JPS593406B2 - Alpha-Gatahansuisetsukou - Google Patents
Alpha-GatahansuisetsukouInfo
- Publication number
- JPS593406B2 JPS593406B2 JP49053187A JP5318774A JPS593406B2 JP S593406 B2 JPS593406 B2 JP S593406B2 JP 49053187 A JP49053187 A JP 49053187A JP 5318774 A JP5318774 A JP 5318774A JP S593406 B2 JPS593406 B2 JP S593406B2
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- gypsum
- type hemihydrate
- hydrothermal treatment
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/46—Sulfates
- C01F11/466—Conversion of one form of calcium sulfate to another
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B11/00—Calcium sulfate cements
- C04B11/02—Methods and apparatus for dehydrating gypsum
- C04B11/024—Ingredients added before, or during, the calcining process, e.g. calcination modifiers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
【発明の詳細な説明】
本発明は三水石膏スラリーを加圧水熱処理してα型半水
石膏に転化させる方法に関し、特にその操作を連続的に
行なえるようにした方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for converting trihydrate gypsum slurry into α-type hemihydrate gypsum by pressurized hydrothermal treatment, and particularly relates to a method in which the operation can be performed continuously.
α型半水石膏は水和凝結後の強度が大きいので新しい建
築基材として有望視されているばかりでなく、凝結硬化
後の膨張、収縮か非常に小さいので自動車航空機の模型
用(型材用)として多く使用されている。α-type hemihydrate gypsum has high strength after hydration and hardening, so it is seen as a promising new building material.It also has very low expansion and contraction after setting and hardening, so it can be used for automobile aircraft models (forming materials). It is often used as
その製法としては加圧水溶液法や加圧水蒸気法などが知
られているが、いずれもバッチタイプであって大容量の
生産法としては不適当であった。Pressurized aqueous solution method and pressurized steam method are known as methods for producing it, but both are batch-type and unsuitable for large-volume production.
本発明は従来のバッチタイプの生産方式を連続方式にし
て工業的に大容量のα型半水石膏を連続的に生産するこ
とに関し鋭意研究した結果、媒晶剤として使用されるク
エン酸ナトリウムの量を、0乃至従来法における使用量
よりも著しく少なくすると、連続生産で可能になるとい
うことを発見し、この知見に基いて本発明は完成された
ものであって、三水石膏スラリーを加圧水熱処理しα型
半水石膏に転移させる方法において、工水石膏の量の0
〜0.1重量%のクエン酸ナトリウムの存在下、140
℃以上の温度で、加圧水熱処理の間にスラリーが適当時
間滞留するように、連続的に加圧水熱処理することを特
徴とするα型半水石膏の製造方法を要旨とするものであ
る。The present invention was developed as a result of intensive research into the continuous production of α-type hemihydrate in a large capacity industrially by converting the conventional batch-type production method into a continuous method. It was discovered that continuous production was possible by reducing the amount from 0 to significantly less than the amount used in the conventional method, and based on this knowledge, the present invention was completed. In the method of heat treatment and transfer to α-type hemihydrate gypsum, the amount of industrial water gypsum is reduced to 0.
140 in the presence of ~0.1% by weight sodium citrate
The gist of the present invention is a method for producing α-type hemihydrate gypsum, which is characterized by continuous pressurized hydrothermal treatment at a temperature of 0.degree. C. or higher so that the slurry remains for an appropriate period of time during the pressurized hydrothermal treatment.
