JPS5934830Y2 - air conditioner - Google Patents

air conditioner

Info

Publication number
JPS5934830Y2
JPS5934830Y2 JP2254280U JP2254280U JPS5934830Y2 JP S5934830 Y2 JPS5934830 Y2 JP S5934830Y2 JP 2254280 U JP2254280 U JP 2254280U JP 2254280 U JP2254280 U JP 2254280U JP S5934830 Y2 JPS5934830 Y2 JP S5934830Y2
Authority
JP
Japan
Prior art keywords
compression system
circuit
temperature
output signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2254280U
Other languages
Japanese (ja)
Other versions
JPS56123938U (en
Inventor
勝重 河原
博満 田原
紀雄 鍵村
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2254280U priority Critical patent/JPS5934830Y2/en
Publication of JPS56123938U publication Critical patent/JPS56123938U/ja
Application granted granted Critical
Publication of JPS5934830Y2 publication Critical patent/JPS5934830Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は負荷の変動に対して室温の変化力刈・さい温度
制御を行うことが可能な空気調和機に関する。
[Detailed Description of the Invention] The present invention relates to an air conditioner that is capable of controlling the room temperature by changing the force and controlling the temperature in response to load fluctuations.

段階的容量制御機能を有する空気調和機において、冷凍
能力を制御するため従来から用いられている温度調節器
12は、一般的な2段容量制御形冷房機の場合について
みると、優先して付勢される第1圧縮系イを発停制御す
るための第1接点13と、第2圧縮系口を発停制御する
ための第2接点14の動作範囲は第2図に図示するよう
にステップ間で温度差を有している。
In an air conditioner with a stepwise capacity control function, the temperature controller 12, which has been conventionally used to control the refrigerating capacity, is preferentially installed in the case of a general two-step capacity control type air conditioner. The operating range of the first contact point 13 for controlling the on/off of the first compression system A and the second contact 14 for controlling the on/off of the second compression system port is as shown in FIG. There is a temperature difference between them.

このような動作特性のもので温度制御を行うと、第3図
に動作例が示されるように、冷房負荷が大きいときには
第1接点13の閉成による第1圧縮系イの付勢に加えて
第2接点14の動作領域TH2〜TL2内で第2圧縮系
口の発停が戚され、一方冷房負荷が小さいときには第1
接点13の動作領域THI〜TLI内で第1圧縮系イの
発停が成されるところから、このような負荷の広範囲で
の変動によって室温はステップ間温度差を有する両動作
領域間を移動するために一定とならなくて冷やし過ぎの
現象が起る。
When temperature control is performed using a device with such operating characteristics, as shown in an example of operation in Figure 3, when the cooling load is large, in addition to energizing the first compression system A by closing the first contact 13, The second compression system port starts and stops within the operating range TH2 to TL2 of the second contact 14, while when the cooling load is small, the first
Since the first compression system A is turned on and off within the operating range THI to TLI of the contact 13, the room temperature moves between the two operating ranges with a step-to-step temperature difference due to such a wide variation in load. Therefore, the temperature is not constant and the phenomenon of overcooling occurs.

なお、暖房運転の場合には当然、暖め過ぎの現象が起る
ものである。
In addition, in the case of heating operation, the phenomenon of overheating naturally occurs.

その結果として、空気調和機の消費電力を必要以上に使
用するため不経済な運転となり、省エネルギーが強く望
まれている現情勢下に適しない欠点があり、また、室温
が負荷変動に伴って一定しないことから快適性に欠ける
問題があった。
As a result, the air conditioner consumes more power than necessary, resulting in uneconomical operation, which has the disadvantage of not being suitable for the current situation where energy conservation is strongly desired.In addition, the room temperature remains constant due to load fluctuations. There was a problem of lack of comfort because of the lack of comfort.

しかしてかかる欠陥を解消しようとするには、前述せる
如きステップ間温度差を可及的に狭(すればよいのであ
るが、それでは両動作領域間に存する温度状態では第1
圧縮系・第2圧縮系の頻繁な発停が成されたり、ハンチ
ング作動に起因する擾乱現象が起生じて実用上好ましく
ない問題があり、従って適切な対策とは云い難い。
However, in order to eliminate such defects, the temperature difference between the steps as described above should be made as narrow as possible.
This poses a problem in which the compression system and the second compression system are frequently turned on and off, and a disturbance phenomenon due to the hunting operation occurs, which is undesirable in practice, and therefore it is difficult to say that this is an appropriate countermeasure.

