JPS5935209B2 - Crystal oscillator - Google Patents

Crystal oscillator

Info

Publication number
JPS5935209B2
JPS5935209B2 JP12597375A JP12597375A JPS5935209B2 JP S5935209 B2 JPS5935209 B2 JP S5935209B2 JP 12597375 A JP12597375 A JP 12597375A JP 12597375 A JP12597375 A JP 12597375A JP S5935209 B2 JPS5935209 B2 JP S5935209B2
Authority
JP
Japan
Prior art keywords
sealing body
crystal resonator
cold welding
sealed
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12597375A
Other languages
Japanese (ja)
Other versions
JPS5250188A (en
Inventor
文庶 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP12597375A priority Critical patent/JPS5935209B2/en
Publication of JPS5250188A publication Critical patent/JPS5250188A/en
Publication of JPS5935209B2 publication Critical patent/JPS5935209B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明はコールドウェルディングにより気密封止した水
晶振動子特に時計用小型水晶振動子に関するもので、気
密端子周辺などの封止体主要部のコールドウェルディン
グによる変形を最小に抑えた振動子を提供する事を目的
とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal resonator, particularly a small crystal resonator for watches, which is hermetically sealed by cold welding. The purpose is to provide a vibrator with reduced

更には、前記事由により振動子の小型化を可能とするも
のである。従来により、特別にエージング特性を考慮し
た水晶振動子はコールドウェルディングによる気密封止
構造となつている。
Furthermore, due to the above-mentioned reason, it is possible to downsize the vibrator. Conventionally, crystal resonators with special consideration given to aging characteristics have an airtight sealing structure using cold welding.

然しながら、第1図Aの平面図及び第1図Bの断面図で
示す如く、水晶振動子は封止体1a、Ibのフランジ1
a−1、lb−1をコールドウェルディング部分2の材
料が押しのけられて封止体の内側に向けて多量の材料が
フローし、封止体平面部1a−2、Ib−2のふくらみ
等の変形や電気的リード端子3を絶縁気密保持する気密
端子4の周辺に生じた応力による気密端子の割れや気密
端子接着部の剥離が生ずる為に、図の如く気密端子に圧
縮力が加わる構造とし、気密端子とフランジに連ながる
封止体部分1a−3、lb−3(以下封止体側面と呼ぶ
)との距離Lを長くする等の対策が必要であり、構造上
の制限や小型化の妨げとなつていた。本発明は係る難曲
を取除いた小型水晶振動子を提供するものである。
However, as shown in the plan view of FIG. 1A and the cross-sectional view of FIG.
a-1, lb-1, the material of the cold welding part 2 is pushed away, and a large amount of material flows toward the inside of the sealing body, causing bulges in the flat parts 1a-2, Ib-2, etc. of the sealing body. Because deformation and stress generated around the airtight terminal 4 that keeps the electrical lead terminal 3 insulated and airtight may cause cracking of the airtight terminal or peeling of the adhesive part of the airtight terminal, a compressive force is applied to the airtight terminal as shown in the figure. , it is necessary to take measures such as increasing the distance L between the airtight terminal and the sealing body parts 1a-3 and lb-3 (hereinafter referred to as the sealing body side surface) connected to the flange, and due to structural limitations and This was an impediment to miniaturization. The present invention provides a small crystal oscillator that eliminates such difficult curves.

以下本発明の実施例を図面により説明する。第2図Aの
平面図及び第2図Bの断面図で示す本発明によるフラッ
トパッケージの音叉型水晶振動子は封止体5a、5bの
フランジ5a−1、5b−1をコールドウェルディング
した直後の図であり、コールドウェルディング部分6の
圧縮変形を図の如く封止体内側寄りを最大とし、封止体
外側に向かうに従つて少なくなるように傾斜させる事に
よりコールドウェルディングにより押し退けられる材料
を封止体側にフローさせて封止体内側へのフローを抑え
てある。
Embodiments of the present invention will be described below with reference to the drawings. The tuning fork type crystal resonator of the flat package according to the present invention shown in the plan view of FIG. 2A and the sectional view of FIG. As shown in the figure, the compressive deformation of the cold welding portion 6 is maximized on the inside of the sealing body and decreases toward the outside of the sealing body as shown in the figure, thereby increasing the amount of material displaced by cold welding. is allowed to flow toward the sealing body side, thereby suppressing the flow to the inside of the sealing body.

