JPS593451B2 - Manufacturing method of ethylene glycol - Google Patents

Manufacturing method of ethylene glycol

Info

Publication number
JPS593451B2
JPS593451B2 JP55021168A JP2116880A JPS593451B2 JP S593451 B2 JPS593451 B2 JP S593451B2 JP 55021168 A JP55021168 A JP 55021168A JP 2116880 A JP2116880 A JP 2116880A JP S593451 B2 JPS593451 B2 JP S593451B2
Authority
JP
Japan
Prior art keywords
ethylene glycol
reaction
acetal
yield
formaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55021168A
Other languages
Japanese (ja)
Other versions
JPS56118026A (en
Inventor
昭男 松田
憲一郎 阪東
義弘 杉
和久 村田
康雄 高味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55021168A priority Critical patent/JPS593451B2/en
Priority to GB8102597A priority patent/GB2070002B/en
Priority to CA000369645A priority patent/CA1150318A/en
Priority to DE3104033A priority patent/DE3104033C2/en
Publication of JPS56118026A publication Critical patent/JPS56118026A/en
Publication of JPS593451B2 publication Critical patent/JPS593451B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C11/00Fermentation processes for beer
    • C12C11/02Pitching yeast
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はエチレングリコールを効率よく製造する新規な
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for efficiently producing ethylene glycol.

さらに詳しくいえば本発明方法はホルムアルデヒドジ第
二級アルキルアセタールと合成ガスとを反応させてエチ
レングリコールの第二級アルキルモノエーテルを得、こ
れを5 加水分解して好収率でエチレングリコールを得
る方法に関する。エチレングリコールは、ポリエステル
の原料、有機溶媒、不揮発性不凍剤又は冷却剤として工
業的に重要な基幹化合物である。
More specifically, the method of the present invention involves reacting formaldehyde disecondary alkyl acetal with synthesis gas to obtain a secondary alkyl monoether of ethylene glycol, which is then hydrolyzed to obtain ethylene glycol in good yield. Regarding the method. Ethylene glycol is an industrially important basic compound as a raw material for polyester, an organic solvent, a nonvolatile antifreeze agent, or a coolant.

0 現在、エチレングリコールはエチレンを原料とする
石油化学法で製造されているが、それ以外には、−酸化
炭素、ホルムアルデヒドなどの炭素数1(Cl)化合物
を原料として製造する方法が知られている。
0 Currently, ethylene glycol is manufactured by a petrochemical method using ethylene as a raw material, but there are other known methods for manufacturing it using carbon number 1 (Cl) compounds such as -carbon oxide and formaldehyde as raw materials. There is.

15その中の1つの方法として、ロジウム触媒の存在下
に合成ガスから直接エチレングリコールを製造する方法
(特開昭52−42809号)があるが、この方法は5
00気圧以上の加圧下で行う必要があるため工業的実施
には困難が伴う。
15 One of the methods is to directly produce ethylene glycol from synthesis gas in the presence of a rhodium catalyst (Japanese Patent Application Laid-open No. 52-42809);
Since it is necessary to carry out the process under pressure of 000 atmospheres or more, it is difficult to implement it industrially.