このような事実に対処して本考案は上述する従来欠陥を
排除し得て、もって快適な空気調和をはかり得る新規な
空気調和機をここに提供しようとして或されたものであ
って、特に第1圧縮系と第2圧縮系を個別にあるいは一
括して付勢し得る段階的容量制御機能を有する空気調和
機において、温度検出用感温素子および補正抵抗からな
る直列抵抗と温度設定用可変抵抗とを対向辺として備え
たブリッジ回路と、出力信号のオン・オフの間にディフ
ァレンシャルが存し、かつ前記温度検出用感温素子の電
位と前記温度設定用可変抵抗の電位とが入力信号として
与えられる第1比較回路と、該第1比較回路に比して大
きいディファレンシャルが出力信号のオン・オフの間に
存し、かつ、前記直列抵抗の電位と前記温度設定用可変
抵抗の電位とが入力信号として与えられる第2比較回路
と、第1比較回路の出力信号がオンのときにはオン信号
を、オフのときには第2比較回烙のオン・オフ出力に応
じたオン・オフ信号を前記第1圧縮系に与える一方、第
2比較回路の出力信号がオフのときにはオフ信号を、オ
ンのときには第1比較回路のオン・オフ出力に応じたオ
ン・オフ信号を前記第2圧縮系に与える演算回路とによ
って温度調節系を構成してなり、温度調節系におけるス
テップ温度差をなくして、室温がディファレンシャルを
有する温度設定範囲から外れたときに、次のステップの
出力信号を発せしめて常に一定した設定温度内に室温を
制御することが9能となり、所期の目的は達成されるも
のである。
In view of these facts, the present invention has been developed to provide a new air conditioner that can eliminate the above-mentioned conventional defects and achieve comfortable air conditioning. In an air conditioner that has a stepwise capacity control function that can energize the first compression system and the second compression system individually or all at once, a series resistor consisting of a temperature sensing element for temperature detection and a correction resistor and a variable resistor for temperature setting are used. and a differential exists between on/off of the output signal, and the potential of the temperature sensing temperature sensing element and the potential of the temperature setting variable resistor are given as input signals. and a differential larger than the first comparison circuit exists between on and off of the output signal, and the potential of the series resistor and the potential of the temperature setting variable resistor are input. When the output signal of the second comparator circuit and the first comparator circuit given as a signal is on, the on signal is compressed, and when the output signal is off, the on/off signal corresponding to the on/off output of the second comparator circuit is compressed by the first compression circuit. an arithmetic circuit that provides an off signal to the second compression system when the output signal of the second comparison circuit is off, and an on/off signal corresponding to the on/off output of the first comparison circuit when it is on; By configuring the temperature control system, the step temperature difference in the temperature control system is eliminated, and when the room temperature goes out of the temperature setting range with a differential, the output signal for the next step is issued, and the temperature is always kept within a constant set temperature. The desired purpose is achieved by controlling the room temperature.

以下、本考案の1実施例を添付図面にもとづき詳細に説
明する。
Hereinafter, one embodiment of the present invention will be described in detail based on the accompanying drawings.

本考案に係る空気調和機例えば冷房機は、圧縮冷凍サイ
クルを使用して、室内雰囲気を冷却するものであって、
圧縮機には第1圧縮系と第2圧縮系との2系を有してお
り、第1圧縮系と第2圧縮系の少くとも一方を、すなわ
ち、個別にあるいは一括して付勢せしめることにより、
n的能力制御運転が行えるようになっている。
The air conditioner according to the present invention, such as an air conditioner, uses a compression refrigeration cycle to cool the indoor atmosphere, and includes:
The compressor has two systems, a first compression system and a second compression system, and at least one of the first compression system and the second compression system can be energized individually or all at once. According to
N capacity control operation can be performed.

但し、第1圧縮系と第2圧縮系とからなる圧縮機の例と
しては、2個のシリンダーを有し、一方を第1圧縮系と
して、他方をアンロード装置を備えた第2圧縮系とした
もの、電動機に2段速度形のものを使用して低速段側で
付勢したときを第1圧縮系に、高速段側で付勢したとき
を第2圧縮系にしたもの、さらに圧縮機を2台並列的に
使用するものなどが何れも適用可能である。
However, an example of a compressor consisting of a first compression system and a second compression system is one that has two cylinders, one of which is the first compression system, and the other is the second compression system equipped with an unloading device. A two-speed type electric motor is used, and the first compression system is used when the low speed side is energized, and the second compression system is used when the high speed side is energized. Any method that uses two units in parallel is applicable.

