JPS5933452B2 - Double pipe manufacturing method - Google Patents
Double pipe manufacturing methodInfo
- Publication number
- JPS5933452B2 JPS5933452B2 JP16201380A JP16201380A JPS5933452B2 JP S5933452 B2 JPS5933452 B2 JP S5933452B2 JP 16201380 A JP16201380 A JP 16201380A JP 16201380 A JP16201380 A JP 16201380A JP S5933452 B2 JPS5933452 B2 JP S5933452B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- pipe
- expansion
- inner tube
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
Description
【発明の詳細な説明】
<技術分類・分野>
開示技術は油井管等の腐蝕性流体を輸送する二重管の液
圧拡管による製造技術分野に属する。[Detailed Description of the Invention] <Technical Classification/Field> The disclosed technology belongs to the technical field of manufacturing by hydraulic expansion of double pipes for transporting corrosive fluids, such as oil country tubular goods.
<要旨の解説>而して、この発明は炭素鋼製等の外管内
にそれよりも設定量小径のステンレス製等の内管を挿入
して重層させ、該内管内に液圧を印加して該内管を拡管
し、そのまま外管に当接して外管を随伴拡管し、圧力解
放により両管の弾性戻り差を介して自緊させるようにし
た二重管の製造方法に関する発明であり、特に、拡管プ
ロセスにおいて軸方向圧縮力を付与して周方向応力を減
小させるに際し周方向拡管液圧を併せて印加する充分な
軸方向圧縮力より少いようにして印加して拡管し、弾性
戻り差を大きくして締め代を充分に確保するようにする
と共に内管に大きな圧縮残留応力を在らしめるようにし
た二重管の製造方法に係る発明である。<Explanation of the gist>The present invention involves inserting and layering an inner tube made of stainless steel or the like having a smaller diameter by a set amount into an outer tube made of carbon steel or the like, and applying hydraulic pressure inside the inner tube. This invention relates to a method for manufacturing a double-layered pipe, in which the inner pipe is expanded, the outer pipe is brought into contact with the outer pipe, and the outer pipe is caused to self-tighten by releasing pressure through the elastic return difference between the two pipes, In particular, when applying axial compressive force in the tube expansion process to reduce circumferential stress, the pressure is applied at a level lower than the sufficient axial compressive force that is applied together with the circumferential tube expansion liquid pressure to expand the tube and increase elasticity. This invention relates to a method of manufacturing a double-walled pipe in which the return difference is increased to ensure a sufficient interference margin, and a large compressive residual stress is created in the inner pipe.
<従来技術>周知の如く油井管等の腐蝕性流体の輸送配
管には耐圧、耐熱機能を司どる炭素鋼管等の外管と、該
外管内に添接した耐蝕性等を司どるステンレス管等の内
管とから成る二重管から成るものが採用されているが、
膨脹係数の差等の両管の物理的性情の差により稼動中の
境界面のズレ、挫屈、破壊等のおそれを防止するために
、両管の締め代を多くして緊結させるタイプのものが案
出され、各種の緊結タイプの二重管製造方法が採用され
ている。<Prior art> As is well known, corrosive fluid transportation piping such as oil country tubular goods has an outer pipe such as a carbon steel pipe that provides pressure and heat resistance functions, and a stainless steel pipe that is attached to the inside of the outer pipe and provides corrosion resistance. A double pipe consisting of an inner pipe is used,
A type in which both pipes are tightened with a large interference margin in order to prevent the possibility of displacement, buckling, or destruction of the interface during operation due to differences in physical properties such as differences in expansion coefficients between the two pipes. has been devised, and various fastening-type double pipe manufacturing methods have been adopted.
