JPS5934532A - Radiation sensitive resist material and its manufacture - Google Patents

Radiation sensitive resist material and its manufacture

Info

Publication number
JPS5934532A
JPS5934532A JP14433482A JP14433482A JPS5934532A JP S5934532 A JPS5934532 A JP S5934532A JP 14433482 A JP14433482 A JP 14433482A JP 14433482 A JP14433482 A JP 14433482A JP S5934532 A JPS5934532 A JP S5934532A
Authority
JP
Japan
Prior art keywords
ether
resist material
polymer
radiation
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14433482A
Other languages
Japanese (ja)
Other versions
JPH0376454B2 (en
Inventor
Teruo Fujimoto
藤本 輝雄
Yoshinobu Isono
善信 五十野
Mitsuru Nagasawa
永沢 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP14433482A priority Critical patent/JPS5934532A/en
Publication of JPS5934532A publication Critical patent/JPS5934532A/en
Publication of JPH0376454B2 publication Critical patent/JPH0376454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer

Abstract

PURPOSE:To form an extremely sharp and fine pattern and to obtain a resist superior in sensitivity, and dry etching resistance, by using as an effective component a polymer having a specified phenyl ether for recurring units. CONSTITUTION:A polymer represented by formula II is prepared by polymerizing a starting reaction material contg. vinylphenyl ether having formula I , R being -CH3, -CH2-CH=CH-CH3, -CH2-CH=CH3, or -CH(CH3)-CH=CH2-CH3, in the presence of cymyl cessium as a polymerization initiator. A good resist can be formed by irradiating short wavelength radiation, such as X-rays or electron beams to said obtd. radiation sensitive resist material in accordance with an image and developing it with a developing soln. of methyl ethyl ketone- ethanol, or the like.

Description

【発明の詳細な説明】 本発明は、半導体素子や集積回路などの固体デバイスを
製造する工程中、微細加工技術に用いる新規なネガ型放
射線感応性レジスト材料およびその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel negative radiation-sensitive resist material used in microfabrication techniques during the manufacturing process of solid-state devices such as semiconductor elements and integrated circuits, and a method for manufacturing the same.

最近、集積回路の高密度化、高速化、小型化の要求から
、微細パターンの形成が必要となり、光に代るリソグラ
フィー技術の開発が急務となっている。そこで光より更
に波長の短かい放射線、即ち、X線、電子線等を用いる
微細加工技術が開発されている。この中心となるレジス
ト材料に対する要求性能として感度、解像力、エツチン
グ耐性、特にドライエツチング耐性、現像許容度、後重
合性、安定性等々広範な要求があるが、従来開発された
レジスト材料はこれら全ての性能を満足するものではな
かった。例えば、ポリメタクリル酸メチルの様なポジ型
レジストでは解像力は充分良好であるが、感度や耐ドラ
イエツチング性が劣り、実用的に使用困難であったり、
又ポリメタクリル酸グリシジルの様なネガ型レジストは
高感度であり、良好なス。
Recently, demands for higher density, higher speed, and smaller integrated circuits have required the formation of fine patterns, and there is an urgent need to develop lithography technology to replace light. Therefore, microfabrication techniques using radiation having shorter wavelengths than light, such as X-rays and electron beams, have been developed. There are a wide range of performance requirements for resist materials, including sensitivity, resolution, etching resistance, especially dry etching resistance, development tolerance, post-polymerization, and stability, but conventionally developed resist materials meet all of these requirements. The performance was not satisfactory. For example, positive resists such as polymethyl methacrylate have sufficiently good resolution, but have poor sensitivity and dry etching resistance, making them difficult to use practically.
Also, negative resists such as polyglycidyl methacrylate have high sensitivity and good resistance.

ループツトを示すが、解像力および耐ドライエツチング
性が劣り改善が強く要望されている。
However, the resolution and dry etching resistance are poor, and improvements are strongly desired.

特にネガ型レジストでは一般的に解像力が劣り、高解像
力を示す材料の開発が望まれていた。
In particular, negative resists generally have poor resolution, and there has been a desire to develop materials that exhibit high resolution.