更に封止体側面5a−2、5b−2をシゴキツブシ等の
加工により薄くする事により封止体内側へフローした材
料による歪を封止体側面で吸収しており、封止体平面部
5a−3、5b−3の変形を殆んど無くし、封止体平面
部5a−3と気密端子Tとの接着部1aに加わる応力を
著しく軽減している。なおコールドウェルディング後、
フランジ5a−1、5b−1の外側周は切り落される(
以下、他の実施例に於いても同様に実施される)。第3
図、第4図は第2図Bの実施例の部分拡大図である。第
3図はフランジのコールドウェルディング作業中の作用
図で、ウエルデイングが封止体内側寄りから始,まり漸
時外側に向けて実施される様子を示しており、図中の矢
印は圧縮の材料に封止体外側方向ヘカHが加わり係るコ
ールドウエルデイング部の材料が外側へフローする事を
示している。なお、二点鎖線8はコールドウエルデイン
グ用プレス型を示しており、コールドウエルデイング部
分6にはプレス型8の傾斜部分により前記力Hと垂直圧
縮力vとによる合成力Nで圧縮される。第4図は封止体
側面部5a−2,5b−2の拡大図で、Mは封市体平面
部5a−3,5b−3との交わる付近に加わる曲げモー
メントでコールドウエルデイングにより封止体内側へフ
ローした材料の量を一定とすると概ねMOct3(t;
封止体側面の板厚)となり、封止体側面5a−2,5b
−2の厚さを薄くする事により封止休平面部5a−3,
5b−3の変形が非常に少なくなる。然るに、第3図、
第4図に示した効果が相まつて封止体平面部5a−3,
5b−3の変形は全く無視出来る程になる故、第2図の
構造の如く気密端子6の接着部7に剪断力が加わる構造
とし、かつ封止体側面5a−2と気密端子6との距離も
短く出来る等、本発明は構造設計上の自由度を増すと同
時に小型化に大いに貢献するものである。第5図は本発
明の他の実施例であるフラツトパツケージの水晶振動子
の封止体側面付近の要部断面図であり、第5図は封止体
9a,9bの封止体側面9a−1,9b−1を部分的に
薄くした例で銅製封止体9aの取付部9cにコバール板
10を接合しコバール板10上に気密端子11を接着し
て気密端子11周辺を強固にして変形に対する安全性を
一段と増してある。
Furthermore, by making the side surfaces 5a-2 and 5b-2 of the sealing body thinner by machining the sealing body side surfaces 5a-2 and 5b-2, the strain caused by the material flowing into the sealing body is absorbed by the side surfaces of the sealing body, and the flat surface portion 5a-2 of the sealing body is absorbed by the side surfaces of the sealing body. 3 and 5b-3 is almost eliminated, and the stress applied to the bonded portion 1a between the sealing body flat portion 5a-3 and the airtight terminal T is significantly reduced. After cold welding,
The outer circumferences of the flanges 5a-1 and 5b-1 are cut off (
The same procedure will be applied to other embodiments below). Third
FIG. 4 is a partially enlarged view of the embodiment of FIG. 2B. Figure 3 is a diagram of the action during cold welding of the flange, showing how welding starts from the inside of the sealing body and gradually moves outward.The arrows in the diagram indicate the compression. It is shown that the material in the cold welding part flows outward due to the shear H applied to the material in the direction toward the outside of the sealing body. Note that the two-dot chain line 8 indicates a press die for cold welding, and the cold welding portion 6 is compressed by the composite force N of the force H and the vertical compression force v by the inclined portion of the press die 8. FIG. 4 is an enlarged view of the sealing body side parts 5a-2 and 5b-2, where M is a bending moment applied near the intersection with the sealing body flat parts 5a-3 and 5b-3, and the sealing is performed by cold welding. If the amount of material flowing into the body is constant, approximately MOct3(t;
thickness of the side surface of the sealing body), and the side surface of the sealing body 5a-2, 5b
-2 by reducing the thickness of the sealing rest surface portion 5a-3,
The deformation of 5b-3 is greatly reduced. However, Figure 3,
The effects shown in FIG.
Since the deformation of 5b-3 is completely negligible, a structure is adopted in which shearing force is applied to the adhesive part 7 of the hermetic terminal 6 as shown in FIG. The present invention greatly contributes to miniaturization while increasing the degree of freedom in structural design, such as by being able to shorten the distance. FIG. 5 is a sectional view of a main part near the side surface of the sealing body of a crystal resonator in a flat package according to another embodiment of the present invention, and FIG. -1, 9b-1 is partially thinned, a Kovar plate 10 is bonded to the mounting part 9c of the copper sealing body 9a, an airtight terminal 11 is bonded on the Kovar plate 10, and the area around the airtight terminal 11 is strengthened. The safety against deformation is further increased.

