired JPS593535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54005777A JPS593535B2 (en) 1979-01-18 1979-01-18 Mild steel wire rod for ultra-fine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54005777A JPS593535B2 (en) 1979-01-18 1979-01-18 Mild steel wire rod for ultra-fine wire

Publications (2)

Publication Number Publication Date
JPS5597452A JPS5597452A (en) 1980-07-24
JPS593535B2 true JPS593535B2 (en) 1984-01-24

Family

ID=11620536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54005777A Expired JPS593535B2 (en) 1979-01-18 1979-01-18 Mild steel wire rod for ultra-fine wire

Country Status (1)

Country Link
JP (1) JPS593535B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240342A (en) * 1985-08-13 1987-02-21 Showa Denko Kk Hyperfine wire of high purity iron

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092231A (en) * 1973-12-18 1975-07-23
JPS51119613A (en) * 1975-04-14 1976-10-20 Nippon Steel Corp A process for producing a cold rolled steel plate by continuous castin g and annealing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092231A (en) * 1973-12-18 1975-07-23
JPS51119613A (en) * 1975-04-14 1976-10-20 Nippon Steel Corp A process for producing a cold rolled steel plate by continuous castin g and annealing

Also Published As

Publication number Publication date
JPS5597452A (en) 1980-07-24

Similar Documents

Publication Publication Date Title
JP3276151B2 (en) Twin roll continuous casting method
JP2009503265A (en) Method for producing directional electromagnetic steel strip
EP1589124B1 (en) High strength high toughness high carbon steel wire rod and process for producing the same
US5868875A (en) Non-ridging ferritic chromium alloyed steel and method of making
US5858126A (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
US5662747A (en) Bainite wire rod and wire for drawing and methods of producing the same
US3990887A (en) Cold working steel bar and wire rod produced by continuous casting
JPH07286214A (en) Production of high strength thick hot coil excellent in hydrogen induced cracking resistance and dwtt property
JPH04293721A (en) Production of soft steel wire rod excellent in mechanical descaling property
JPS593535B2 (en) Mild steel wire rod for ultra-fine wire
JPS63123556A (en) Production of cr-ni stainless steel being hard to crack at casting and hot rolling process
JPS61133322A (en) Production of thin steel sheet having excellent formability
JP2000239786A (en) Base plate for cold rolling, cold rolled steel sheet for deep drawing with minimal plane anisotropy, and manufacture thereof
JPS61133323A (en) Production of thin steel sheet having excellent formability
JP3091794B2 (en) Method of manufacturing automotive shaft parts excellent in extrudability and forgeability
JPH0137455B2 (en)
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JP2579707B2 (en) Manufacturing method of wire rod for coated arc welding rod core wire with excellent mechanical descaling property
JP2927823B2 (en) Method of manufacturing hot-rolled material for high carbon steel wire rod with high workability
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JP3015843B2 (en) Manufacturing method of cold rolled steel sheet with excellent surface properties and workability
JPS58123855A (en) Steel product with superior cold workability for mild steel wire rod and steel bar
JPS6047323B2 (en) Manufacturing method for continuously cast slabs for steel plates
JPS6082616A (en) Production of extra low carbon cold rolled steel plate for deep drawing