本発明者等の一部は、先に、ポリスチレンについて、分
子量分布の狭いものは高解像力を示し、レジスト材料と
して良好であることを報告した( J、 Bleatr
ochem、Soa、 、 / +2り(3)、&4j
(z9g、z))。
Some of the present inventors previously reported that polystyrene with a narrow molecular weight distribution exhibits high resolution and is good as a resist material (J, Bleatr
ochem, Soa, , / +2ri(3), &4j
(z9g, z)).

本発明者等は、さらに鋭意研究を重ねた結果、特定の繰
り返し単位を含有するポリマーを有効成分とする放射線
感応性レジスト材料カー、より高感度を示し、かかる材
料を用いると、極めてシャープな微細パターンの形成が
達成され、感度、耐ドライ・エツチング性等他の要求性
能も満足できることを見出し、本発明に到達した。
As a result of further intensive research, the present inventors have discovered that a radiation-sensitive resist material containing a polymer containing a specific repeating unit as an active ingredient has higher sensitivity. It has been found that pattern formation can be achieved and other required performances such as sensitivity and dry etching resistance can also be satisfied, and the present invention has been achieved.

すなわち、本発明の要旨はm一般式CI)OR 〔式中、Rは一〇H3、−OR,−0H−OH−OH,
、−cH,−C1(=(J12または−CI((OH3
)−0’H==OH−ON(a を表わす。〕で示され
る繰り返し単位を含有するポリマーを有効成分とするこ
とを特徴とする放射線感応性レジスト材料、および、μ
mビニルフェニルクロチルエーテルを含有する反応原料
ビ、重合開始剤としてクミル・セシウムの存在下重合を
行い、一般式(II)  3− で示されるポリマーを製造することを特徴とする放射線
感応性レジスト材料の製造方法に存する。
That is, the gist of the present invention is m general formula CI)OR [wherein R is 10H3, -OR, -0H-OH-OH,
, -cH, -C1(=(J12 or -CI((OH3
)-0'H==OH-ON (representing a) A radiation-sensitive resist material characterized in that the active ingredient is a polymer containing a repeating unit represented by
A radiation-sensitive resist material characterized in that a reaction raw material bicontaining vinyl phenyl crotyl ether is polymerized in the presence of cumyl cesium as a polymerization initiator to produce a polymer represented by the general formula (II) 3- It consists in the manufacturing method.

以下本発明を説明するに、本発明に用いる放射線感応性
レジスト材料は、前記一般式(I)で示される繰り返し
単位を含有するポリマーを有効成分とする。かかるポリ
マーとしては、前記一般式(I)で表される繰り返し単
位のみからなる高分子、即ち、ポリ−グービニル・フェ
ニルメチルエーテル;ポリ−l−ビニル・フェニルクロ
チルエーテル; ホIJ −4’−ビニル・フェニル・
アリルエーテル;ポリ−l−ビニル、フェニル−/−#
fシル−ロチルエーテル等、或いは、他のモノマーとの
共重合体を挙げることができる。共重合モノマーとして
は、ジエン系モ/−r−オヨびスチレン系モノマー即ち
、ブタジェン;イソプレン;l−フェニルブタジェン;
石3−ジメチルブタジェン;スチレン;P−クロロスチ
レン;P−−10モスチレン等’l 挙1rf ルこと
か出来る。
The present invention will be described below. The radiation-sensitive resist material used in the present invention contains a polymer containing a repeating unit represented by the general formula (I) as an active ingredient. Such polymers include polymers consisting only of repeating units represented by the general formula (I), ie, poly-guvinyl phenyl methyl ether; poly-l-vinyl phenyl crotyl ether;・Phenyl・
Allyl ether; poly-l-vinyl, phenyl-/-#
Examples include f-sil-lotyl ether and copolymers with other monomers. Copolymerizable monomers include diene-based mo/r-styrenic monomers, ie, butadiene; isoprene; l-phenylbutadiene;
3-dimethylbutadiene; styrene; P-chlorostyrene; P--10 mostyrene, etc. can be listed.

 4一 本発明に用いるポリマーは、対応するモノマーを公知の
方法に従い、アニオン重合によって製造することができ
る。I#に1本発明中最も良好なレジスト材料適性を示
すものの一つであるl−ビニルフェニルクロチルエーテ
ルのアニオン重合の際に重合開始剤としてクミル・セシ
ウムを用い、テトラヒドロフラン等の溶媒中、−to℃
以下で重合すると、高収率で分子量分布の極めてシャー
プなポリマーを得ることができる。
41 The polymer used in the present invention can be produced by anionic polymerization of the corresponding monomer according to a known method. In the anionic polymerization of l-vinylphenyl crotyl ether, which is one of the most suitable resist materials in the present invention, cumyl cesium was used as a polymerization initiator, and -to ℃
When polymerized as follows, a polymer with an extremely sharp molecular weight distribution can be obtained in high yield.