第6図は本発明のさらに他の実施例を示す水晶振動子の
要部断面図であり、第5図に示す水晶振動子より気密端
子12を封止体側面13に接近してなる構造をとつてい
る。又、本発明はコールドウエルデイングの多数個取り
方式に適用しても有効である。ここで云う多数個取り方
式とはコールドウエルデイングを多数個同時に実施する
方式で、第7図に示した様に各封止体を切り離さないで
気密端子14や水晶片15の取付、水晶片のトリミング
等のウエルデイング直前までの工程を全て完了させ、然
る後に他の一方の封止体を重ね合わせてコールドウエル
デイングを実施し水晶振動子を完成させた後に個々に切
り離す方式であり、封止体相互間を接続する板が存在す
る為従来技術では個々にコールドウエルデイングを行な
う場合よりも封止体内側への材料のフロー量が多量とな
り、従つて封止体平面部の変形がより多大となつて重大
なる問題となる。前述の如き本発明になる構造とすれば
、第2図A1第2図B1第3図、第4図の説明より明ら
かなる様に個々にコールドウエルデイングを行なう場合
とほぼ同等な効果が得られる。以上、本発明の説明を角
形フラツトパツケージの水晶振動子について述べたが、
当然、コールドウエルデイングにより真空封入する他の
水晶振動子にも適用出来る。
FIG. 6 is a cross-sectional view of a main part of a crystal resonator showing still another embodiment of the present invention, which has a structure in which the airtight terminal 12 is closer to the side surface 13 of the sealing body than the crystal resonator shown in FIG. It's getting better. Further, the present invention is also effective when applied to a multi-cavity cold welding method. The multi-crystal welding method referred to here is a method in which cold welding is performed on a large number of molds at the same time, and as shown in FIG. This method involves completing all processes up to just before welding, such as trimming, and then stacking the other sealed body and performing cold welding to complete the crystal resonator, which is then separated into individual pieces. Since there is a plate connecting the sealing bodies, in the conventional technology, the amount of material flowing into the sealing body is larger than when cold welding is performed individually, and therefore the flat surface of the sealing body is more likely to be deformed. The number of problems will increase and become a serious problem. With the structure according to the present invention as described above, as is clear from the explanations in FIGS. 2A, 2B, 3 and 4, almost the same effect as when cold welding is performed individually can be obtained. . The present invention has been described above with respect to a rectangular flat package crystal resonator.
Naturally, the present invention can also be applied to other crystal resonators vacuum-sealed by cold welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは従来の水晶振動子の平面図、第1図Bは第1
図Aの断面図、第2図Aは本発明の水晶振動子の平面図
、第2図Bは第2図Aの断面図、第3図は第2図Bの部
分拡大断面図、第4図は第2図Bの部分拡大断面図、第
5図は本発明の他の実施例を示す水晶振動子の要部断面
図、第6図は本発明のさらに他の実施例を示す水晶振動
子の要部断面図、第7図は本発明の水晶振動子に適した
多数個取り方式による製造中の斜視図。 1a,1b,5a,5b,9a,9b・・・・・・封止
体、1a−1,1b−1,5a−1,5b−1・・・・
・・フランジ、4,7,11,12・・・・・・気密端
子。
Figure 1A is a plan view of a conventional crystal resonator, and Figure 1B is a top view of a conventional crystal resonator.
2A is a plan view of the crystal resonator of the present invention, FIG. 2B is a sectional view of FIG. 2A, FIG. 3 is a partially enlarged sectional view of FIG. The figure is a partially enlarged sectional view of FIG. 2B, FIG. 5 is a sectional view of a main part of a crystal resonator showing another embodiment of the present invention, and FIG. 6 is a crystal oscillator showing still another embodiment of the present invention. FIG. 7 is a sectional view of the main parts of the crystal resonator, and FIG. 7 is a perspective view of the crystal unit being manufactured by a multi-piece manufacturing method suitable for the crystal resonator of the present invention. 1a, 1b, 5a, 5b, 9a, 9b... sealed body, 1a-1, 1b-1, 5a-1, 5b-1...
...Flange, 4, 7, 11, 12...Airtight terminal.

