JPS5933965Y2 - air conditioner - Google Patents

air conditioner

Info

Publication number
JPS5933965Y2
JPS5933965Y2 JP115081U JP115081U JPS5933965Y2 JP S5933965 Y2 JPS5933965 Y2 JP S5933965Y2 JP 115081 U JP115081 U JP 115081U JP 115081 U JP115081 U JP 115081U JP S5933965 Y2 JPS5933965 Y2 JP S5933965Y2
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
cooling
branch pipe
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP115081U
Other languages
Japanese (ja)
Other versions
JPS57114374U (en
Inventor
基次 高井
芳明 武田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP115081U priority Critical patent/JPS5933965Y2/en
Publication of JPS57114374U publication Critical patent/JPS57114374U/ja
Application granted granted Critical
Publication of JPS5933965Y2 publication Critical patent/JPS5933965Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

【考案の詳細な説明】 本考案は、空気調和機に関し、特に蒸発器の冷却管と分
流器の分流管との接続構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner, and particularly to a connection structure between a cooling pipe of an evaporator and a branch pipe of a flow divider.

従来より、空気調和機において、冷房運転時、冷媒配管
からの冷媒を分流器により多数の分流管を介して蒸発器
の冷却管に分流供給して、蒸発器を通る空気との熱交換
作用を効率良く行うことは知られている。
Conventionally, in air conditioners, during cooling operation, refrigerant from the refrigerant piping is supplied in a divided manner to the cooling pipe of the evaporator via a large number of dividing pipes using a flow divider to exchange heat with the air passing through the evaporator. It is known to be efficient.

そして、このような分流管と蒸発器の冷却管との接続配
管部はケーシング内の蒸発器側方の狭いスペース内に限
られ、このスペース上の制約により、分流管を冷却管に
接続する場合に、冷却管の接続端部付近で前記分流管を
極めて小さな曲げ半径で曲げたのち、その先端を冷却管
に接続する関係上、分流管としては管径の小さいものが
使用されている。
The connection piping between the diverter pipe and the cooling pipe of the evaporator is limited to a narrow space on the side of the evaporator inside the casing, and due to this space restriction, when connecting the diverter pipe to the cooling pipe, Furthermore, since the branch pipe is bent with an extremely small bending radius near the connecting end of the cooling pipe and then its tip is connected to the cooling pipe, a branch pipe with a small diameter is used.

しかるに、従来、このような管径の小なる分流管を蒸発
器の冷却管に直接挿入せしめて連結しており、そのため
、分流管の冷媒が冷却管に流入する際、膨張噴出して、
恰かも先細ノズルの如き現象を生じ、膨張による定常圧
力波が冷却管内を伝播して行き、その結果、異音、特に
チュルチュルという異音(4000−10000Hzの
音)が発生し、騒音源となっていた。
However, conventionally, such a branch pipe with a small diameter has been connected by directly inserting it into the cooling pipe of the evaporator, so that when the refrigerant in the branch pipe flows into the cooling pipe, it expands and is ejected.
A phenomenon similar to that of a tapered nozzle occurs, and a steady pressure wave due to expansion propagates inside the cooling pipe, resulting in abnormal noise, especially a rattling noise (4000-10000Hz sound), which becomes a noise source. was.

本考案は斯かる点に鑑みてなされたもので、前記のよう
な分流器の分流管を蒸発器の冷却管に直接接続せずにL
型管を介して接続することにより、このL型管の折曲部
分において定常圧力波を反射させて干渉させ合って、圧
力変動を速かに減衰させるようにし、よって冷房運転時
の冷媒通過音(チュルチュル音)の発生を効果的に防止
できるようにすることを目的とする。
The present invention was made in view of the above points, and it is possible to connect the flow divider pipe of the flow divider to the cooling pipe of the evaporator without directly connecting it to the cooling pipe of the evaporator.
By connecting through a shaped pipe, the steady pressure waves are reflected and interfered with each other at the bent part of the L-shaped pipe, and pressure fluctuations are quickly attenuated, thereby reducing the sound of refrigerant passing during cooling operation. The purpose of this invention is to effectively prevent the occurrence of (churchuru sound).