本発明においては、一般に、上述のポリマー、更に必要
に応じて公知の種々の添加剤例えば増感剤、安定剤等を
、エチルセロソルブアセテート等の溶媒に溶解して塗布
液を調製し、常法に従い、シリコンウェハー、ガラス基
板等の基板上に、通常、膜厚がコ、ooo〜20,00
0又となるように塗布することによって放射線感応性レ
ジスト材料を作成する。
In the present invention, generally, a coating solution is prepared by dissolving the above-mentioned polymer and, if necessary, various known additives such as sensitizers and stabilizers in a solvent such as ethyl cellosolve acetate. Accordingly, the film thickness is usually 20,000 mm on a substrate such as a silicon wafer or a glass substrate.
A radiation-sensitive resist material is created by applying the resist material in a zero-cross pattern.

かかる放射線感応性レジスト材料に、画像に応じたX線
、電子線等の波長の短い放射線な照射し、次いで゛、メ
チルエチルケトン−エタノール(7二7)混合溶液等の
現像液で現像することにより、良好なレジストを形成で
きる。
By irradiating such a radiation-sensitive resist material with short-wavelength radiation such as X-rays and electron beams according to the image, and then developing with a developer such as a mixed solution of methyl ethyl ketone and ethanol (727), A good resist can be formed.

次に本発明およびその効果を実施例により説。Next, the present invention and its effects will be explained using examples.

明するが、本発明はこれらによりなんら限定されるもの
ではない。
However, the present invention is not limited to these in any way.

合成例 1 モノマー(クービニルフェニルクロチルエーテル)
の合成 次の三ステップで合成しプこ。
Synthesis Example 1 Monomer (couvinyl phenyl crotyl ether)
Synthesis is performed in the following three steps.

(1)  エーテル化(4L−アセチルフェニルクロチ
ルエーテルの合成) エタノール、z 、t o rnlを3つ目フラスコに
入れ、続いてP−アセチルフェノール /μO0μg(/、63.2モル);炭酸カリウム/ 
4< 、2.6FIC/、o3xモル);ヨウ化カリウ
ム/ &、J−g(0,1モル)を入れ攪拌溶解した、
滴下ロートよりクロチルクロライドタ3.μg(/、0
32モル)を加え、更にエタノール、2 r o ml
を加えた。μり時間還流後、吸引濾過し、p液のエタノ
ールを留去シ、残留物にエーテルおよび5%水酸化ナト
リウム水溶液を加え分液ロート中で振盪し、分液後、エ
ーテル層を水洗、炭酸カリウムで乾燥後エーテルを留去
し減圧蒸留ヲ行った。l−アセチルフェニルクロチルエ
ーテルが20チの収率で得られた。
(1) Etherification (synthesis of 4L-acetylphenyl crotyl ether) Add ethanol, z, and thornl to the third flask, followed by P-acetylphenol/μO0 μg (/, 63.2 mol); potassium carbonate/
4<, 2.6FIC/, o3x mol); Potassium iodide/&, J-g (0.1 mol) was added and dissolved with stirring.
3. Add crotyl chloride from the dropping funnel. μg(/, 0
32 mol) and further ethanol, 2 r o ml
added. After refluxing for a period of time, suction filtration was performed, and the ethanol in the p solution was distilled off. Ether and 5% sodium hydroxide aqueous solution were added to the residue, and the mixture was shaken in a separatory funnel. After liquid separation, the ether layer was washed with water, and carbonated. After drying with potassium, the ether was distilled off and vacuum distillation was performed. A yield of 20 ml of l-acetylphenyl crotyl ether was obtained.