Claims (1)

【特許請求の範囲】 1 気密端子を付加した封止体、該封止体のフランジを
コールドウェルディングにより接合し、水晶片を真空封
入してなる水晶振動子に於いて前記封止体のフランジも
しくは気密端子周辺の厚さに対し、フランジに連なる封
止体部分の少くとも一部を薄くした事を特徴とする水晶
振動子。 2 気密端子を付加した封止体、該封止体のフランジを
コールドウェルディングにより接合し、水晶片を真空封
入してなる水晶振動子に於いて前記コールドウェルディ
ング部分に、封止体内側寄りに圧縮変形率を最大とする
傾斜部を備えた事を特徴とする特許請求の範囲第1項記
載の水晶振動子。
[Scope of Claims] 1. A sealed body to which an airtight terminal is added, the flanges of the sealed body are joined by cold welding, and a crystal piece is vacuum-sealed in a crystal resonator. Alternatively, a crystal resonator characterized in that at least a part of the sealing body part connected to the flange is made thinner than the thickness around the airtight terminal. 2 In a crystal resonator formed by a sealed body to which an airtight terminal is added, the flanges of the sealed body are joined by cold welding, and a crystal piece is vacuum-sealed, the cold welded portion is placed near the inner side of the sealed body. 2. The crystal resonator according to claim 1, further comprising an inclined portion that maximizes the compressive deformation rate.
JP12597375A 1975-10-21 1975-10-21 Crystal oscillator Expired JPS5935209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12597375A JPS5935209B2 (en) 1975-10-21 1975-10-21 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12597375A JPS5935209B2 (en) 1975-10-21 1975-10-21 Crystal oscillator

Publications (2)

Publication Number Publication Date
JPS5250188A JPS5250188A (en) 1977-04-21
JPS5935209B2 true JPS5935209B2 (en) 1984-08-27

Family

ID=14923565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12597375A Expired JPS5935209B2 (en) 1975-10-21 1975-10-21 Crystal oscillator

Country Status (1)

Country Link
JP (1) JPS5935209B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136809A (en) * 1984-07-30 1986-02-21 Toshiba Corp Decentralized hierarchy controller of power plant

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129567A (en) * 1978-03-30 1979-10-08 Agency Of Ind Science & Technol Separation method of grain of different shapes
JPS55106574A (en) * 1979-02-07 1980-08-15 Satake Eng Co Ltd Beans selector
JPS55114375A (en) * 1979-02-26 1980-09-03 Satake Eng Co Ltd Beans sorter
JP6294020B2 (en) * 2013-07-16 2018-03-14 セイコーインスツル株式会社 Lid, electronic device package and electronic device using the lid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136809A (en) * 1984-07-30 1986-02-21 Toshiba Corp Decentralized hierarchy controller of power plant

Also Published As

Publication number Publication date
JPS5250188A (en) 1977-04-21

Similar Documents

Publication Publication Date Title
EP1804376B1 (en) Piezoelectric filter
JP4714214B2 (en) Surface acoustic wave device
JP2007005948A (en) Electronic component and manufacturing method thereof
CN103392229B (en) The manufacture method of electron device package body, electronic device and electron device package body
JP2007081867A (en) Method for forming conduction hole, process for fabricating piezoelectric device, and piezoelectric device
US20060006768A1 (en) Piezoelectric resonator and method for fabricating the same
KR20010081032A (en) Surface acoustic wave device and method of producing the same
JPH02170611A (en) Surface acoustic wave device
US6414415B1 (en) Surface acoustic wave device and method for manufacturing the same
JPS5935209B2 (en) Crystal oscillator
US5545849A (en) Electronic component device and its manufacturing method
CN110622416B (en) Crystal oscillation element, crystal oscillator, and method for manufacturing crystal oscillation element and crystal oscillator
JPH10256867A (en) Vibrator, its manufacture and electronic device using the vibrator
US8624470B2 (en) Piezoelectric devices including electrode-less vibrating portions
CN110880921B (en) Bulk acoustic wave structure, bulk acoustic wave device, and method for manufacturing the same
JP6787797B2 (en) Manufacturing method of electronic device
JP2007096597A (en) Surface acoustic-wave device and its manufacturing method
CN113659954B (en) Bulk acoustic wave resonator, packaging method thereof and electronic equipment
JP2008211543A (en) Crystal resonator and method of manufacturing crystal resonator
JP6942004B2 (en) Electronic components and their manufacturing methods
WO2021006156A1 (en) Elastic wave device
JP2001110922A (en) Package for electronic component
WO2017022504A1 (en) Electronic component and method for producing same
WO2021095294A1 (en) Piezoelectric vibrator and method for manufacturing same
US20120299665A1 (en) Electronic component and production method thereof