なお本明細書において、連続方式とは、例えば後述する
添付図面において、工水石膏スラリー調製槽4からライ
ン5を経て加圧水熱処理槽6へ三水石膏スラリーが供給
され、同時にライン7を経て加圧水熱処理槽6で工水石
膏から転移して生成したα型半水石膏のスラリーが抜出
される方式、す゛なわち原料の供給と反応生成物の抜出
しが同時に行われる方式を言い、またバッチ方式とは、
工水石膏スラリー調製槽4からライン5を経て加圧水熱
処理槽6へ三水石膏スラリーを所定量供給した後に供給
を停止し、次に加圧水熱処理槽6内に三水石膏スラリー
を所定時間保持して工水石膏やα型半水石膏へ転移させ
、しかる後にライン7から加圧水熱処理槽6内のα型半
水石膏スラリーを抜出す方式、すなわち原料の供給と反
応生成物の抜出しが同時に行われず、原料供給−反応−
反応生成物抜出という1サイクル終了後に必ず加圧水熱
処理槽6が空になる方式を言う。In this specification, continuous system means that, for example, in the attached drawings described later, trihydrate gypsum slurry is supplied from the industrial water gypsum slurry preparation tank 4 to the pressurized hydrothermal treatment tank 6 via line 5, and at the same time, the trihydrate gypsum slurry is supplied via line 7 to the pressurized hydrothermal treatment. This refers to a method in which the slurry of α-type hemihydrate gypsum produced by transfer from industrial gypsum in tank 6 is extracted, that is, a method in which raw materials are supplied and reaction products are extracted at the same time, and the batch method is ,
After supplying a predetermined amount of trihydrate gypsum slurry from the industrial water gypsum slurry preparation tank 4 to the pressurized hydrothermal treatment tank 6 via the line 5, the supply is stopped, and then the trihydrate gypsum slurry is held in the pressurized hydrothermal treatment tank 6 for a predetermined period of time. The method is such that the slurry is transferred to industrial water gypsum or α-type hemihydrate gypsum, and then the α-type hemihydrate gypsum slurry in the pressurized hydrothermal treatment tank 6 is extracted from the line 7, that is, the supply of raw materials and the extraction of the reaction product are not performed at the same time. Raw material supply - reaction -
This refers to a method in which the pressurized hydrothermal treatment tank 6 is always emptied after one cycle of reaction product extraction is completed.
本発明において加圧水熱処理温度を140℃以上にした
のは通常の加圧水熱処理温度範囲を示したものであるが
、クエン酸ナトリウムの量を0.01重重量風下の量に
制限することは臨界的な条件であり、後述のデータから
明らかなように、この量的範囲を超えた場合、バッチ式
によるα型半水石膏の転移は行なわれるが連続式にした
時Vciその転移は不完全か又は殆んど起らないのであ
る。In the present invention, the pressurized hydrothermal treatment temperature is set to 140°C or higher to indicate the normal pressurized hydrothermal treatment temperature range, but limiting the amount of sodium citrate to an amount of 0.01 weight leeward is critical. As is clear from the data described below, when this quantitative range is exceeded, transformation of α-type hemihydrate gypsum occurs in a batch system, but when a continuous system is used, the transition is incomplete or almost impossible. It never happens.
加圧水熱処理を受けるスラリーば、工水石膏スラリーが
α型半水石膏に転移するに足る時間、滞留することが必
要であるが、通常は約1時間の平均滞留時間で十分であ
る。When the slurry is subjected to pressurized hydrothermal treatment, it is necessary to retain the water gypsum slurry for a sufficient time to transform it into α-type hemihydrate gypsum, but an average residence time of about 1 hour is usually sufficient.
すなわちそれより短かい時間ではα型半水石膏への転移
は不完全であり、また余り長い時間をかげると連続操業
とはいえなくなるので、通常はスラリーの平均滞留時間
を0.5〜2時間特に1〜1,5時間に設定することが
望ましい。In other words, if the time is shorter than that, the transition to α-type hemihydrate gypsum will be incomplete, and if the time is too long, it will not be possible to operate continuously, so the average residence time of the slurry is usually 0.5 to 2 hours. In particular, it is desirable to set the time to 1 to 1.5 hours.
次に本発明の特殊な実施態様を添付図面を参照しながら
説明する。Specific embodiments of the invention will now be described with reference to the accompanying drawings.
ライン1よυ三水石膏、ライン2よりクエン酸ナトリウ
ム、ライン3より水を工水石膏スラリー調製槽4に供給
し、こ瓦で所望量のクエン酸ナトリウムを含む均質な工
水石膏スラリーを調製する。Supply trihydrate gypsum from line 1, sodium citrate from line 2, and water from line 3 to the industrial water gypsum slurry preparation tank 4, and prepare a homogeneous industrial water gypsum slurry containing the desired amount of sodium citrate using a tile. do.