<2>M元(a−(α−ヒドロキシエチル)−フェニル
クロチルエーテルノ合成) メタノールg o o mtに水酸化ナトリウム2.0
g、水素化ホウ素ナトリウムlr、ug(0,1lr7
モル)を冷却しながら溶解し、グーアセチルフェニルク
ロチルエーテルな−マ − 滴下後μ時間還流を行った。メタノールな留去後、エー
テルを加え、水で洗浄後、硫酸ナトリウムで乾燥した。
<2> M element (a-(α-hydroxyethyl)-phenyl crotyl ether synthesis) Sodium hydroxide 2.0 mt in methanol
g, sodium borohydride lr, ug (0,1lr7
mol) was dissolved while cooling, and after dropwise addition of guacetylphenyl crotyl ether, the solution was refluxed for μ hours. After methanol was distilled off, ether was added, washed with water, and dried over sodium sulfate.

エーテルな留去後減圧蒸留を行いg−(α−ヒドロキシ
エチル)フェニルクロチルエーテルヲlr7%の収率で
得た。
After distilling off the ether, vacuum distillation was performed to obtain g-(α-hydroxyethyl)phenylcrotyl ether in a yield of 7%.

(3) 脱水caミービニルフェニルクロチルエーテル
合成) 硫酸水素カリウム0.369およびt−ブチルカテコー
ル0.1gを乳鉢ですりつぶして7dt41−(α−ヒ
ドロキシエチル)−フェニルクロチルエーテル7j、!
i’を加え、lり0℃に加熱し、系内な一2mzT(g
の減圧にした。水の留出が殆んどなくなってから反応を
停止し、エーテルを加え、!係水酸化す) IJウム水
溶液および水で洗浄し、硫酸ナト11ウムで乾燥後蒸留
した。収率jθ%テ4’−ビニルフェニル・クロチルエ
ーテルが得られた。(bp、、2闘I(g タタ〜lO
1℃)  8− 2  重合(ホII −p−ビニル・フェニル・クロチ
ルエーテルのアニオン重合) (1)  モノマーの精製 次の三段階で行った。
(3) Synthesis of dehydrated vinyl phenyl crotyl ether) Grind 0.369 potassium hydrogen sulfate and 0.1 g of t-butylcatechol in a mortar to give 7dt41-(α-hydroxyethyl)-phenylcrotyl ether 7j,!
i' was added, heated to 0℃, and
The pressure was reduced to . After almost no water has been distilled out, the reaction is stopped, ether is added, and! The mixture was washed with an aqueous solution of IJ and water, dried over 11 um of sodium sulfate, and then distilled. 4'-vinylphenyl crotyl ether was obtained in a yield of jθ%. (bp,,2 fight I(g tata~lO
1°C) 8-2 Polymerization (Anionic polymerization of Ho II-p-vinyl phenyl crotyl ether) (1) Purification of monomer This was carried out in the following three steps.

(1)真空ライン(70−4朋Hg)中モノマーと水素
化カルシウムを3時間攪拌し、蒸留した。(脱水、脱気
) (11〕  真空ライン(10−6韻Hg)中ベンゾフ
ェノンーナトリウムとモノマーを攪拌しながら蒸留した
。(不純物除去) (IiD  同様な真空ライン中トリフェニルメチル・
リチウムとリチウムブロマイドとモノマーを攪拌しなが
ら蒸留した。
(1) Monomer and calcium hydride were stirred in a vacuum line (70-4 Hg) for 3 hours and distilled. (Dehydration, degassing) (11) Distilled benzophenone-sodium and monomer in a vacuum line (10-6 Hg) with stirring. (Impurity removal) (IiD) In a similar vacuum line, triphenylmethyl-sodium was distilled with stirring.
Lithium, lithium bromide, and monomer were distilled with stirring.

以上の蒸留は100℃以下に保って減圧下行った。The above distillation was carried out under reduced pressure while keeping the temperature below 100°C.

(2)溶媒の精製 予め、水素化カルシウムおよびナトリウムワイヤーで乾
燥したテトラヒドロフラン(THF)を真空ライン(7
0−4關Hg)中アントラセンと金属ナトリウム片存在
下オ時間攪拌した後蒸留した。更にα−メチルスチレン
・テトラマー・ジナトリウム塩のTHF溶液を加え攪拌
しながら蒸留した。
(2) Solvent purification In advance, tetrahydrofuran (THF), which has been dried with calcium hydride and sodium wire, is added to the vacuum line (7
The mixture was stirred for an hour in the presence of anthracene and metal sodium pieces (0-4 Hg) and then distilled. Further, a THF solution of α-methylstyrene tetramer disodium salt was added and distilled with stirring.

