JPS5935146B2 - mass spectrometer - Google Patents

mass spectrometer

Info

Publication number
JPS5935146B2
JPS5935146B2 JP9157076A JP9157076A JPS5935146B2 JP S5935146 B2 JPS5935146 B2 JP S5935146B2 JP 9157076 A JP9157076 A JP 9157076A JP 9157076 A JP9157076 A JP 9157076A JP S5935146 B2 JPS5935146 B2 JP S5935146B2
Authority
JP
Japan
Prior art keywords
ion
magnetic field
mass
image
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9157076A
Other languages
Japanese (ja)
Other versions
JPS5317384A (en
Inventor
政也 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9157076A priority Critical patent/JPS5935146B2/en
Publication of JPS5317384A publication Critical patent/JPS5317384A/en
Publication of JPS5935146B2 publication Critical patent/JPS5935146B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】 本発明は二重収束質量分析装置に関する。[Detailed description of the invention] The present invention relates to a dual focus mass spectrometer.

質量分析装置においてイオン源で発生するイオンは或る
初速度分布を持つており、単収束型質量分析装置は或る
開き角を持つた同一速度のイオンビームに対し一点に収
束させる機能を持つだけであるから、イオンの初速度分
布幅だけのイオン速度の不揃により質量スペクトル線は
若干の広りを持つことになり、高い分解能が得られない
。二重収束型の場合、開き角を持つた同一速度のイオン
ビームを一点に収束させると共に或る速度分布幅内のビ
ームを同一点に収束させる(質量数は同一)機能を有す
るので、質量スペクトル線はきわめて細くなり分解能が
高くなる。本発明は上述したような二重収束質量分析装
置において、更に質量数走査の速度向上と再現性の向上
を得ることを目的としている。
In a mass spectrometer, the ions generated by the ion source have a certain initial velocity distribution, and a single focusing mass spectrometer only has the function of converging ion beams of the same velocity with a certain aperture angle to one point. Therefore, the mass spectral lines are slightly broadened due to the unevenness of the ion velocities due to the width of the initial ion velocity distribution, making it impossible to obtain high resolution. In the case of a double convergence type, it has the function of converging ion beams with an aperture angle and the same velocity to one point, and converging beams within a certain velocity distribution width to the same point (the mass number is the same), so the mass spectrum The lines become extremely thin and have high resolution. An object of the present invention is to further improve the speed and reproducibility of mass number scanning in the above-mentioned double focus mass spectrometer.

磁界偏向型の質量分析装置で質量数走査を行うのに磁界
強度を変える方法をとると、磁界を高速で変化させるこ
とは困難であるし、鉄心のヒステリシス等によつて質量
数の再現性が低いので、偏向用磁界を一定にしたまゝで
質量数走査を行う方法が種々提案されている。
If you use a method of changing the magnetic field strength to perform mass number scanning with a magnetic field deflection type mass spectrometer, it is difficult to change the magnetic field at high speed, and the reproducibility of the mass number decreases due to hysteresis of the iron core. Since this is low, various methods have been proposed in which mass number scanning is performed while keeping the deflection magnetic field constant.

しかしそれらは単収束質量分析装置を対象としたもので
あり、分解能の向上については種々な工夫にもかゝわら
ず限界がある。従つて二重収束質量分析装置において高
速走査の手段が開発されることは大へん有意義である。
第1図は本発明の原理を示す。
However, these are aimed at single-focus mass spectrometers, and despite various efforts, there are limits to improving resolution. Therefore, it is of great significance that a means for high-speed scanning be developed in a dual-focus mass spectrometer.
FIG. 1 illustrates the principle of the invention.

図でHは偏向用磁界である。通常の質量分析装置ではS
を入射側スリットとして固定し、線JK上に質量スペク
トルを得ている。こゝでイオンの進行方向を逆にしてJ
K線上にイオン点源を置き、これをJK線上に沿つて移
動させ、固定したスリットSの背後でイオンを検出する
と、上記移動に伴い、特定の位置で特定の質量数のイオ
ンが検出される。こゝでJK線上のイオン点源の移動を
イオン光学的に行えば、高速の質量数走査が可能となり
磁界は一定だから再現性もきわめて良好である。このよ
うなイオン光学系を用いれば、イオンを逆行させても同
目的の達成可能は明白である。以下実施例によつて本発
明を説明する。第2図でIはイオン源、Sはイオン源ス
リット、Lは収束レンズ、D1、D2は第1、第2の偏
向器、Hは偏向磁界、Eは収束用電極、Scは検出スリ
ット、Tは検出器である。
In the figure, H is a deflection magnetic field. In a normal mass spectrometer, S
is fixed as the entrance side slit, and a mass spectrum is obtained on line JK. Here, reverse the direction of ion movement and
When an ion point source is placed on the K line and moved along the JK line to detect ions behind the fixed slit S, ions with a specific mass number are detected at a specific position as the source moves. . If the ion point source on the JK line is moved ion-optically, high-speed mass number scanning becomes possible, and since the magnetic field is constant, the reproducibility is also very good. If such an ion optical system is used, it is clear that the same objective can be achieved even if the ions are moved backwards. The present invention will be explained below with reference to Examples. In Figure 2, I is the ion source, S is the ion source slit, L is the converging lens, D1 and D2 are the first and second deflectors, H is the deflection magnetic field, E is the converging electrode, Sc is the detection slit, and T is the detector.