この目的の達成のため、本考案の構成は、冷媒配管から
の冷媒を分流器により分流管を介して蒸発器の冷却管に
分流供給するようにした空気調和機において、前記冷却
管とほぼ同じ管径のL型管の一端を前記冷却管に連通ず
る一方、前記り製管の他端を、該り製管の折曲部より上
流側に前記分流管の開口端が位置するように前記分流管
に接続し、前記り製管の折曲部と分流管の開口端との間
を、該開口端からの冷媒の膨張噴出によって発生した定
常圧力波と該定常圧力波が前記折曲部で反射した反射波
とが干渉し合う長さに設定したことを特徴とするもので
ある。
To achieve this objective, the configuration of the present invention is to provide an air conditioner in which the refrigerant from the refrigerant piping is supplied in a divided manner to the cooling pipe of the evaporator via the dividing pipe using a flow divider, which is almost the same as the cooling pipe. One end of the L-shaped pipe with a pipe diameter is connected to the cooling pipe, while the other end of the pipe is connected to the cooling pipe so that the open end of the branch pipe is located upstream of the bending part of the pipe. The steady pressure wave generated by the expansion and jetting of the refrigerant from the open end is connected to the branch pipe, and the steady pressure wave generated by the expansion and jetting of the refrigerant from the open end is connected to the bent part of the above-mentioned pipe and the open end of the branch pipe. The length is set so that the reflected waves interfere with each other.

以下、本考案の実施例を図面に基づいて詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は本考案の実施例に係るセパレート形空気調和機
の室内ユニツ)Aを示し、1はケーシングであって、該
ケーシング1の前面中央部には吸込口2が、ケーシング
1の前面下部(吸込口2の下部)には吹出口3がそれぞ
れ設けられている。
FIG. 1 shows an indoor unit (A) of a separate air conditioner according to an embodiment of the present invention, in which 1 is a casing, a suction port 2 is provided at the center of the front surface of the casing 1, and a suction port 2 is provided at the lower front surface of the casing 1. A blowout port 3 is provided (below the suction port 2).

該ケーシング1内には吸込口2に対向してクロスフィン
コイルよりなる蒸発器4が配設され、該蒸発器4の下流
にはクロスフローファン5が配設されて、吸込口2から
吸込んだ空気を蒸発器4で冷却したのち、クロスフロー
ファン5により吹出口3から吹出すように構成されてい
る。
An evaporator 4 made of a cross-fin coil is disposed in the casing 1 facing the suction port 2, and a cross-flow fan 5 is disposed downstream of the evaporator 4 to draw air from the suction port 2. After the air is cooled by an evaporator 4, it is configured to be blown out from an outlet 3 by a cross flow fan 5.

また、前記蒸発器4は、第2図およげ第3図に示す如く
、左右の管板6,6間に水平方向に多数配設された冷却
管7.7・・・(例えば管径すなわち管の内径が9.5
rranf3)と、該冷却管7・・・に嵌挿支持された
多数のフィン8,8・・・とからなり、冷却管7を流れ
る冷媒とフィン8,8間を通る空気との間で熱交換作用
を行うものである。
Further, as shown in FIGS. 2 and 3, the evaporator 4 includes a large number of cooling pipes 7, 7 (for example, pipe diameters, The inner diameter of is 9.5
rranf3) and a large number of fins 8, 8, etc., which are fitted and supported by the cooling pipes 7, and heat is generated between the refrigerant flowing through the cooling pipe 7 and the air passing between the fins 8, 8. It performs an exchange action.

尚、9はU型連絡管である。一方、10は室外ユニット
(図示せず)に接続するための源側冷媒配管であって、
第2図および第3図に示すように、該冷媒配管10の他
端には、膨張機構としてのキャピラリーチューブ18お
よび入口管11を介して分流器12が接続され、該分流
器12からは多数(本実施例では5本)の分流管13.
13・・・が分岐され、該各号流管13の他端は冷却管
7とほぼ同じ管径のL製管14を介して蒸発器4の冷却
管7の各入口に接続されており、前記冷媒配管10かも
の冷媒を分流器12により各分流管13,13・・・に
分流せしめたのちL製管14を経て冷却管7に供給する
ように設けられている。
Note that 9 is a U-shaped connecting pipe. On the other hand, 10 is a source side refrigerant pipe for connecting to an outdoor unit (not shown),
As shown in FIGS. 2 and 3, a flow divider 12 is connected to the other end of the refrigerant pipe 10 via a capillary tube 18 as an expansion mechanism and an inlet pipe 11. (5 in this embodiment) branch pipes 13.
13... are branched, and the other end of each flow pipe 13 is connected to each inlet of the cooling pipe 7 of the evaporator 4 via an L-made pipe 14 having approximately the same pipe diameter as the cooling pipe 7, The refrigerant pipe 10 is provided so that the refrigerant is diverted to each of the branch pipes 13, 13, .