また、’0 ホルムアルデヒドを一酸化炭素と反応させ
てグリコール酸を製造し、グリコール酸をエステル化し
てグリコール酸エステルに変え、次いで、グリコール酸
エステルを水素化してエチレングリコールを得る方法(
特開昭54−106408号)が提ノ5 案されている
が、この方法では一酸化炭素との高圧反応を、フッ化水
素酸などの強酸性物質を触媒として行う必要がある点で
工業的実施の際にやはり問題がある。さらにホルムアル
デヒドを合成ガスと反応させ30てl段でエチレングリ
コールを得る方法(特開昭51−128903号、同5
3−53607号)が知られているが、この方法はエチ
レングリコールの選択性が著しく低いという欠点を有し
、エチレングリコールのホルムアルデヒドからの収率は
3540%以下にすぎない。
In addition, '0 A method of producing glycolic acid by reacting formaldehyde with carbon monoxide, esterifying the glycolic acid to convert it into a glycolic acid ester, and then hydrogenating the glycolic acid ester to obtain ethylene glycol (
JP-A No. 54-106408) has been proposed, but this method is not suitable for industrial use because it requires a high-pressure reaction with carbon monoxide using a strong acidic substance such as hydrofluoric acid as a catalyst. There are still problems in implementation. Furthermore, a method of reacting formaldehyde with synthesis gas to obtain ethylene glycol in 30 stages (JP-A-51-128903, JP-A-51-128903;
No. 3-53607) is known, but this method has the drawback of extremely low selectivity for ethylene glycol, and the yield of ethylene glycol from formaldehyde is only 3540% or less.

本発明者らは、このようなこれまで知られているエチレ
ングリコールの製造法の欠点、問題点を克服するため鋭
意検討を重ねた結果、ホルムアルデヒドジ第二級アルキ
ルアセタールをコバルト化合物を触媒として合成ガスと
して反応させることによりまずエチレングリコールの第
二級アルキルモノエーテルが得られ、これを加水分解す
ることにより目的のエチレングリコールが効率よく得ら
れることを見出し、この知見に基づき本発明をなすに至
つた。
The present inventors have conducted extensive studies to overcome the drawbacks and problems of the previously known ethylene glycol production methods, and as a result, have synthesized formaldehyde disecondary alkyl acetal using a cobalt compound as a catalyst. It was discovered that a secondary alkyl monoether of ethylene glycol can be obtained by reacting it as a gas, and that the desired ethylene glycol can be efficiently obtained by hydrolyzing this.Based on this knowledge, the present invention was made. Ivy.

すなわち本発明はホルムアルデヒドジ第二級アルキルア
セタールをコバルトカルボニルの存在下で一酸化炭素及
び水素の混合ガスと反応させてエチレングリコールの第
二級アルキルモノエーテルを得、これをさらに加水分解
することを特徴とするエチレングリコールの製造方法を
提供するものである。
That is, the present invention involves reacting formaldehyde disecondary alkyl acetal with a mixed gas of carbon monoxide and hydrogen in the presence of cobalt carbonyl to obtain a secondary alkyl monoether of ethylene glycol, which is further hydrolyzed. The present invention provides a method for producing ethylene glycol.

従来ホルムアルデヒドのアルキルアセタールをコバルト
及び3価の有機リン化合物の存在下に合成ガスと反応さ
せることによりエチレングリコールのアルキルモノエー
テルを製造する方法(特開昭52−71408)は知ら
れているが、その実施例において使用されたアルキルア
セタールは第一級アルキルアセタールに限られており、
その明細書中にも第一級以外のアルキルアセタールは記
載されていない。
Conventionally, a method for producing an alkyl monoether of ethylene glycol by reacting an alkyl acetal of formaldehyde with synthesis gas in the presence of cobalt and a trivalent organic phosphorus compound (Japanese Unexamined Patent Publication No. 71408/1989) is known; The alkyl acetals used in the examples were limited to primary alkyl acetals;
Even in that specification, alkyl acetals other than primary are not described.

本発明者らはアルキルアセタールとして第二級アルキル
アセタールの使用を鋭意検討した結果、第二級アルキル
アセタールがコバルトカルボニル触媒の存在下に合成ガ
スと特に容易に反応して、第二級アルキルセロソルブが
収率よく生成することを見出しTQ第二級アルキルアセ
タールと合成ガスの反応速度は同一条件下で第一級アル
キルアセタールと合成ガスの反応速度の約10倍である
The present inventors have intensively investigated the use of secondary alkyl acetals as alkyl acetals, and have found that secondary alkyl acetals react particularly easily with synthesis gas in the presence of a cobalt carbonyl catalyst, resulting in secondary alkyl cellosolves. It was found that the reaction rate of TQ secondary alkyl acetal and synthesis gas is about 10 times that of primary alkyl acetal and synthesis gas under the same conditions.