それ等第1圧縮系イ、第2圧縮系口を制御するための温
度調節系の基本回路を第4図および第5図に例示してい
るが、この調節系即ち温度調節器は電子的回路よりなっ
ており、ブリッジ回路1、第1比較回路2、第2比較回
路3および演算回路4を構成要素としている。
The basic circuit of the temperature control system for controlling the first compression system A and the second compression system port is illustrated in FIGS. It consists of a bridge circuit 1, a first comparison circuit 2, a second comparison circuit 3, and an arithmetic circuit 4 as constituent elements.

ブリッジ回路1は、温度検出用感温素子5および補正抵
抗6からなる直列抵抗Rと温度設定用可変抵抗γを対向
辺として有し、それ等に夫々直列させた調整抵抗8,9
を備えた回路に形成して、直列抵抗Rの■電位E2と、
前記感温素子5の■電位E0とを、温度設定用可変抵抗
Tの■電位E3に対する比較信号として取り出すように
している。
The bridge circuit 1 has a series resistor R consisting of a temperature sensing element 5 for temperature detection and a correction resistor 6, and a variable resistor γ for temperature setting as opposite sides, and adjustment resistors 8 and 9 connected in series with them, respectively.
, the potential E2 of the series resistor R,
The potential E0 of the temperature sensing element 5 is taken out as a comparison signal with the potential E3 of the temperature setting variable resistor T.

前記温度検出用感温素子5としては、例えば正抵抗一温
度特性を有するサーミスタが使用され、冷房機の吸込グ
リルから導入される室内空気の温度を検出するように適
当位置に配設する。
As the temperature sensing element 5, for example, a thermistor having a positive resistance-temperature characteristic is used, and it is arranged at an appropriate position so as to detect the temperature of the indoor air introduced from the intake grill of the air conditioner.

第1.第2比較回路2,3はコンパレータが用いられて
おり、第1比較回路2は帰還抵抗Yを第2比較回路3の
帰還抵抗Xに比して大きくすることにより、オン作動点
THHとオフ作動点TLLとの差即ちディファレンシャ
ルを第2比較回路30オン作動点THとオフ作動点TL
との差よりも大きくさせている。
1st. The second comparison circuits 2 and 3 use comparators, and the first comparison circuit 2 has a feedback resistance Y larger than a feedback resistance X of the second comparison circuit 3, so that the on-operation point THH and the off-operation The difference between the point TLL, that is, the differential, is determined by the second comparison circuit 30 between the on operating point TH and the off operating point TL.
This makes the difference larger than the difference between the two.

そして、第1比較回路2は■入力端子に前記サーミスタ
50電位E1を、O入力端子に温度設定用可変抵抗Tの
電位E3を印加するようにし、一方、第2比較回路3は
■入力端子に前記直列抵抗Rの電位E2を、O入力端子
に前記電位E3を印加するようにしている。
The first comparison circuit 2 applies the potential E1 of the thermistor 50 to the input terminal and the potential E3 of the temperature setting variable resistor T to the O input terminal, while the second comparison circuit 3 applies the potential E1 of the thermistor 50 to the input terminal. The potential E2 of the series resistor R is applied to the O input terminal, and the potential E3 is applied to the O input terminal.

このようにブリッジ回路1と両比較回路2,3とを結合
させたことによって、電位E2>電位E1の関係が常に
保たれることから、室温が設定温度の上限値THに達し
たときに第2比較回路3からオン信号が出され、かつ該
オン信号は室温が設定温度の下限値TLよりも低下する
までの間保持される一方、室温が前記上限値THを超え
た値THHに達したときに、第1比較回路2からオン信
号が出され、かつ該オン信号は室温が前記下限値TLよ
りも下まわる値TLLになるまでの間保持される。
By combining the bridge circuit 1 and both comparison circuits 2 and 3 in this way, the relationship of potential E2>potential E1 is always maintained, so that when the room temperature reaches the upper limit value TH of the set temperature, the 2. An on signal is output from the comparison circuit 3, and the on signal is held until the room temperature falls below the lower limit value TL of the set temperature, while the room temperature reaches a value THH exceeding the upper limit value TH. At times, the first comparator circuit 2 outputs an on signal, and the on signal is held until the room temperature reaches a value TLL below the lower limit value TL.