このうち、所謂液圧拡管法を採用するものは圧力の均一
分布、加圧手段の設置容易性、冶金的変質が無い等のメ
リット等から一般に用いられるようになつており、例え
ば、加圧手段に水を利用する場合、コスト、非圧縮性、
冷却可能等の利点も相俟つて用いられ易くなつている。
而して、従来一般に用いられている液圧拡管による自緊
二重管製造方法は第1図に示す様に、例えば、炭素鋼外
管1にステンレス内管2を挿入重層させてその両端にシ
ール枠体3、3を固定状にしてクランプし、該枠体3、
3に対する抗力Tをゼロの状態、即ち、何ら外力を加え
ることない状態で内部に拡管水4を給水して内圧Pを印
加し、水圧拡管するものであり、したがつて、内管2に
は周方向、及び、軸方向共に引張応力Pが印加され、そ
の結果、内外管2、1の径Dと拡管応力Pとの関係は第
2図(縦軸応力P、横軸径D、以下同様)に示す様に外
管1の弾性伸縮C1に対するに内管2の伸縮C2の応力
が相互に高くなつて、降伏点が高くなり、そのため、降
伏してからの圧力解放後の弾性戻り差のポテンシヤルば
少く、図示する様に極めて僅かな締め代ΔD1しか得ら
れない欠点があつた。Among these, the so-called hydraulic pipe expansion method has become commonly used due to its advantages such as uniform pressure distribution, ease of installation of pressurizing means, and no metallurgical deterioration. When using water, cost, incompressibility,
Coupled with the advantages of cooling, etc., it is becoming easier to use.
As shown in Fig. 1, the method of manufacturing a self-contained double pipe using hydraulic pipe expansion, which has been commonly used in the past, involves, for example, inserting and layering a stainless steel inner pipe 2 into a carbon steel outer pipe 1, and then inserting a stainless steel inner pipe 2 into a carbon steel outer pipe 1, and then inserting a stainless steel inner pipe 2 into a carbon steel outer pipe 1, and then inserting a stainless steel inner pipe 2 into a carbon steel outer pipe 1, and then inserting a stainless steel inner pipe 2 into a carbon steel outer pipe 1, and then inserting a stainless steel inner pipe 2 into a carbon steel outer pipe 1, and then inserting a stainless steel inner pipe 2 into a carbon steel outer pipe 1, and then inserting a stainless steel inner pipe 2 into a carbon steel outer pipe 1, and then inserting a stainless steel inner pipe 2 into a carbon steel outer pipe 1, and then inserting a stainless steel inner pipe 2 into a carbon steel outer pipe 1. The seal frames 3, 3 are clamped in a fixed state, and the frames 3,
3 is zero, that is, with no external force applied, water for expansion is supplied inside the tube and internal pressure P is applied to perform hydraulic expansion. A tensile stress P is applied in both the circumferential direction and the axial direction, and as a result, the relationship between the diameter D of the inner and outer tubes 2 and 1 and the tube expansion stress P is shown in FIG. ), the stress of the elastic expansion and contraction C2 of the inner tube 2 becomes higher than that of the elastic expansion and contraction C1 of the outer tube 1, and the yield point becomes higher. Therefore, the difference in elastic return after pressure release after yielding increases. The potential was small, and as shown in the figure, there was a drawback that only a very small interference margin ΔD1 could be obtained.
これに対処するに第3図に示す様に栓体3,3の外端面
に対して支持体5,5を当接させて軸方向圧縮力の反力
Tをとる様に、即ち、P=Tとして降伏を早める軸力バ
ランス方式も考えられるが、当該態様では第4図に示す
様に弾性戻り差はやや大きく得られ、上述態様の締め代
ΔD1に比しΔD1くΔD2の大きな締め代ΔD2が得
られはするものの、それでも充分な締め代が作られると
は云い難い難点があつた。To deal with this, as shown in FIG. 3, the supports 5, 5 are brought into contact with the outer end surfaces of the plugs 3, 3 to take the reaction force T of the axial compressive force, that is, P= An axial force balance method that accelerates yielding as T is also considered, but in this embodiment, as shown in Fig. 4, a slightly larger difference in elastic return is obtained, and the tightening margin ΔD2 is larger than the tightening margin ΔD1 of the above-mentioned embodiment, which is ΔD1 - ΔD2. Although this was achieved, there was still a problem in that it was difficult to create a sufficient tightening allowance.