比較例、実施例1の第1表実験滝2の反応をホルムアル
デヒドジイソプロピルアセタールの代りにホルムアルデ
ヒドジノルマルプロピルアセタールを用いて同条件で反
応を行わせた場合のノルマルプロピルセロソルブの収率
は9.7%にすぎない。またエチラールを用いて同様に
反応を行わせた場合のエチルセロソルブの収率はわずか
に4.0%であつた。このように第一級アルキルアセタ
ールと合成ガスの反応はコバルトカルボニルのみを触媒
として用いた場合は第一級アルキルセロソルブの収率が
極めて低く、従来法においてはコバルトの外に3価の有
機リン化合物を添加することにより、はじめて70%以
上の収率で第一級アルキルセロソルブが得られるのであ
るが、本発明の方法は合成ガスとの反応が著しく容易な
第二級アルキルアセタールを原料として使用するため、
従来法と異なり3価の有機りん化合物等の添加剤を全く
必要とせず、コバルトカルボニルのみを触媒として第二
級アルキルセロソルブを収率よく得る特徴を有するもの
である。次に実施例1の第2表実験滝5の反応をイソプ
ロピルセロソルブの代りに第一級ブチルセロソルブを用
いて行つたときのエチレングリコールの収率は1.1%
にすぎなかつた。
Comparative Example: When the reaction in Experiment Taki 2 in Table 1 of Example 1 was carried out under the same conditions using formaldehyde di-normal propyl acetal instead of formaldehyde diisopropyl acetal, the yield of normal propyl cellosolve was 9.7. It is only %. Further, when a similar reaction was carried out using ethyral, the yield of ethyl cellosolve was only 4.0%. In this way, in the reaction between primary alkyl acetal and synthesis gas, when only cobalt carbonyl is used as a catalyst, the yield of primary alkyl cellosolve is extremely low, and in the conventional method, in addition to cobalt, a trivalent organic phosphorus compound is By adding , primary alkyl cellosolve can be obtained for the first time with a yield of 70% or more, but the method of the present invention uses secondary alkyl acetal as a raw material, which reacts extremely easily with synthesis gas. For,
Unlike the conventional method, this method does not require any additives such as trivalent organic phosphorus compounds, and has the characteristic that secondary alkyl cellosolve can be obtained in good yield using only cobalt carbonyl as a catalyst. Next, when the reaction in Experimental Waterfall 5 in Table 2 of Example 1 was carried out using primary butyl cellosolve instead of isopropyl cellosolve, the yield of ethylene glycol was 1.1%.
It was nothing more than a simple thing.

このように本発明の方法による第二級アルキルセロソル
ブと水の反応は容易に進行するが、第一級アルキルセロ
ソルブと水の反応は極めて困難であつた。
As described above, the reaction between secondary alkyl cellosolve and water according to the method of the present invention proceeds easily, but the reaction between primary alkyl cellosolve and water is extremely difficult.

本発明方法は次の2段の反応式によつて表わすことがで
きる。
The method of the present invention can be expressed by the following two-stage reaction formula.

(式中のR1、R2はそれぞれメチル、エチル、プロピ
ル基などのアルキル基であり、R,とR2とは互いに同
じでも異なつていてもよい。
(R1 and R2 in the formula are each an alkyl group such as a methyl, ethyl, or propyl group, and R and R2 may be the same or different from each other.

)本発明方法に用いられる混合ガスの一酸化炭素と水素
とのモル比は通常CO:H2=1:10〜10:1であ
るが、好ましくは1:3〜3:1の範囲である。
) The molar ratio of carbon monoxide and hydrogen in the mixed gas used in the method of the present invention is usually CO:H2 = 1:10 to 10:1, preferably in the range of 1:3 to 3:1.