(3)重 合 図1に示した重合装置を使用して重合を行った。(3) Overlapping Polymerization was carried out using the polymerization apparatus shown in FIG.

まず、系内を10=tnmHgに減圧後、tの位置で真
空ラインから切り離した。試薬槽l内のα−メチルスチ
レンテトラマージナト1〕ウム塩のテトラヒドロフラン
溶液で系内の洗浄を行い、回収槽λに回収して、りの位
置で切り離した。
First, after reducing the pressure in the system to 10=tnmHg, it was disconnected from the vacuum line at position t. The inside of the system was washed with a tetrahydrofuran solution of α-methylstyrene tetramarginate 1]um salt in the reagent tank 1, collected in the recovery tank λ, and separated at the position .

次に試薬槽3の重合開始剤クミルセシウム/、/ X 
/ 0−4モルを反応槽乙に入れ、続いて攪拌しながら
試薬槽グの溶媒テトラヒドロフランAOmlを入れた。
Next, the polymerization initiator cumyl cesium /, /X in the reagent tank 3
/ 0-4 mol was put into the reaction tank B, and then 0 ml of the solvent tetrahydrofuran AO from the reagent tank was added while stirring.

−7r℃に冷却後、試薬槽jのモノマー(グービニルフ
ェニルクロチルエーテル)t、!i”&加、i、3時間
重合した後装置を開封し、メタノールを加え反応を停止
させ、ポリマーの析出物を戸別した。乾燥後ベンゼンに
溶解し、凍結乾燥を行った。収量g、+g(収率り3%
)のボリマータ得た。
After cooling to -7rC, the monomer (guvinylphenyl crotyl ether) t in reagent tank j,! After polymerization for 3 hours, the apparatus was opened, methanol was added to stop the reaction, and the polymer precipitate was collected separately. After drying, it was dissolved in benzene and freeze-dried. Yield: g, +g (Yield: 3%
) got the bolimata.

このポリマーの分子量7G、Po(東洋ソーダ社製HL
O−1.27型)で測定した。測定結果を図1に示す。
The molecular weight of this polymer is 7G, Po (HL manufactured by Toyo Soda Co., Ltd.
O-1.27 type). The measurement results are shown in Figure 1.

図Jより明らかなように、Mn:/ /、/X/Q4、
Mw /Mn = 7,01と分子量も充分大きく、分
子量分布のシャープなポリマーが得られた。
As is clear from Figure J, Mn: / /, /X/Q4,
A polymer with a sufficiently large molecular weight (Mw/Mn = 7.01) and a sharp molecular weight distribution was obtained.

実施例1 合成例で得られたボ11 +−ビニル・フェニル・クロ
チルエーテルの5%エチルセロソルブアセテート溶液を
調製し、Ol、2μm孔径のメンブランフィルタ−を用
い一過精製し、シリコンウェハー上にスピン塗布し、膜
厚3jt00kが得られた。この試料に電子線(zBx
−sh  、20KV)を照射し、感度曲線を測定した
結果図3が得られた。
Example 1 A 5% ethyl cellosolve acetate solution of Bo11 + -vinyl phenyl crotyl ether obtained in the synthesis example was prepared, purified temporarily using Ol and a membrane filter with a pore size of 2 μm, and spun onto a silicon wafer. A film thickness of 3jt00k was obtained. An electron beam (zBx
-sh, 20 KV) and measured the sensitivity curve, as a result of which FIG. 3 was obtained.

現像はメチルエチルケトンおよびエタノール7:7混合
液中λ分間浸漬した。残存11− 膜厚ro%に於る照射量を感度の指標とするとr、 o
 x t o−60/cnが得られ、この値f;7ポリ
、z、テ+zyノ値A、rxz o−6a/cr&に比
較し約33倍の高感度特性を示した。又γ−,2,J+
l)良好な結果であった。又照射量j、7 X / 0
−60眉で1μm間隔の微細パターンを形成したところ
、極めてシャープな画像が得られた。走査型電顕(SE
M)写真を図≠に示す。
For development, the film was immersed in a 7:7 mixture of methyl ethyl ketone and ethanol for λ minutes. Remaining 11- If the irradiation amount at film thickness ro% is used as an index of sensitivity, r, o
x t o-60/cn was obtained, and this value f;7 poly, z, te + zyno value A, rxz exhibited high sensitivity characteristics about 33 times as compared to o-6a/cr&. Also γ−, 2, J+
l) The results were good. Also, the irradiation amount j, 7 X / 0
When a fine pattern with a spacing of 1 μm was formed using -60 eyebrows, an extremely sharp image was obtained. Scanning electron microscope (SE
M) The photograph is shown in the figure≠.