すなわち、従来であれば、このL型管部のところで分流
管が直角に曲げられたのに対し、本例においてはL製管
14を設けているので、分流管13をこの部分でlトさ
な曲げ半径で曲げる必要がなくなり、このため、冷媒を
スムーズに流通させることができる。
That is, in the past, the branch pipe was bent at a right angle at this L-shaped pipe part, but in this example, the L-shaped pipe 14 is provided, so the branch pipe 13 is bent at this part. There is no need to bend the refrigerant with a certain bending radius, which allows the refrigerant to flow smoothly.

なお、該り製管14は、例えば第4図において横長さx
= 50 rrrm、縦置さy=22rrrm、半径
z=12.5mmの寸法のもので、かつ分流管13の挿
入寸法w=20rrrInである。
Note that the curved pipe 14 has a horizontal length x in FIG. 4, for example.
= 50 rrrm, vertically placed y = 22 rrrm, radius z = 12.5 mm, and the insertion dimension of the branch pipe 13 is w = 20 rrrm.

また、前記冷却管7の各出口はヘッダー15を介してガ
ス側冷媒配管16に接続され、室外ユニット(図示せず
)に連絡されている。
Further, each outlet of the cooling pipe 7 is connected to a gas side refrigerant pipe 16 via a header 15, and communicated with an outdoor unit (not shown).

そして、前記り製管14の一端は冷却管7に連通接続さ
れている一方、L製管14の他端は、該り製管14の折
曲部14aより上流側に前記分流管13の開口端が位置
するように分流管13に接続されており、L製管14の
折曲部14aと分流管13の開口端との間の長さくx−
w)は、該開口端からの冷媒の膨張噴出によって発生し
た定常圧力波と該定常圧力波が前記折曲部14aで反射
した反射波とが干渉し合う長さに設定されている。
One end of the L-shaped pipe 14 is connected to the cooling pipe 7, while the other end of the L-shaped pipe 14 is connected to the opening of the branch pipe 13 on the upstream side of the bent portion 14a of the L-shaped pipe 14. It is connected to the branch pipe 13 so that the end is located, and the length x-
w) is set to a length such that a steady pressure wave generated by expansion and jetting of the refrigerant from the opening end and a reflected wave from the steady pressure wave reflected at the bending portion 14a interfere with each other.

さらに、前記分流管13とL製管14との接続部からL
製管14の折曲部14aに至る部分の周囲には、第4図
に示す如(、吸音材17が巻付は配設され、前記部分か
ら放射される音を吸収するように設けられている。
Further, from the connection part between the branch pipe 13 and the L pipe 14,
As shown in FIG. 4, a sound absorbing material 17 is wrapped around the portion of the pipe 14 that reaches the bent portion 14a, and is provided to absorb sound emitted from the portion. There is.

したがって、前記実施例においては、冷房運転時、分流
器12によって分流された分流管13の冷媒は、分流管
13内をスムーズに流れ、そしてL製管14を経て蒸発
器4の冷却管7に供給されるが、該り製管14は冷却管
Iとほぼ同じ管径に、すなわち分流管13より大きな管
径に形成されているため、管径の小さな分流管13の冷
媒がL製管14に流入する際には膨張噴出し、その結果
、第4図実線で示すような定常圧力波が生じる。
Therefore, in the above embodiment, during cooling operation, the refrigerant in the branch pipe 13 separated by the flow divider 12 flows smoothly in the branch pipe 13, and passes through the L-made pipe 14 to the cooling pipe 7 of the evaporator 4. However, since the refrigerant pipe 14 is formed to have approximately the same diameter as the cooling pipe I, that is, a larger pipe diameter than the branch pipe 13, the refrigerant in the branch pipe 13, which has a smaller diameter, flows into the L pipe 14. When flowing into the water, it expands and ejects, resulting in a steady pressure wave as shown by the solid line in Figure 4.

しかし、この定常圧力波はL型骨14内を前進したのち
、該り製管14の折曲部14aで反射され、第4図破線
で示すような反射波が生じ、この反射波と干渉し合うの
で、前記の圧力変動は速かに減衰されるとともに、従来
の如く定常圧力波が冷却管7に伝播することがない。
However, after this steady pressure wave advances inside the L-shaped bone 14, it is reflected at the bent part 14a of the pipe 14, and a reflected wave as shown by the broken line in FIG. 4 is generated, and the wave interferes with the reflected wave. Therefore, the pressure fluctuations described above are quickly attenuated, and a steady pressure wave does not propagate to the cooling pipe 7 as in the conventional case.