この混合ガス(合成ガス)圧は50〜300気圧が好ま
しい。本発明において、第1段の合成ガスとの反応の触
媒としては、コバルトカルボニル化合物又は反応条件下
でコバルトカルボニルを形成し得るコバルト化合物、例
えば、金属コバルト、酸化コバルト、又は炭酸コバルト
、酢酸コバルト、硫酸コバルトなどのコバルト塩を用い
ることができる。
The pressure of this mixed gas (synthesis gas) is preferably 50 to 300 atmospheres. In the present invention, the catalyst for the reaction with the synthesis gas in the first stage is a cobalt carbonyl compound or a cobalt compound capable of forming cobalt carbonyl under the reaction conditions, such as cobalt metal, cobalt oxide, or cobalt carbonate, cobalt acetate, Cobalt salts such as cobalt sulfate can be used.

その触媒の使用量は特に制限はないが、通常用いるアセ
タール原料に対し、コバルト換算で2〜0.002モル
%の範囲である。この合成ガスとの反応は無溶媒下でも
進行し得るが、ベンゼン、トルエン、キシレン、シクロ
ヘキサン、ヘキサン、ヘプタン、流動パラフインなどの
炭化水素類の溶媒を用いて行うのが好ましい。
The amount of the catalyst to be used is not particularly limited, but is in the range of 2 to 0.002 mol% in terms of cobalt, based on the acetal raw material commonly used. Although this reaction with synthesis gas can proceed without a solvent, it is preferably carried out using a hydrocarbon solvent such as benzene, toluene, xylene, cyclohexane, hexane, heptane, and liquid paraffin.

上記の第2段のエチレングリコールモノエーテルの加水
分解反応は、公知の触媒、例えば硫酸、塩化亜鉛などの
酸触媒の存在下で行うことができるが、これに限定され
るものではなく、シリカ−アルミナなどの固体酸触媒を
用いることもできる。その反応温度は200〜400℃
の範囲が好ましい。本発明方法は、回分式、連続式のい
ずれの反応様式によつても実施することができ、また反
応液からの生成物及び触媒の分離回収は蒸留などの公知
の方法を適用して容易に行うことができる。
The hydrolysis reaction of ethylene glycol monoether in the second stage can be carried out in the presence of a known catalyst, for example, an acid catalyst such as sulfuric acid or zinc chloride, but is not limited thereto. Solid acid catalysts such as alumina can also be used. The reaction temperature is 200-400℃
A range of is preferred. The method of the present invention can be carried out in either batch or continuous reaction mode, and products and catalysts can be easily separated and recovered from the reaction solution by applying known methods such as distillation. It can be carried out.

本発明方法によればホルムアルデヒドアセタールと合成
ガスとから、極めて選択性よく、好収率で、かつ容易に
、エチレングリコールを製造することができ、工業的実
施化方法として、本発明方法の意義は大きい。次に本発
明を実施例に基づきさらに詳細に説明する。
According to the method of the present invention, ethylene glycol can be easily produced from formaldehyde acetal and synthesis gas with excellent selectivity, high yield, and the significance of the method of the present invention as an industrial implementation method is big. Next, the present invention will be explained in more detail based on examples.

実施例 1 ステンレス鋼製300m1容の電磁上下かきまぜ式オー
トクレーブに、ホルムアルデヒドジイソプロピルアセタ
ール〔(CH2(0CH(CH3)2)2〕16.57
(0.125m01)、トルエン80y及びジコバルト
オクタカルボニルCO2(CO)8を所定量仕込み、C
O:H2−1:1(モル比)の混合ガスで器内の空気を
置換したのち、同様の組成の混合ガスを圧入し、昇温し
て所定の反応温度に達した時の器内の圧力を200kg
/C!ILVC.なるように調整した。
Example 1 Formaldehyde diisopropyl acetal [(CH2(0CH(CH3)2)2) 16.57 ml was placed in a 300 ml stainless steel autoclave with electromagnetic vertical stirring.
(0.125m01), 80y of toluene, and a predetermined amount of dicobalt octacarbonyl CO2 (CO)8,
After replacing the air in the vessel with a mixed gas of O:H2-1:1 (molar ratio), a mixed gas of the same composition was injected and the temperature was raised to reach the predetermined reaction temperature. Pressure 200kg
/C! ILVC. I adjusted it so that