次にドライエツチング(Plasma Therm。Next, dry etching (Plasma Therm.

社製HFS−3000D ガス 0F4102=りj/
r )を行ったところ充分な耐性を示した。
HFS-3000D gas 0F4102=Rij/
r), it showed sufficient resistance.

以上の如く本レジストは放射線感応性レジストとして極
めて優れていることが判明した。
As described above, this resist was found to be extremely excellent as a radiation-sensitive resist.

実施例コ ポリ−グービニル・フェニルアリルエーテルを用い実施
例1と同様に電子線照射を行いシャープな微細パター:
/ ’& 得f、:。
Example Copoly-govinyl phenylallyl ether was irradiated with electron beam in the same manner as in Example 1 to produce a sharp fine pattern:
/'& get f, :.

12一 実施例3 yt’ l) −e −ヒニルφフェニルメチルエーテ
ルを用い実施例1と同様に電子線リソグラフィーを行い
、良好な微細パターンな得た。
12-Example 3 yt'l) Electron beam lithography was performed in the same manner as in Example 1 using -e-hinyl φ phenyl methyl ether, and a good fine pattern was obtained.

実施例グ ポリ−グービニル・フェニル−7−メチルクロチルエー
テルを用い実施例1と同様に電子線リソグラフィーを行
い、シャープな微細画像を得た。
Example Electron beam lithography was performed in the same manner as in Example 1 using poly-guvinyl phenyl-7-methylcrotyl ether to obtain a sharp fine image.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、合成例で使用した重合装置の概略図を示す。 図2は、合成例で得られたポリマーの分子量測定結果を
示す。図中、曲線//、/2および13は、夫々、モノ
マー濃度t%、昌]および17%で重合したポリマーに
ついて測定した結果を示す。 図3は、実施例1で測定した感度曲線を示す。 横軸は線量な示し、縦軸は現像後膜厚(初期膜厚に対″
fる比率)を示す。 図tは、実施例/で得られたレジストパターンの走査型
筒1顕写真を示す。 /、3、弘、j・・・・・・・・・試薬槽、 乙・・・
・・・・・・反応槽7・・・・・・・・・テフロン撹拌
子 出願人 三菱化成工業株式会社 代理人 弁理士 長谷用  − ほか1名 図3 1og (dose) (c/cny2)1阿  +
FIG. 1 shows a schematic diagram of the polymerization apparatus used in the synthesis examples. FIG. 2 shows the results of molecular weight measurement of the polymer obtained in the synthesis example. In the figure, curves //, /2 and 13 show the results measured for polymers polymerized at monomer concentrations of t% and 17%, respectively. FIG. 3 shows the sensitivity curve measured in Example 1. The horizontal axis shows the dose, and the vertical axis shows the film thickness after development (relative to the initial film thickness).
f ratio). Figure t shows a scanning tube 1 photomicrograph of the resist pattern obtained in Example/. /, 3, Hiro, j... Reagent tank, Otsu...
・・・・・・Reaction tank 7・・・・・・・・・Teflon stirrer Applicant Mitsubishi Chemical Industries, Ltd. agent Patent attorney Hase - and 1 other personFigure 3 1og (dose) (c/cny2) 1 A +

Claims (2)