次に演算回路4は第5図に示しているように、論理記号
で概要示すれば、NOR回路とNOT回路の直列になる
OR回路およびAND回路からなっていて、第1比較回
路2、第2比較回路3の各出力信号A、BをNOR回路
およびAND回路に夫々入力信号として与える一方、前
記OR回路の出力信号10を第1圧縮系イに、前記AN
D回路の出力信号11を第2圧縮系口に夫々指令信号と
して与えるようにしている。
Next, as shown in FIG. 5, the arithmetic circuit 4 consists of an OR circuit and an AND circuit, which are a NOR circuit and a NOT circuit connected in series, as shown in logical symbols. The output signals A and B of the two comparison circuits 3 are applied to the NOR circuit and the AND circuit as input signals, respectively, while the output signal 10 of the OR circuit is applied to the first compression system A and the AN
The output signal 11 of the D circuit is applied to each of the second compression system ports as a command signal.

上記演算回路4はその回路構造によって明らかなように
、下記の如き制御指令を第1圧縮系イ。
As is clear from its circuit structure, the arithmetic circuit 4 sends the following control commands to the first compression system.

第2圧縮系口に与える。Apply to the second compression system port.

(I) 第1比較回路2の出力信号Aがオン(論理l
)のときには第1圧縮系イは常に付勢され、逆に出力信
号Aがオフ(論理O)のときには第2比較回路3の出力
信号のオン・オフに対応して第1圧縮系イは付勢・消勢
される。
(I) The output signal A of the first comparator circuit 2 is on (logic l
), the first compression system A is always activated, and conversely, when the output signal A is off (logic O), the first compression system A is activated in response to the on/off of the output signal of the second comparator circuit 3. Become or lose power.

つまり、出力信号Aがオフ、かつ出力信号Bがオフのと
きのみ第1圧縮系イは消勢される。
That is, the first compression system A is deenergized only when the output signal A is off and the output signal B is off.

(ロ)第1比較回路2の出力信号Aがオフ(論理O)の
ときには第2圧縮系口は常に消勢され、逆に出力信号A
がオン(論理l)のときには第2比較回路3の出力信号
のオン・オフに対応して第2圧縮系口は付勢・消勢され
る。
(b) When the output signal A of the first comparator circuit 2 is off (logic O), the second compression system port is always deenergized;
When is on (logic 1), the second compression system port is energized or deenergized in response to the on/off of the output signal of the second comparator circuit 3.

つまり、出力信号Aがオン、かつ出力信号Bがオンのと
きのみ、第2圧縮系口は付勢される。
In other words, the second compression system port is energized only when the output signal A is on and the output signal B is on.

叙上の構成を有する本考案冷房機の運転態様を第4図乃
至第7図によって説明すると、温度設定用可変抵抗7を
mすることにより、温度設定領域は第7図上でT)r”
T Lの範囲となり、第2比較回路3からはTHでオ
ン出力信号が、TLでオフ出力信号が出る。
The operating mode of the air conditioner of the present invention having the above configuration will be explained with reference to FIGS. 4 to 7. By setting the temperature setting variable resistor 7 to m, the temperature setting range is T)r" in FIG.
The second comparison circuit 3 outputs an on output signal at TH and an off output signal at TL.

また、第1比較回路2からはTHHでオン出力信号がT
LLでオフ出力信号が出る。
Also, the on output signal from the first comparator circuit 2 is THH.
An off output signal is output at LL.

かかる作動態様によって、室温がTHHよりも高い高負
荷のときには、両圧縮系イ2口共に付勢して余裕ある能
力で冷房を行い、室温がTLまで下ると第1圧縮系イは
付勢したまNで第2圧縮系口を消勢させ、その後TL−
+THの設定領域内で第2圧縮系口のみによる発停制御
が或される。
Due to this operating mode, when the room temperature is higher than THH and the load is high, both compression systems A are energized to perform cooling with sufficient capacity, and when the room temperature drops to TL, the first compression system A is energized. Deenergize the second compression system port with N, then TL-
Start/stop control is performed only by the second compression system port within the +TH setting range.

一方、低負荷状態で室温がTLよりも下るようなときに
は、室温がTLLまで下ると両圧縮系イ2口共に消勢し
てその後室温の上昇に伴って第1圧縮系イが発停制御を
行ない、室温をTL−+T一般定領域内におさめるよう
に冷房運転が成される。
On the other hand, when the room temperature drops below TL under low load conditions, when the room temperature drops to TLL, both compression system ports are de-energized, and then as the room temperature rises, the first compression system starts and stops. Then, cooling operation is performed to keep the room temperature within the general constant range TL-+T.