その後は同じ組成の混合ガスを補給することにより圧力
を200kg/CTrLに保つて所定温度で反応させた
。反応後オートクレーブを冷却し、生成物を取り出して
分析した結果を第1表に示す。次に、ステンレス鋼製1
00W1t容のオートクレーブに上記で得られたイソプ
ロピルセロソルブ26r(0.25m01)、水9V(
0.5m01)及び触媒を仕込み、器内を窒素で置換し
たのち、昇温して300℃としこの温度に器内を保持し
て反応させた。反応終了時には器内の圧力は、85〜8
8kg/Crliに上昇した。反応終了後オートクレー
ブを冷却し、生成液を取り出して分析した結果を第2表
に示した。ただし、固体触媒を用いた場合は、使用後の
固体触媒に付着した液相成分をアセトンで洗い出し、生
成液に加えて分析を行つた。実施例3及び4の結果から
れかるように、本発明方法によれば、ホルムアルデヒド
ジイソプロピルアセタール、一酸化炭素、水素及び水か
ら収率76%(アセタール基準)でエチレングリコール
を得ることができる。実施例 2 実施例1に記載した300me容のオートクレーブに、
ホルムアルデヒドジニ級ブチルアセタールi1(CH2
(0CH〔 )21110.125m011トルエン
80V及びジコバルトオクタカルボニル0.2mm01
を仕込み、第1表実験滉3と同様の条件で反応を行わせ
た結果、ホルムアルデヒドジニ級ブチルアセタールの転
化率は92.8%、反応したアセタールからの二級ブチ
ルセロソリブの収率(選択率)は76.4%であつた。
Thereafter, the pressure was maintained at 200 kg/CTrL by replenishing a mixed gas of the same composition, and the reaction was carried out at a predetermined temperature. After the reaction, the autoclave was cooled and the product was taken out and analyzed. The results are shown in Table 1. Next, stainless steel 1
In a 00W 1t autoclave, wasopropyl cellosolve 26r (0.25m01) obtained above and water 9V (
After charging 0.5m01) and a catalyst and purging the inside of the vessel with nitrogen, the temperature was raised to 300°C and the inside of the vessel was maintained at this temperature for reaction. At the end of the reaction, the pressure inside the vessel is 85-8
It increased to 8 kg/Crli. After the reaction was completed, the autoclave was cooled, and the resulting solution was taken out and analyzed. The results are shown in Table 2. However, when a solid catalyst was used, the liquid phase components adhering to the solid catalyst after use were washed out with acetone and added to the product solution for analysis. As can be seen from the results of Examples 3 and 4, according to the method of the present invention, ethylene glycol can be obtained from formaldehyde diisopropyl acetal, carbon monoxide, hydrogen and water in a yield of 76% (based on acetal). Example 2 The 300 me capacity autoclave described in Example 1 was
Formaldehyde di-class butyl acetal i1 (CH2
(0CH [ )21110.125m011 toluene 80V and dicobalt octacarbonyl 0.2mm01
As a result, the conversion rate of formaldehyde di-butyl acetal was 92.8%, and the yield (selectivity) of secondary butyl cellosolib from the reacted acetal was carried out under the same conditions as in Experiment 3 in Table 1. was 76.4%.