このスラリーをライン5を経て加圧水熱処理槽6に送り
ながら、こ瓦で適当な圧力下、140℃以上の温度の下
で加圧水熱処理を受げさせ、そのスラリーの接種6Vc
おける平均滞留時間が1〜1.5時間になるような割合
で連続的に加圧状態のま瓦ライン1を経て生成α型半水
石膏スラリーを抜出す。This slurry is sent to the pressurized hydrothermal treatment tank 6 via line 5, and is subjected to pressurized hydrothermal treatment at a temperature of 140°C or higher under an appropriate pressure with a roof tile, and the slurry is inoculated at 6Vc.
The produced α-type hemihydrate gypsum slurry is continuously extracted through the pressurized tile line 1 at a rate such that the average residence time in the gypsum slurry becomes 1 to 1.5 hours.
抜出されたα型半水石膏スラリーに、これまた加圧状態
のまN液体サイクロン”E7’Cはシックナー8VC導
かれて濃縮サレ、濃縮スラリーぽライン9を経て乾燥機
11に送られて乾燥され、更にライン12より粉砕機1
3IK−送られて粉砕され、ライン14より製品α型半
水石膏を得る。The extracted α-type hemihydrate gypsum slurry is fed to the N liquid cyclone "E7'C, which is still under pressure, and is guided by the thickener 8VC, and sent to the dryer 11 through the concentrated slurry line 9 and dried. Then, from line 12, crusher 1
3IK- is sent and crushed to obtain the product α-type hemihydrate gypsum from line 14.
一方液体サイクロンまたぼシックナー8で分離されfC
P液はライン10を経て、工水石膏スラリー調製槽4に
返送され、メークアップ水として再使用される。On the other hand, the liquid cyclone matabo thickener 8 separates the fC
The P solution is returned to the industrial water gypsum slurry preparation tank 4 through the line 10, and is reused as makeup water.
次に本発明の効果を示すために、参考例と実施例とをあ
げる。Next, reference examples and examples will be given to demonstrate the effects of the present invention.
参考例 に
水供給ラインを下記の条件で加圧水熱処理したところ、
バッチ式ではα型半水石膏が生成したが連続式に切変え
たところ、α型半水石膏にはならず■型無水石膏に転移
してしまった。In the reference example, when the water supply line was subjected to pressure hydrothermal treatment under the following conditions,
In the batch method, α-type hemihydrate was produced, but when switching to the continuous method, it did not become α-type hemihydrate, but instead transformed to ■-type anhydrite.
スラリーク”′酸ナト滞留時間
温 度 濃度 リウム凝度
a 140°G 10重量%0.02重量%ト1.5時
間スラリーク1/酸ナト滞留時間
温 度濃度 リウム
b140℃10重量%0015重量% 1 時間c
150℃10重量%0.02重量% 1 時間参考例
2
工水石膏スラリーを下記の条件で加圧水熱処理したとこ
ろ、バッチ式では一応α型半水石膏が生成したがその結
晶は針状で脱水に難点があり、又得られたα型半水石膏
を粉砕した抜水を加えて混練し強度を測定したが、強度
は小さかった。Slurry leak 1/sodium acid residence time temperature concentration Lium coagulation a 140°G 10% by weight 0.02% by weight 1.5 hours slurry leak 1/sodium acid residence time temperature concentration Lium b 140°C 10% by weight 0015% by weight 1 time c
150°C 10% by weight 0.02% by weight 1 hour Reference example
2 When the industrial water gypsum slurry was subjected to pressure hydrothermal treatment under the following conditions, alpha-type hemihydrate gypsum was produced in a batch process, but the crystals were acicular and difficult to dehydrate, and the obtained alpha-type hemihydrate gypsum was The strength was measured after adding crushed water and kneading, but the strength was low.
、;<yI)−9x7酸灯滞留時間
温 度濃度 リウム濃度
140’C1O重量% 0 1時間実施例 2
工水石膏スラリーを下記の条件て漣続的に加圧熱水処理
したところ、2時間程度の周期で核発生と結晶成長とが
繰返され、棒状及び仮柱状のα型半水石膏が得られた。,;<yI)-9x7 Acid Lamp Residence Time Temperature Concentration Lium Concentration 140' C1O wt% 0 1 hour Example 2 When industrial water gypsum slurry was continuously treated with pressurized hot water under the following conditions, it was treated with hot water for 2 hours. Nucleation and crystal growth were repeated at a certain frequency, and rod-shaped and temporary columnar α-type hemihydrate gypsum were obtained.