かくして温度調節器は2ステップ指令方式でありながら
ステップ温度差は零となり、温度設定範囲から室温が外
れたときに停止に強制させていた一方の圧縮系を発停制
御して、室温を常に一定な設定温度範囲内に保たせるこ
とが可能となる。
In this way, although the temperature controller is a two-step command system, the step temperature difference is zero, and one compression system that was previously forced to stop when the room temperature deviates from the temperature setting range is controlled to start and stop, and the room temperature is always kept constant. This makes it possible to maintain the temperature within a set temperature range.

本考案は以上詳記した内容から明らかなように、第1比
較回路2が空調対象域の温度を上限値と下限値の間に抑
えるための温度設定機構として作動し、一方、第2比較
回路3が高負荷状態か低負荷状態かを判別する負荷判定
機構として作動し、第1圧縮系、第2圧縮系の何れか一
方を発停制御したり、両圧縮系を共に発停制御したりし
て常に設定温度領域内に室温を安定させるようにしてい
るので、負荷の変動に対して、空調対象域の温度の変化
が小さくなり、その結果、快適な空気調和が実現できる
ばかりでなく、冷し過ぎたり、暖め過ぎたりして電力を
余計に消費したりする不経済性は解消される。
As is clear from the details described above, in the present invention, the first comparison circuit 2 operates as a temperature setting mechanism for suppressing the temperature of the air-conditioned area between the upper limit and the lower limit, while the second comparison circuit 3 operates as a load determination mechanism to determine whether it is a high load state or a low load state, and controls the start/stop of either the first compression system or the second compression system, or controls the start/stop of both compression systems together. Since the room temperature is always stabilized within the set temperature range, changes in the temperature of the air-conditioned area are small in response to load fluctuations, and as a result, not only can comfortable air conditioning be achieved, The uneconomical effects of excessive electricity consumption due to excessive cooling or heating will be eliminated.

しかも、本考案は設定温度領域の上限値と下限値とを接
近させる如き運転形態をとってもハンチング現象を起さ
せずに安定的な運転が行えるので、実用性に富む利点も
あり、斯界に益するところ多大な空気調和機である。
Furthermore, the present invention has the advantage of being highly practical, as it allows stable operation without causing the hunting phenomenon even when the upper and lower limits of the set temperature range are close to each other. However, it is a huge air conditioner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は従来の空気調和機におけ
る圧縮機運転回路図、温度調節器の接点動作態様図およ
び空調運転経時線図である。 第4図乃至第7図は本考案空気調和機の態様を示すもの
で、第4図は温度調節系のブリッジ回路および比較回路
の展開図、第5図は同じく演算回路の論理図、第6図は
温度調節系の出力信号動作態様図、第7図は空調運転経
時線図である。 1・・・・・・ブリッジ回路、2・・・・・・第1比較
回路、3・・・・・・第2比較回路、4・・・・・・演
算回路、5・・・・・・温度検出用感温素子、6・・・
・・・補正抵抗、7・・・・・・温度設定用可変抵抗、
イ・・・・・・第1圧縮系、口・・・・・・第2圧縮系
、R・・・・・・直列抵毘
FIG. 1, FIG. 2, and FIG. 3 are a compressor operation circuit diagram, a contact operation mode diagram of a temperature regulator, and an air conditioning operation time chart in a conventional air conditioner. Figures 4 to 7 show aspects of the air conditioner of the present invention. Figure 4 is a developed diagram of the bridge circuit and comparison circuit of the temperature control system, Figure 5 is a logic diagram of the arithmetic circuit, and Figure 6 is a logic diagram of the arithmetic circuit. The figure is a diagram of the output signal operation mode of the temperature control system, and FIG. 7 is a time chart of air conditioning operation. 1... Bridge circuit, 2... First comparison circuit, 3... Second comparison circuit, 4... Arithmetic circuit, 5......・Temperature sensing element for temperature detection, 6...
...Correction resistor, 7...Variable resistance for temperature setting,
A...First compression system, Mouth...Second compression system, R...Series resistor