よって、冷房運転時の冷媒通過音(チュルチュル音)の
発生を防止することができる。
Therefore, generation of refrigerant passing sound (churchuru sound) during cooling operation can be prevented.

しかも、前記り製管140分流管13との接続部から折
曲部14aまでの部分の周囲に吸音材17(例えばコー
ルテープなど)を巻付けたことにより、前記圧力変動に
よる音が放射されるのを吸収することができるので、騒
音の低減化をより一層図ることができる。
Moreover, by wrapping the sound-absorbing material 17 (for example, coal tape) around the portion of the pipe-making 140 from the connecting portion with the branch pipe 13 to the bent portion 14a, the sound caused by the pressure fluctuation is radiated. Since the noise can be absorbed, the noise can be further reduced.

今、具体的に、前記実施例の如く分流器の分流管をL型
管を介して蒸発器の冷却管に接続した場合(本考案例)
と、該分流管を直接冷却管に接続した場合(従来例)と
の各々について、冷房運転時の騒音測定を行い、その結
果を第5図に示す。
Now, specifically, in the case where the flow divider pipe of the flow divider is connected to the cooling pipe of the evaporator via an L-shaped pipe as in the above embodiment (this example)
Noise measurements were made during cooling operation for both cases: and when the branch pipe was directly connected to the cooling pipe (conventional example), and the results are shown in FIG.

第5図より明らかなように、破線で示す本考案例では実
線で示す従来例に較べて、チュルチュル音の周波数域で
ある4000〜10000Hzの範囲において騒音が約
2〜3dB低くなっており、チュルチュル音(冷媒通過
音)を低減できることが判る。
As is clear from FIG. 5, the noise of the present invention shown by the broken line is about 2 to 3 dB lower in the frequency range of 4000 to 10000 Hz, which is the frequency range of the rattling sound, compared to the conventional example shown by the solid line. It can be seen that the sound (refrigerant passing sound) can be reduced.

尚、前記実施例では、L製管14を冷却管7と別体にし
たが、該冷却管70入ロ側端部を直角に折曲げて、L型
管を冷却管7と一体に形成してもよいのは勿論である。
In the above embodiment, the L-shaped pipe 14 was made separate from the cooling pipe 7, but the L-shaped pipe 14 was formed integrally with the cooling pipe 7 by bending the input end of the cooling pipe 70 at a right angle. Of course, you can.

また、L製管14は前記実施例の如く直角に折曲げたも
のの他、鋭角あるいは鈍角に折曲げたものをも含み、共
に反射波の干渉作用による減衰効果が得られ、同様の作
用効果を奏することができるものであればよい。
In addition to the L pipe 14 bent at a right angle as in the above embodiment, it may also be bent at an acute angle or an obtuse angle. Anything that can be played is fine.