次に得られた二級ブチルセロソルブ10fと水4.5t
(0.25m01)及びシリカ−アルミナ(シリカ10
%)10rを実施例1に記載した100m1容のオート
クレーブに仕込み、第2表実験./F65と同様の条件
で反応させた結果、第二級ブチルセロソルブからのエチ
レングリコールの収率は70.5%であつた。実施例
3実施例1に記載した100m2容のオートクレーブに
シリカ−アルミナ2511Lt(19r)、及び水2m
01(361)を仕込み、器内を窒素で置換した後26
5℃に昇温した。
Next, 10f of secondary butyl cellosolve and 4.5t of water were obtained.
(0.25 m01) and silica-alumina (silica 10
%) 10r was charged into the 100ml autoclave described in Example 1, and the experiments shown in Table 2 were carried out. As a result of reaction under the same conditions as /F65, the yield of ethylene glycol from secondary butyl cellosolve was 70.5%. Example
3 Into the 100 m2 autoclave described in Example 1, add 2511 Lt (19 r) of silica-alumina and 2 m of water.
After charging 01 (361) and replacing the inside of the vessel with nitrogen, 26
The temperature was raised to 5°C.

この時器内の圧力は24atmに達した。つぎにイソプ
ロピルセロソルブ0.125m01(13t)をポンプ
によりオートクレーブ沖に注入し、265℃で1時間反
応させ(この時器内の圧力は37atmに達した)、つ
いでオートクレーブ沖のパイプを通してオートクレーブ
の内容物を器底から全部抜出し、液状生成物をガスクロ
マトグラフにより分析した。その結果イソプロピルセロ
ソルブの転化率は53%反応したイソプロピルセロソル
プからのエチレングリコールの収率は99%、イソプロ
パノールの収率は60%であつた。イソプロパノールの
収率が低いのはイソプロパノールが脱水されてプロピレ
ンが生成したためである。生成物を蒸留するとまずイソ
プロパノールが水との共沸混合物として留出し(80℃
)、ついで未反応のイソプロピルセロソルブが水との共
沸混合物として留出し(98℃)、47のエチレングリ
コールが蒸留残として得られた。
At this time, the pressure inside the vessel reached 24 atm. Next, 0.125m01 (13t) of isopropyl cellosolve was pumped into the autoclave, and reacted at 265°C for 1 hour (at this time, the pressure inside the vessel reached 37 atm), and then the contents of the autoclave were pumped through the autoclave's offshore pipe. The entire solution was taken out from the bottom of the vessel, and the liquid product was analyzed by gas chromatography. As a result, the conversion rate of isopropyl cellosolve was 53%, the yield of ethylene glycol from the reacted isopropyl cellosolve was 99%, and the yield of isopropanol was 60%. The reason for the low yield of isopropanol is that isopropanol is dehydrated to produce propylene. When the product is distilled, isopropanol is first distilled out as an azeotrope with water (at 80°C
), unreacted isopropyl cellosolve was then distilled off as an azeotrope with water (98°C), and 47 ethylene glycol was obtained as a distillation residue.

実施例 4 C0:H2=1:2(モル比)の混合ガスを用いて、反
応を300kg/(V7!の圧力で行つた以外は実施例
1第1表実験/F6lと全く同様にして3時間反応させ
た。
Example 4 The reaction was carried out in exactly the same manner as in Example 1 Table 1 Experiment/F6l except that a mixed gas of C0:H2=1:2 (molar ratio) was used and the reaction was carried out at a pressure of 300 kg/(V7!). Allowed time to react.

その結果、アセタールの転化率は100%、イソプロピ
ルセロソルブの収率(MOl%)は76.4%、メチル
インプロピルエーテルの収率(MOl%)は11.5%
であつた。
As a result, the conversion rate of acetal was 100%, the yield of isopropyl cellosolve (MOl%) was 76.4%, and the yield of methyl impropyl ether (MOl%) was 11.5%.
It was hot.