イオンはIからTに向つて進行するのであるが、まずこ
の構成の二重収束性について説明するため、イオンの進
行方向を逆にしてTをイオン源と考える。スリツトSc
は収束用電極Eの焦点位置にあり、Eは同心円筒の一部
を切出した形であり、円筒の半径方向に電界を形成して
おり、或る特定加速電圧で加速され同電極の丁度中間で
入射面に対し垂直に入射するイオンは質量数に関係なく
円筒電極Eの曲率中心を中心とした円弧を画く。Scは
電極Eの焦点にあるので、Scを出た開き角αのイオン
ビームは角φeだけ偏向して平行ビームaとなつて磁界
Hの左端面に垂直に入射する。このビームが一定質量数
のイオンよりなつておれば、このビームは磁界Hで90
゜偏向されて例えばP1点に収束する。所でTから出る
イオンは初速のばらつきがあるので、Scを出る或る質
量数のイオンはαなる方向のばらつきと共にvなる速度
のばらつきも持つている。そこで上述したイオンビーム
に対し速度がvだけ大きいイオンビーム(開き角はα)
を考えると、これは電極Eの中間の曲率より大きな円弧
を画き、偏向角はφeよりわづか小さくやはり平行ビー
ムbとなつて磁界Hに入射する。このビームは磁界Hの
左端面に対し垂直より稍傾いた角で入射するがその収束
点は結局P1点になる。このようにして同一質量数であ
つて初速のばらつきのあるイオンが一点に収束されるの
であり、質量数が異るとき収束点軌跡力坩の左端面に対
し45゜傾いたJK線になることは9σ偏向であること
から容易に理解される。この構成はマツターボ・ヘルツ
オーク型二重収束系として知られている。本発明はこの
構成を逆方向に使うものである。イオン源11スリツト
S1レンズL3者の光軸は一直線で偏向磁界Hの射出端
面(左端面)に対し、傾いた方向になつている。
Ions travel from I toward T, but in order to first explain the double convergence of this configuration, the direction of ion travel is reversed and T is considered an ion source. Slits Sc
is located at the focal point of the convergence electrode E, and E is a part of a concentric cylinder cut out, and an electric field is formed in the radial direction of the cylinder. Ions incident perpendicularly to the incident surface draw an arc centered on the center of curvature of the cylindrical electrode E, regardless of their mass number. Since Sc is at the focal point of the electrode E, the ion beam with the opening angle α that exits Sc is deflected by the angle φe and becomes a parallel beam a, which is incident perpendicularly on the left end face of the magnetic field H. If this beam consists of ions with a constant mass number, the beam will be
It is deflected by .degree. and converges, for example, at point P1. However, since the ions exiting from T have variations in initial velocity, ions of a certain mass number exiting from Sc have variations in velocity as well as α in the direction. Therefore, an ion beam whose velocity is larger by v than the above-mentioned ion beam (opening angle is α)
Considering this, this beam draws an arc larger than the intermediate curvature of the electrode E, and the deflection angle is slightly smaller than φe, which also becomes a parallel beam b and enters the magnetic field H. This beam is incident on the left end face of the magnetic field H at an angle slightly inclined from perpendicular, but its convergence point eventually becomes point P1. In this way, ions with the same mass number but varying initial velocities are converged to one point, and when the mass numbers are different, the JK line is inclined at 45 degrees with respect to the left end face of the convergence point locus force crucible. is easily understood since it is a 9σ deflection. This configuration is known as a Pine Turbo-Hertz Oak double convergence system. The present invention uses this configuration in the opposite direction. The optical axes of the ion source 11, the slit S1, and the lens L3 are in a straight line and in a direction inclined with respect to the exit end surface (left end surface) of the deflection magnetic field H.