以上説明したように、本考案によれば、冷媒配管10か
もの冷媒を分流器12により分流管13・・・を介して
蒸発器4の冷却管7・・・に分流供給するようにした空
気調和機において、前記冷却管7とほぼ同じ管径のL製
管14の一端を前記冷却管7に連通ずる一方、前記り製
管14の他端を、該り製管14の折曲部14aより上流
側に前記分流管13の開口端が位置するように前記分流
管13に接続し、前記り製管14の折曲部14aと分流
管13の開口端との間を、該開口端からの冷媒の膨張噴
出によって発生した定常圧力波と該定常圧力波が前記折
曲部14aで反射した反射波とが干渉し合う長さに設定
したことにより、冷房運転時における冷媒通過音(チュ
ルチュル音)を効果的に低減させることができ、騒音の
低減化を図ることができるものである。
As explained above, according to the present invention, the refrigerant from the refrigerant pipes 10 is supplied to the cooling pipes 7 of the evaporator 4 in a divided manner by the flow divider 12 through the flow pipes 13. In the harmonizer, one end of an L-shaped tube 14 having approximately the same diameter as the cooling tube 7 is communicated with the cooling tube 7, while the other end of the L-shaped tube 14 is connected to the bent portion 14a of the tube-shaped tube 14. The branch pipe 13 is connected to the branch pipe 13 so that the open end of the branch pipe 13 is located on the upstream side, and the connection is made between the bent portion 14a of the pipe-making pipe 14 and the open end of the branch pipe 13 from the open end. By setting the length so that the steady pressure wave generated by the expansion and jetting of the refrigerant and the reflected wave reflected by the steady pressure wave at the bending part 14a interfere with each other, the refrigerant passing sound (churchuru sound) during cooling operation is reduced. ) can be effectively reduced, and noise can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を示し、第1図は全体概略斜視図
、第2図は要部の側面図、第3図は同平面図、第4図は
模式説明図、第5図は騒音測定結果図である。 4・・・・・・蒸発器、7・・・・・・冷却管、10・
・・・・・源側冷媒配管、12・・・・・・分流器、1
3・・・・・・分流管、14・・・・・・L型管、14
a・・・・・・折曲部。
The drawings show an embodiment of the present invention, in which Fig. 1 is an overall schematic perspective view, Fig. 2 is a side view of the main parts, Fig. 3 is a plan view of the same, Fig. 4 is a schematic illustration, and Fig. 5 is a noise diagram. It is a measurement result diagram. 4...Evaporator, 7...Cooling pipe, 10.
・・・・・・Source side refrigerant piping, 12 ・・・・Flow divider, 1
3... Branch pipe, 14... L-shaped pipe, 14
a...Bent part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷媒配管10からの冷媒を分流器12により分流管13
・・・を介して蒸発器4の冷却管T・・・に分流供給す
るようにした空気調和機において、前記冷却管7とほぼ
同じ管径のL製管14の一端を前記冷却管7に連通ずる
一方、前記り製管14の他端を、該り製管14の折曲部
14aより上流側に前記分流管13の開口端が位置する
ように前記分流管13に接続し、前記り製管14の折曲
部14aと分流管13の開口端との間を、該開口端から
の冷媒の膨張噴出によりて発生した定常圧力波と該定常
圧力波が前記折曲部14aで反射した反射波とが干渉し
合う長さに設定したことを特徴とする空気調和機。
The refrigerant from the refrigerant pipe 10 is transferred to the flow divider 13 by the flow divider 12.
In an air conditioner in which a branched flow is supplied to the cooling pipe T of the evaporator 4 via the On the other hand, the other end of the pipe 14 is connected to the branch pipe 13 such that the open end of the branch pipe 13 is located upstream of the bent portion 14a of the pipe 14, and A steady pressure wave is generated between the bent portion 14a of the pipe-making 14 and the open end of the branch pipe 13 due to expansion and jetting of the refrigerant from the open end, and the steady pressure wave is reflected at the bent portion 14a. An air conditioner characterized by having a length set so that reflected waves interfere with each other.
JP115081U 1981-01-07 1981-01-07 air conditioner Expired JPS5933965Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP115081U JPS5933965Y2 (en) 1981-01-07 1981-01-07 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP115081U JPS5933965Y2 (en) 1981-01-07 1981-01-07 air conditioner

Publications (2)

Publication Number Publication Date
JPS57114374U JPS57114374U (en) 1982-07-15
JPS5933965Y2 true JPS5933965Y2 (en) 1984-09-20

Family

ID=29799650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP115081U Expired JPS5933965Y2 (en) 1981-01-07 1981-01-07 air conditioner

Country Status (1)

Country Link
JP (1) JPS5933965Y2 (en)

Also Published As

Publication number Publication date
JPS57114374U (en) 1982-07-15

Similar Documents

Publication Publication Date Title
JP5425106B2 (en) Air conditioner indoor unit and air conditioner
JP5615360B2 (en) Air conditioner
JP4628380B2 (en) Air conditioner
US7856837B2 (en) Air conditioning equipment, fan equipment, method of reducing noise of equipment, pressure pulsation reducer for refrigeration cycle equipment, pressure pulsation reducer for pump equipment and method of reducing pressure pulsation of equipment
JP3041467B2 (en) Air conditioner
US3531947A (en) Refrigeration system including refrigerant noise suppression
WO2011158309A1 (en) Indoor unit for air conditioner, and air conditioner
JPS5933965Y2 (en) air conditioner
CN211503197U (en) Noise reduction processing device of central air conditioning unit
CN206861938U (en) Throttle mechanism and air conditioner
JPH06194006A (en) Refrigerator
JPH0113966Y2 (en)
CN210921758U (en) Air conditioner silencer
CN212480503U (en) Exhaust pipe silencer of steam jet ejector of steam turbine
CN211623652U (en) Amortization subassembly and air conditioner
CN216845107U (en) Air conditioner
JPH06323564A (en) Air conditioner
JP3043218B2 (en) Air conditioner
JPH09119703A (en) Silencer for air system
JPH08313116A (en) Air conditioner
CN107559958B (en) Air conditioner indoor unit and air conditioner
JP2638450B2 (en) Air-conditioning silencer
JP2014157013A (en) Air conditioner
CN205349659U (en) Compressor and air conditioner with same
JPH03488Y2 (en)