そのため、内管2に対する圧縮残留応力がとれず、とれ
ても少く、稼動中における応力腐蝕割れが生ずる不具合
がある虞れがあつた。As a result, the compressive residual stress on the inner tube 2 cannot be removed, and there is a risk that stress corrosion cracking may occur during operation.
く発明の目的〉
この発明の目的は上述従来技術に基づく液圧拡管による
二重管製造方法の問題点を解決すべき技術的課題とし、
拡管液圧による軸応力に対向してそれ以上大きな軸力を
印加するようにして降伏点を低くし、緊結力を大にし、
圧縮残留応力を大きくして耐久性に富む二重管が得られ
るようにして各種産業における配管利用分野に益する優
れた二重管の製造方法を提供せんとするものである。Purpose of the Invention The purpose of the present invention is to solve the problems of the double pipe manufacturing method by hydraulic pipe expansion based on the above-mentioned prior art, and
By applying a larger axial force to counter the axial stress caused by the pipe expansion liquid pressure, the yield point is lowered and the binding force is increased.
It is an object of the present invention to provide an excellent method for manufacturing double-layered pipes that can increase compressive residual stress and obtain highly durable double-layered pipes, thereby benefiting piping applications in various industries.
く発明の構成〉上述目的に溢い先述特許請求の範囲を要
旨とするこの発明の構成は前述問題点を解決するために
外管内に内管を挿入し拡管液を供給して加圧し拡管する
に際し、内管端に予め軸方向圧縮力を充分に印加し、該
圧縮力より低い周方向拡管液圧力を印加するように拡管
液圧を印加し早期に内管を降伏させて拡管させ、内外管
の随伴拡管を行い、その後所定増径で拡管圧力を解放し
、軸圧縮力を抜くことにより、内外管の弾性戻り差を著
るしく大きくとることが出来るようにし高い嵌合度を得
る如くした技術的手段を講じたものである。Structure of the Invention> The structure of the present invention, which is full of the above-mentioned objects and whose gist is the scope of the above-mentioned patent claims, is to solve the above-mentioned problems by inserting an inner tube into an outer tube, supplying a tube expansion liquid, pressurizing it, and expanding the tube. At this time, a sufficient axial compression force is applied to the end of the inner tube in advance, and a tube expansion liquid pressure is applied so as to apply a circumferential tube expansion liquid pressure that is lower than the compression force to cause the inner tube to yield early and expand. By performing concomitant expansion of the tube, then releasing the expansion pressure with a predetermined increase in diameter and releasing the axial compression force, it is possible to significantly increase the difference in elastic return between the inner and outer tubes, thereby achieving a high degree of fit. This is a technical measure.
く実施例〉
次にこの発明の実施例を第5図以下の図面を参照して説
明すれば以下の通りである。Embodiments Next, embodiments of the present invention will be described below with reference to FIG. 5 and the following drawings.
尚、第1〜4図と同一態様部分については同一符号を付
して説明するものとする。Note that the same parts as in FIGS. 1 to 4 will be described with the same reference numerals.
第5図に示す実施例は原理態様であり、炭素鋼製等の外
管1に対してステンレス製の内管2を挿入して栓体3,
3を該内管2の両端に嵌着し、該内管2内に拡管液とし
ての水4を給水し、該内管2の栓体3,3の両外端にジ
ヤツキプレート6,6を当接させ、拡管圧Pを印加する
と同時に該拡管圧Pよりも充分大きな設定軸方向圧縮力
Tを印加していくと、第6図に示す様に内管2の応力歪
曲線qに示す様に内管2は早期に降伏し始め、したがつ
て、塑性変形した状態での内管2の周方向応力は僅かに
なり、C1の応力歪線をたどる外管1と一体拡管し、所
定径にされた時点で後拡管応力を解放すると、弾性戻り
差は図示する様に極めて大きな嵌合度ΔD2を得るよう
にされる。The embodiment shown in FIG. 5 is a principle embodiment, in which an inner tube 2 made of stainless steel is inserted into an outer tube 1 made of carbon steel or the like, and a stopper 3,
3 are fitted on both ends of the inner tube 2, water 4 as a tube expansion liquid is supplied into the inner tube 2, and jack plates 6, 6 are fitted on both outer ends of the plugs 3, 3 of the inner tube 2. When the inner tube 2 is brought into contact with the inner tube 2 and a set axial compressive force T that is sufficiently larger than the tube expansion pressure P is applied at the same time as the tube expansion pressure P is applied, the stress strain curve q of the inner tube 2 as shown in FIG. As a result, the inner tube 2 begins to yield early, and the stress in the circumferential direction of the inner tube 2 in the plastically deformed state becomes slight, and the inner tube 2 expands integrally with the outer tube 1 following the stress strain line C1, and reaches a predetermined level. When the post-expansion stress is released at the time when the diameter is increased, the elastic return difference is made to obtain an extremely large degree of fitting ΔD2 as shown in the figure.