スリツトSを出るイオンは一定加速電界で即に加速され
たものである。第1偏向器D1と第2偏向器D2とは偏
向方向が相反しておりD1よりD2の方が偏向角が大き
くD2を出たビームは磁界Hの射出端面と平行になり、
D1よりD2の方が偏向角が大きい関係を保つて連動的
に偏向角を変えることによりD2を出たビームを平行移
動させる。レンズLの強度はビームがどの位置にあつて
もJK線上に収束するようにDl,D2に印加する偏向
信号と連動して変化せしめられる。かくしてイオン源1
から出たイオンビームはJK線上に収束しつ\JK線上
を走査し、例えばP1点に収束しているときは或る特定
の質量数のイオンのみがスリツトSc上に収束し検出さ
れる。従つてイオンビームをJK線上で振らせることに
より質量分析ができることになる。こ\でイオン源1か
らJK線上に至るイオン光学系の収束性についで考案す
る。
Ions exiting the slit S are immediately accelerated by a constant accelerating electric field. The deflection directions of the first deflector D1 and the second deflector D2 are opposite to each other, and the deflection angle of D2 is larger than that of D1.The beam exiting D2 becomes parallel to the exit end surface of the magnetic field H.
The beam exiting D2 is translated in parallel by changing the deflection angle in conjunction with the relationship that the deflection angle is larger in D2 than in D1. The intensity of the lens L is changed in conjunction with the deflection signals applied to Dl and D2 so that the beam converges on the JK line no matter where it is located. Thus ion source 1
The ion beam emitted from the ion beam converges on the JK line and scans the JK line. For example, when converging on point P1, only ions of a certain mass number converge on the slit Sc and are detected. Therefore, mass spectrometry can be performed by swinging the ion beam on the JK line. Now we will discuss the convergence of the ion optical system from the ion source 1 to the JK line.

レンズ、偏向器とも電界型の場合加速電圧が一定である
ときは、質量数に関係なくレンズLの焦点距離、Dl,
D2の偏向角は同一である。イオンが初速分布を持つと
き、レンズLは高速のイオンに対し長焦点となるから、
イオン収束点はJK線上で光学系の光軸方向にずれるが
、この点はLの焦点深度の問題でLからJK線までの距
離を適当に長くすることにより無視できるようにするこ
とができる。偏向器D1の偏向角は初速の大なるイオン
程小さい。イオンの初速度の分布幅をvとし、このvだ
けの差によるD1の偏向角の差をd1、D2のそれをD
2とすると、Dl,d2は夫々の偏向器の偏向角に比例
するからD2〉d1であり、DlD2間の距離、D2か
らJK線までの距離を適当に設定することにより初速度
の異るイオンビームをJK線上の同一点に収束させるこ
とができる。このとき初速の大なるものと小なるものと
ではJK線への入射方向が異るが、この異りは質量分析
部の二重収束による初速の異るイオンビームの方向の異
りと一致している。本発明は上述したような構成で二重
収束条件を充していて分解能が高く走査に当つて偏向用
磁界を変化させないので高速走査、再現性の点で優れ、
従来の電界走査型やカドラポール型の質量分析装置に比
し高質量域での特性が特に優れている。
If both the lens and deflector are electric field type, when the accelerating voltage is constant, the focal length of the lens L, Dl, regardless of the mass number,
The deflection angles of D2 are the same. When ions have an initial velocity distribution, lens L becomes a long focal point for high-speed ions, so
Although the ion convergence point shifts in the optical axis direction of the optical system on the JK line, this point can be ignored by appropriately increasing the distance from L to the JK line due to the depth of focus of L. The deflection angle of the deflector D1 is smaller for ions with higher initial velocity. The distribution width of the initial velocity of the ion is v, the difference in the deflection angle of D1 due to the difference of only this v is d1, and that of D2 is D.
2, since Dl and d2 are proportional to the deflection angle of each deflector, D2>d1, and by appropriately setting the distance between Dl and D2 and the distance from D2 to the JK line, ions with different initial velocities can be The beams can be converged to the same point on the JK line. At this time, the direction of incidence on the JK line differs between those with high and low initial velocities, but this difference is consistent with the difference in the direction of ion beams with different initial velocities due to double convergence in the mass spectrometer. ing. The present invention satisfies the double convergence condition with the above-mentioned configuration, has high resolution, does not change the deflection magnetic field during scanning, and is excellent in high-speed scanning and reproducibility.
Compared to conventional electric field scanning type or quadrapol type mass spectrometers, the characteristics in the high mass range are particularly excellent.