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1圧縮系イと第2圧縮系口を個別にあるいは一括して
付勢し得る段階的容量制御機能を有する空気調和機であ
って、温度検出用感温素子5および補正抵抗6かもなる
直列抵抗Rと温度設定用可変抵抗7とを対向辺として備
えたブリッジ回路1と、出力信号のオン・オフの間にデ
ィファレンシャルが存し、かつ前記温度検出用感温素子
5の電位と前記温度設定用可変抵抗Tの電位とが入力信
号として与えられる第1比較回路2と、該第1比較回路
2に比して大きいディファレンシャルが出力信号のオン
・オフの間に存し、かつ、前記直列抵抗Rの電位と前記
温度設定用可変抵抗7の電位とが入力信号として与えら
れる第2比較回路3と、第1比較回路2の出力信号がオ
ンのときにはオン信号を、オフのときには第2比較回路
3のオン・オフ出力に応じたオン・オフ信号を前記第1
圧縮系イに与える一方、第2比較回路3の出力信号がオ
フのときにはオフ信号を、オンのときには第1比較回路
20オン・オフ出力に応じたオン・オフ信号を前記第2
圧縮系口に与える演算回路4とによって温度調節系を構
成してなることを特徴とする空気調和機。
An air conditioner having a stepwise capacity control function that can energize a first compression system and a second compression system inlet individually or all at once. A bridge circuit 1 includes a resistor R and a temperature setting variable resistor 7 as opposing sides, and a differential exists between on/off of an output signal, and a differential exists between the potential of the temperature sensing element 5 and the temperature setting. A first comparator circuit 2 to which the potential of the variable resistor T is applied as an input signal, and a differential larger than that of the first comparator circuit 2 exists between on and off of the output signal, and the series resistor A second comparator circuit 3 receives the potential of R and the potential of the temperature setting variable resistor 7 as input signals, and outputs an on signal when the output signal of the first comparator circuit 2 is on, and a second comparator circuit when the output signal of the first comparator circuit 2 is on. The on/off signal corresponding to the on/off output of No. 3 is transmitted to the first
On the other hand, when the output signal of the second comparison circuit 3 is off, an off signal is sent to the compression system A, and when it is on, an on/off signal corresponding to the on/off output of the first comparison circuit 20 is sent to the second comparison circuit 3.
An air conditioner characterized in that a temperature control system is constituted by an arithmetic circuit 4 applied to a compression system port.
JP2254280U 1980-02-22 1980-02-22 air conditioner Expired JPS5934830Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2254280U JPS5934830Y2 (en) 1980-02-22 1980-02-22 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2254280U JPS5934830Y2 (en) 1980-02-22 1980-02-22 air conditioner

Publications (2)

Publication Number Publication Date
JPS56123938U JPS56123938U (en) 1981-09-21
JPS5934830Y2 true JPS5934830Y2 (en) 1984-09-27

Family

ID=29618661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2254280U Expired JPS5934830Y2 (en) 1980-02-22 1980-02-22 air conditioner

Country Status (1)

Country Link
JP (1) JPS5934830Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125305A1 (en) * 2014-02-24 2015-08-27 三菱電機株式会社 Heat source system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125305A1 (en) * 2014-02-24 2015-08-27 三菱電機株式会社 Heat source system

Also Published As

Publication number Publication date
JPS56123938U (en) 1981-09-21

Similar Documents

Publication Publication Date Title
US5226472A (en) Modulated temperature control for environmental chamber
JPS6230686Y2 (en)
JPS6354567B2 (en)
JPS594616B2 (en) air conditioner
GB2060216A (en) Heat pump control system
CN105509245A (en) Air conditioning system and air conditioner outdoor unit standby control method and device
JPS5934830Y2 (en) air conditioner
JPH0128299B2 (en)
CN113623841B (en) Air conditioner control method and air conditioner
JPS594620B2 (en) Air conditioner control device
JPH0432298B2 (en)
JPH0854901A (en) Load discrimination control method and device
JPS5816103B2 (en) Automatic fan speed control circuit for air conditioners
JPH0354274B2 (en)
JPS60165450A (en) Heating operation control device for air conditioner
KR840002207B1 (en) Air conditioning
JPH03255861A (en) Air conditioner
JPS5915752A (en) Air-conditioning apparatus
JPS6315718Y2 (en)
JPS624827Y2 (en)
JPH11182912A (en) Air conditioner
JPS59148542U (en) air conditioner
JPH0570058B2 (en)
JPH0234969Y2 (en)
JPS62242754A (en) Operation control unit of air conditioner