勿論、最後に軸方向圧縮力Tを解放するが、両管1,2
間に充分な嵌合度が得られているためにずれ等は生じな
い。又、圧縮力Tは大きな圧縮残留応力として内在され
ることになる。Of course, the axial compressive force T is finally released, but both pipes 1 and 2
Since a sufficient degree of fitting is obtained between the two, no misalignment occurs. Moreover, the compressive force T is internalized as a large compressive residual stress.
而して、実施例としては第7図に示す様に、例えば、炭
素鋼外管1に対しステンレス内管2を挿入した状態で該
内管2の管端にシール機能を有するジヤツキプレート6
′,6′を当接させ、図示しない油圧ジヤツキに連結さ
れるジヤシロツド7,7に連結し、一方のジヤツキプレ
ート6′に設けた給水路8より拡管液としての拡管水を
内管2内に給水充満する。As an example, as shown in FIG. 7, for example, when a stainless steel inner tube 2 is inserted into a carbon steel outer tube 1, a jack plate 6 having a sealing function is attached to the end of the inner tube 2.
', 6' are brought into contact with each other and connected to the jack plates 7, 7 which are connected to a hydraulic jack (not shown), and the expansion water as pipe expansion liquid is supplied into the inner pipe 2 from the water supply channel 8 provided on one jack plate 6'. Water supply is charged.
そして、併せて図示しない油圧ジヤツキにより内管2の
軸方向にジヤツキプレート6′,6′を介して圧縮力T
を印加していくと共に適宜検知制御機構を介して昇圧ポ
ンプにより拡管水に該軸方向圧縮力Tより設定量低い周
方向拡管力Pを印加していく。At the same time, a hydraulic jack (not shown) applies a compressive force T in the axial direction of the inner tube 2 via the jack plates 6', 6'.
At the same time, a circumferential pipe expansion force P that is lower than the axial compressive force T by a set amount is applied to the pipe expansion water by a booster pump via an appropriate detection control mechanism.
そこで、上述の様に印加される軸方向圧縮力Tの助勢力
により周方向は早期に降伏し、内管2は上記小さな拡管
応力で塑性変形し、外管1に当接して一体拡管し、所定
径に増径され、その後減圧され、内外管共に弾性減径す
る。Therefore, due to the auxiliary force of the axial compressive force T applied as described above, the circumferential direction yields early, the inner tube 2 is plastically deformed by the small tube expansion stress, comes into contact with the outer tube 1, and expands integrally. The diameter is increased to a predetermined diameter, and then the pressure is reduced, and both the inner and outer tubes are elastically reduced in diameter.
而して、上述第6図に示す様に内管2の塑性変形拡管応
力は小さいため弾性もどりの内外管2,1の差ΔD3は
著るしく大きくとられる。As shown in FIG. 6, the plastic deformation expansion stress of the inner tube 2 is small, so the difference .DELTA.D3 between the inner and outer tubes 2 and 1 in elastic recovery is significantly large.
そのため、前述原理態様同様両管1,2の嵌合度は大き
く自緊度は大きい。Therefore, as in the principle described above, the degree of fitting between the two tubes 1 and 2 is large, and the degree of self-tension is large.