なお上記実施例はマツターボ・ヘルツオーク型質量分析
装置の構成を利用しているが、二重収束条件が成立つ構
成であればよく、JK線は直線でなく曲線になつてもよ
くまたビーム入射方向は走査範囲において平行であるこ
とも必要ではない。これらは二重収束の条件から要求さ
れる所に従えばよいのである。また上例でイオンを逆行
させてもよいことはいうまでもない。
Although the above embodiment utilizes the configuration of a Matsuturbo-Hertz-Oak type mass spectrometer, any configuration that satisfies the double convergence condition may be used, and the JK line may be a curved line instead of a straight line. Nor does the direction need to be parallel in the scanning range. These can be done as required by the conditions of double convergence. It goes without saying that in the above example, the ions may be caused to move backwards.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における走査方法の原理を説明する図、
第2図は本発明の一実施例の平面図である。 H・・・・・・偏向用磁界、I ・・・・・・イオン源
、T・・・・・・イオン検出器、Dl,D2・・・・・
・走査用偏向器。
FIG. 1 is a diagram explaining the principle of the scanning method in the present invention,
FIG. 2 is a plan view of one embodiment of the present invention. H...Magnetic field for deflection, I...Ion source, T...Ion detector, Dl, D2...
・Scanning deflector.

Claims (1)

【特許請求の範囲】[Claims] 1 磁場強度を固定した質量分析用磁場と、同磁場によ
つて形成される質量スペクトルの像画の像を形成するイ
オンレンズ系と、上記磁場によつて形成される質量スペ
クトル像画と上記レンズ系によつて形成される上記質量
スペクトル像面の像との間に配置されて、上記磁場によ
り形成される質量スペクトル面上の任意の一点の上記イ
オンレンズ系による像が、同レンズの上記像面上の一定
点に来るようにイオン軌道を偏向させるイオン軌道偏向
用電場とよりなる質量分析装置。
1. A magnetic field for mass analysis with a fixed magnetic field strength, an ion lens system that forms an image of a mass spectrum image formed by the magnetic field, and a mass spectrum image formed by the magnetic field and the lens. An image of an arbitrary point on the mass spectral surface formed by the magnetic field, which is placed between the image of the mass spectral image surface formed by the ion lens system, is the image of the lens. A mass spectrometer that consists of an ion trajectory deflecting electric field that deflects ion trajectories so that they come to a fixed point on a surface.
JP9157076A 1976-07-31 1976-07-31 mass spectrometer Expired JPS5935146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9157076A JPS5935146B2 (en) 1976-07-31 1976-07-31 mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9157076A JPS5935146B2 (en) 1976-07-31 1976-07-31 mass spectrometer

Publications (2)

Publication Number Publication Date
JPS5317384A JPS5317384A (en) 1978-02-17
JPS5935146B2 true JPS5935146B2 (en) 1984-08-27

Family

ID=14030175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9157076A Expired JPS5935146B2 (en) 1976-07-31 1976-07-31 mass spectrometer

Country Status (1)

Country Link
JP (1) JPS5935146B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112416A (en) * 1984-11-06 1986-05-30 Mitsubishi Electric Corp Waveform delay circuit
GB8812940D0 (en) * 1988-06-01 1988-07-06 Vg Instr Group Mass spectrometer

Also Published As

Publication number Publication date
JPS5317384A (en) 1978-02-17

Similar Documents

Publication Publication Date Title
JP2000133194A5 (en)
JP2004221089A (en) Electron beam device and detection device
US4066895A (en) Scanning mass spectrometer having constant magnetic field
JP2567736B2 (en) Ion scattering analyzer
CN112305002A (en) Spectroscopy and imaging system
JPH0346747A (en) Ion mirror device for flying timetype mass analyser
US4480187A (en) Mass spectrometer
US4418280A (en) Double focusing mass spectrometer
JP2973136B2 (en) Particle beam device
JPS5935146B2 (en) mass spectrometer
US4800273A (en) Secondary ion mass spectrometer
JPS5830696B2 (en) charged particle energy analyzer
JPS5812705B2 (en) Shitsuryoubun Sekikei
SU957318A1 (en) Quadruple mass spectrometer
JPS643025B2 (en)
US3800140A (en) Focusing plate for magnetic mass spectrometer
JPH01132038A (en) Mass spectroscope
SU1304106A1 (en) Electronic spectrometer
JP2002048736A (en) Parallel magnetic field type rutherford back scattering analyzer
US3783278A (en) Single magnet tandem mass spectrometer
JPS6125043A (en) Crystal-orientation determining method by scanning electron microscope and scanning electron microscope employed
JP3160055B2 (en) Retarding type Wien filter
JPH01292734A (en) Retarding type energy filter
JPH0349177B2 (en)
JPS5820098B2 (en) Electron beam deflection scanning device