温度スラリークエン酸ナト 滞留時間
濃度 リウム濃度
140°C10重量% 0.0市重量係 1時間実施
例で得られたα型半水石膏を乾燥し、ボールミル粉砕後
、水を加えて混練し強度などを測定した結果を以下′示
す・ * オ平均粒度標準混カケ比重
圧縮曲げ
水比 強度強度
27066
実施例 35μ 29重量% 1.55Kg/ciKg
/cd*これら強度は標準混水比の水を加えて混線、成
型し、飽和湿度中室温下で7日間養生した凝結硬化体の
湿態強度である。Temperature slurry Sodium citrate Residence time Concentration Lium concentration 140°C 10% by weight 0.0 City weight ratio 1 hour The α-type hemihydrate gypsum obtained in the example was dried, crushed in a ball mill, water was added and kneaded to determine the strength etc. The results of the measurements are shown below: * Average particle size Standard mixing ratio Specific gravity Compression bending Water ratio Strength Strength 27066 Example 35μ 29% by weight 1.55Kg/ciKg
/cd* These strengths are the wet strengths of a solidified and hardened product that was mixed with water at a standard water mixing ratio, molded, and cured for 7 days at room temperature in saturated humidity.
添付図面は本発明方法の特殊な実施態様を示すもので、
1は三水石膏供給ライン、2はクエン酸ナトリウム供給
ライン、3は水供給ライン、4は三水石膏スラリー調製
槽、5は工水石膏スラリー供給ライン、6は加圧水熱処
理槽、7は加圧状態のま又α型半水石膏スラリーを抜き
出すライン、8は液体サイクロンまたはシックナー、9
はα型半水石膏濃縮スラリーを抜き出すライン、10は
液体サイクロンまたにシックナーで分離されたP液の返
送ライン、11ぼ乾燥機、12は乾燥したα型半水石膏
の供給ライン、13は粉砕機、14ハ夷品α型半水石膏
回収ラインである。The accompanying drawings show special embodiments of the method according to the invention, and
1 is a trihydrate supply line, 2 is a sodium citrate supply line, 3 is a water supply line, 4 is a trihydrate gypsum slurry preparation tank, 5 is a water gypsum slurry supply line, 6 is a pressurized hydrothermal treatment tank, 7 is a pressurized A line for extracting the α-type hemihydrate gypsum slurry in the same state, 8 is a liquid cyclone or thickener, 9
10 is a return line for P solution separated by a liquid cyclone or thickener, 11 is a dryer, 12 is a supply line for dried α-type hemihydrate gypsum, 13 is a crushing line. This is a 14-year-old product α type hemihydrate gypsum recovery line.
Claims (1)
転移させる方法において、クエン酸ナトリウムを0.0
1重重量風下に維持したスラリーを140℃以上の温度
で適当時間滞留するように、連続的に加圧水熱処理する
ことを特徴とするα型半水石膏の製造方法。1 In the method of pressurized hydrothermal treatment of trihydrate gypsum slurry to transform it into α-type hemihydrate gypsum, sodium citrate is added to 0.0
A method for producing α-type hemihydrate gypsum, which comprises continuously pressurizing and hydrothermally treating a slurry maintained in a 1-weight leeward direction at a temperature of 140° C. or higher for an appropriate period of time.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49053187A JPS593406B2 (en) | 1974-05-15 | 1974-05-15 | Alpha-Gatahansuisetsukou |
FR7514862A FR2271185B1 (en) | 1974-05-15 | 1975-05-13 | |
DE19752522005 DE2522005A1 (en) | 1974-05-15 | 1975-05-15 | PROCESS FOR THE PRODUCTION OF ALPHA-HEMIHYDRATE FROM PLASTER |
SU752135316A SU791217A3 (en) | 1974-05-15 | 1975-05-15 | Method of producing calcium sulfate alpha-semihydrate |
GB2069975A GB1486966A (en) | 1974-05-15 | 1975-05-15 | Process for preparing calcium sulphate alpha-hemihydrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49053187A JPS593406B2 (en) | 1974-05-15 | 1974-05-15 | Alpha-Gatahansuisetsukou |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS50145393A JPS50145393A (en) | 1975-11-21 |
JPS593406B2 true JPS593406B2 (en) | 1984-01-24 |
Family
ID=12935858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP49053187A Expired JPS593406B2 (en) | 1974-05-15 | 1974-05-15 | Alpha-Gatahansuisetsukou |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPS593406B2 (en) |