【特許請求の範囲】[Claims] (1)一般式(I) R 〔式中、Rは−OR,、−〇H2−OH,=OH−OH
3、−0H2−OH=: C’Es2または−0H(O
H3)−0H= 0H−OH3を表わす。〕で示される
繰り返し単位を含有するポリマーを有効成分とすること
を特徴とする放射線感応性レジスト材料。
(1) General formula (I) R [In the formula, R is -OR, -〇H2-OH, =OH-OH
3, -0H2-OH=: C'Es2 or -0H(O
H3)-0H=0H-OH3. ] A radiation-sensitive resist material characterized by containing a polymer containing a repeating unit represented by the following as an active ingredient.
(2)  4t−ビニルフェニルクロチルエーテルヲ含
有する反応原料を、重合開始剤としてクミル・セシウム
の存在下重合を行い、一般式(TI)で示されるポリマ
ーを製造することを特徴とする放射線感応性レジスト材
料の製造方法。
(2) A radiation-sensitive product characterized in that a reaction raw material containing 4t-vinylphenyl crotyl ether is polymerized in the presence of cumyl cesium as a polymerization initiator to produce a polymer represented by the general formula (TI). Method of manufacturing resist material.
JP14433482A 1982-08-20 1982-08-20 Radiation sensitive resist material and its manufacture Granted JPS5934532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14433482A JPS5934532A (en) 1982-08-20 1982-08-20 Radiation sensitive resist material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14433482A JPS5934532A (en) 1982-08-20 1982-08-20 Radiation sensitive resist material and its manufacture

Publications (2)

Publication Number Publication Date
JPS5934532A true JPS5934532A (en) 1984-02-24
JPH0376454B2 JPH0376454B2 (en) 1991-12-05

Family

ID=15359690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14433482A Granted JPS5934532A (en) 1982-08-20 1982-08-20 Radiation sensitive resist material and its manufacture

Country Status (1)

Country Link
JP (1) JPS5934532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880240A (en) * 1996-04-03 1999-03-09 Arakawa Chemical Industries, Ltd. Alkyl-containing porous resin, process for its preparation and its use
EP0945764A3 (en) * 1998-03-26 2000-04-19 Sumitomo Chemical Company, Limited Photoresist composition
JP2010248283A (en) * 2009-04-10 2010-11-04 Toyohashi Univ Of Technology Method for producing copolymer and copolymer fine particle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165141A (en) * 1980-05-26 1981-12-18 Univ Tohoku Resist material composition for working integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165141A (en) * 1980-05-26 1981-12-18 Univ Tohoku Resist material composition for working integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880240A (en) * 1996-04-03 1999-03-09 Arakawa Chemical Industries, Ltd. Alkyl-containing porous resin, process for its preparation and its use
EP0945764A3 (en) * 1998-03-26 2000-04-19 Sumitomo Chemical Company, Limited Photoresist composition
US6258507B1 (en) 1998-03-26 2001-07-10 Sumitomo Chemical Company, Limited Photoresist compositions
JP2010248283A (en) * 2009-04-10 2010-11-04 Toyohashi Univ Of Technology Method for producing copolymer and copolymer fine particle

Also Published As

Publication number Publication date
JPH0376454B2 (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US4603101A (en) Photoresist compositions containing t-substituted organomethyl vinylaryl ether materials
JPH04230645A (en) Olefinically unsaturated onium salt
JPH1135552A (en) New diazomethane compound
JP2009280562A (en) Acid generation agent for use in resist composition of chemical amplification type
JPH0218564A (en) Making of radiation sensitive mixture and relief pattern
JPH0219849A (en) Making of radiation sensitive mixture and relief pattern
JP2937248B2 (en) Positive resist material
JPS5934532A (en) Radiation sensitive resist material and its manufacture
JPS62190211A (en) Novel organic metal polymer, composition and use
JPS6097347A (en) Image forming photosensitive composition
JPH04350657A (en) Resist material
JP3659337B2 (en) Polymer and pattern forming method using the same
JPH01103611A (en) Organometal-containing polymer and its use for forming image
JPH01215812A (en) Polyacrylic acid derivative
JPS63234006A (en) Halogen-containing polyacrylic ester derivative
US4758640A (en) Vinylsilyl group-containing monodisperse polymeric compound and a method for the preparation thereof
JPH0616730A (en) Copolymer of alpha,beta-unsaturated nitrile-containing alicyclic polycyclic compound and methacrylate derivative
JPS6374054A (en) Developing method for positive type resist
TW201937292A (en) Positive-type resist composition, resist film formation method, and laminate production method
JP2964109B2 (en) Positive resist material
JP3667074B2 (en) Narrowly dispersible poly {1- (1-alkoxyethoxy) -4- (1-methylethenyl) benzene} and process for producing the same
TWI787365B (en) Copolymer and positive photoresist composition
JPH0356964A (en) Resist material
WO2023086682A1 (en) Lithography compositions and methods for forming resist patterns and/or making semiconductor devices
JPS62150345A (en) Pattern forming method