Claims (1)

【特許請求の範囲】[Claims] 1 ホルムアルデヒドジ第二級アルキルアセタールを、
コバルトカルボニルの存在下で、合成ガスと反応させて
エチレングリコールの第二級アルキルモノエーテルを得
、これをさらに加水分解することを特徴とするエチレン
グリコールの製造方法。
1 Formaldehyde di-secondary alkyl acetal,
A method for producing ethylene glycol, which comprises reacting with synthesis gas in the presence of cobalt carbonyl to obtain a secondary alkyl monoether of ethylene glycol, which is further hydrolyzed.
JP55021168A 1980-02-21 1980-02-21 Manufacturing method of ethylene glycol Expired JPS593451B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55021168A JPS593451B2 (en) 1980-02-21 1980-02-21 Manufacturing method of ethylene glycol
GB8102597A GB2070002B (en) 1980-02-21 1981-01-28 Method of manufacturing ethyleneglycol
CA000369645A CA1150318A (en) 1980-02-21 1981-01-29 Method for manufacturing ethyleneglycol
DE3104033A DE3104033C2 (en) 1980-02-21 1981-02-05 Process for the production of ethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55021168A JPS593451B2 (en) 1980-02-21 1980-02-21 Manufacturing method of ethylene glycol

Publications (2)

Publication Number Publication Date
JPS56118026A JPS56118026A (en) 1981-09-16
JPS593451B2 true JPS593451B2 (en) 1984-01-24

Family

ID=12047381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55021168A Expired JPS593451B2 (en) 1980-02-21 1980-02-21 Manufacturing method of ethylene glycol

Country Status (4)

Country Link
JP (1) JPS593451B2 (en)
CA (1) CA1150318A (en)
DE (1) DE3104033C2 (en)
GB (1) GB2070002B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106554250B (en) * 2015-09-30 2019-06-21 中国科学院大连化学物理研究所 A kind of method that glycol monoethyl ether hydrolysis prepares ethylene glycol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE890945C (en) * 1942-07-11 1953-10-29 Basf Ag Process for the production of ethylene glycol

Also Published As

Publication number Publication date
GB2070002A (en) 1981-09-03
DE3104033C2 (en) 1984-10-31
GB2070002B (en) 1983-12-21
CA1150318A (en) 1983-07-19
JPS56118026A (en) 1981-09-16
DE3104033A1 (en) 1981-12-10

Similar Documents

Publication Publication Date Title
EP0130058B1 (en) Catalytic conversion of ethers to esters and alcohols
US2564130A (en) One-step butyl alcohol process
US3028417A (en) Process of making hydroxy ester compounds
JPS629571B2 (en)
CA2048132C (en) Process for making 1,3-diols from epoxides
EP0289067B1 (en) Process for the production of methanol and a composition suitable for use as a catalyst in said process
US2542766A (en) Production of amides
US4158100A (en) Process for the preparation of β-phenylethyl alcohol via homologation
JPS6136827B2 (en)
US4126752A (en) Homologation of methanol with a carbon monoxide-water mixture
US2549520A (en) Preparation of substituted cyclic ketones
US3210400A (en) Acetamido-aminocapronitrile, method of making and intermediates therefor
JPS593451B2 (en) Manufacturing method of ethylene glycol
US4602107A (en) Process for producing trycyclo[5.2.1.02,6 ]decane-2-carboxylic acid
JPS6133238A (en) Ruthenium promoted cobalt catalyst for dealkoxyhydroxymethylation of formaldehyde acetal for forming glycol ether
US1891055A (en) Production of saturated fatty acid nitriles
US3709923A (en) Conversion of aldehydes to esters
CA1179375A (en) Process for improving ethylene glycol
US2799703A (en) Manufacture of propiolic acid
JPS6326094B2 (en)
JPS6139294B2 (en)
US4992479A (en) Process for the preparation of methanol and composition suitable for use as a catalyst in said process
JPH09110775A (en) Production of 1-naphthaldehyde
US4788325A (en) Conversion of an allylic ether to its corresponding carbonyl compound
EP0132303B1 (en) Catalytic carboxylic acid ester homologation