DE (1) | DE2522005A1 (en) |
FR (1) | FR2271185B1 (en) |
GB (1) | GB1486966A (en) |
SU (1) | SU791217A3 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2053874B (en) * | 1977-12-29 | 1982-07-28 | Idemitsu Kosan Co | Production of calcium sulphate |
CN107746195B (en) * | 2017-02-06 | 2020-05-01 | 宁夏博得石膏科技有限公司 | Method for efficiently producing α type semi-hydrated gypsum |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4838298A (en) * | 1971-09-15 | 1973-06-05 |
-
1974
- 1974-05-15 JP JP49053187A patent/JPS593406B2/en not_active Expired
-
1975
- 1975-05-13 FR FR7514862A patent/FR2271185B1/fr not_active Expired
- 1975-05-15 SU SU752135316A patent/SU791217A3/en active
- 1975-05-15 DE DE19752522005 patent/DE2522005A1/en active Pending
- 1975-05-15 GB GB2069975A patent/GB1486966A/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4838298A (en) * | 1971-09-15 | 1973-06-05 |
Also Published As
Publication number | Publication date |
---|---|
FR2271185B1 (en) | 1980-11-14 |
DE2522005A1 (en) | 1976-04-08 |
JPS50145393A (en) | 1975-11-21 |
GB1486966A (en) | 1977-09-28 |
FR2271185A1 (en) | 1975-12-12 |
SU791217A3 (en) | 1980-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5384351B2 (en) | Process for producing ultra low consistency α- and β-blend cosmetic plaster | |
CN102745923B (en) | A kind of processing method utilizing industry by-product gypsum to produce alpha semi-hydrated gypsum | |
US3410655A (en) | Production of alpha-calcium sulfate hemihydrate | |
US3423172A (en) | Production of plaster of paris | |
CN106866009B (en) | A kind of method that half water ardealite prepares alpha type high-strength gypsum | |
CN107746195A (en) | A kind of method of efficiently production alpha semi-hydrated gypsum | |
US3337298A (en) | Process for preparing alpha calcium sulfate semi-hydrate from synthetic gypsums | |
CN106431032A (en) | Microwave preparation method of alpha-calcium sulfate hemihydrate | |
CN113428887A (en) | Method for preparing alpha high-strength gypsum from industrial byproduct gypsum | |
CN102295420B (en) | Method for preparing alpha-semihydrated gypsum by using aqueous solution of alcohol as crystallization media | |
CN102584053B (en) | Preparation method of high-strength desulfurized alpha-type semi-hydrated gypsum | |
CN104773991B (en) | A kind of enhancing crack resistance type mold materials and forming method thereof | |
JPS593406B2 (en) | Alpha-Gatahansuisetsukou | |
US2418590A (en) | Process of making anhydrous calcium sulphate | |
CN115947553A (en) | Method for preparing alpha high-strength gypsum from natural anhydrite | |
US2127952A (en) | Process of making reacted plaster | |
CN108314342A (en) | A kind of method that phosphogypsum dihydrate prepares alpha type high-strength gypsum | |
US3847766A (en) | Processes for the treatment of crude calcium sulfate to render it suitable for conversion to plaster of paris | |
CN113087422B (en) | Method for producing alpha-semi-hydrated gypsum by using azeotropic reflux dehydration method of waste acid gypsum | |
JPH0742107B2 (en) | Method for producing α-type hemihydrate gypsum | |
CN105293557A (en) | Method for preparing and separating monodisperse nano alpha-calcium sulfate hemihydrate | |
US4113835A (en) | Process for preparing pure synthetic calcium sulfate semihydrate | |
US1898636A (en) | Anhydrite plastic material | |
JP6158211B2 (en) | Method for forming gypsum-based products | |
JPH01270553A (en) | Production of set material of coal ash |