したがつて、最後に油圧ジヤツキによる軸方向圧縮力を
解除しても前記同様内管2の外管1に対する軸方向ずれ
は生じない。Therefore, even when the axial compressive force by the hydraulic jack is finally released, no axial displacement of the inner tube 2 with respect to the outer tube 1 occurs, as described above.
又、上述同様軸方向圧縮残留応力は大きく内在すること
になる。Further, as described above, a large amount of axial compressive residual stress is present.
尚、第8図には第2,4,6図の合成によつてこの発明
の弾性もどり差の大なる効果による嵌合度の大きさが得
られ、軸方向圧縮残留応力が得られることが明示されて
いる。In addition, FIG. 8 clearly shows that by combining FIGS. 2, 4, and 6, a large degree of fit can be obtained due to the large effect of the difference in elastic return of the present invention, and an axial compressive residual stress can be obtained. has been done.
尚、この発明の実施態様は上述各実施例に限るものでな
いことは勿論であり、種々の態様が採用可能である。It goes without saying that the embodiments of this invention are not limited to the above-mentioned embodiments, and various embodiments can be adopted.
又、対象&丸重管を基本としながらも、更に三重管、四
重管の複重管にも応用可能であり、油井管に限らず、油
送配管、プラント配管に適用可能である。In addition, although it is based on target & round pipes, it can also be applied to double pipes such as triple pipes and quadruple pipes, and is applicable not only to oil country tubular goods but also to oil pipes and plant pipes.
く発明の効果〉以上この発明によれば、二重管の液圧拡
管による製造方法において、外管内に挿入した内管に液
圧を周方向に印加して拡管するに、軸方向に圧縮力を充
分大きくして印加して該大なる軸方向圧縮力より低い周
方向拡管圧を印加するようにして液圧拡管するようにし
たことにより、内管は早期に降伏し、したがつて、該内
管の降伏後の塑性変形応力が小さくて済み、そのため外
管の内管に対する随伴拡管が所定径に達した後減圧解放
することにより両管の弾性もどり差、即ち、嵌合度を大
きく得ることが出来、充分な締め代で自緊二重管を製造
することが出来る優れた効果が奏される。Effects of the Invention> According to the present invention, in the method for manufacturing double pipes by hydraulic pressure expansion, when the inner pipe inserted into the outer pipe is expanded by applying hydraulic pressure in the circumferential direction, compressive force is not applied in the axial direction. By applying a sufficiently large axial compression force and applying a circumferential expansion pressure that is lower than the large axial compressive force, the inner tube yields early, and the inner tube yields at an early stage. The plastic deformation stress after yielding of the inner tube is small, so by releasing the pressure after the accompanying expansion of the outer tube to the inner tube reaches a predetermined diameter, the difference in elastic return between the two tubes, that is, the degree of fit, can be increased. This results in an excellent effect of being able to manufacture self-contained double pipes with a sufficient tightening margin.
又、上述の如く内管塑性変形プロセスでの拡管応力が少
くて済むため、拡管に要する動力もそれだけ少く、製造
コストの低減に寄与することが出来る効果もある。更に
、軸方向圧縮力は拡管後圧縮力を解放しても強い嵌合が
得られているため、ずれがなく、大きな圧縮残留応力と
して作用し、成形二重管の稼動中における応力腐蝕割れ
が防げ、そのため二重管の耐久性が向上するのみならず
、配管整備でプラントのメンテナンスも少くて済むとい
う優れた効果も奏される。Further, as described above, since the tube expansion stress in the inner tube plastic deformation process is small, the power required for tube expansion is correspondingly small, which also has the effect of contributing to a reduction in manufacturing costs. Furthermore, even after the axial compressive force is released after pipe expansion, a strong fit is obtained, so there is no misalignment and it acts as a large compressive residual stress, which prevents stress corrosion cracking during operation of the formed double pipe. This not only improves the durability of the double pipes, but also has the excellent effect of requiring less plant maintenance due to piping maintenance.
第1図は従来態様の流体拡管概略説明断面図、第2図は
その応力歪曲線説明グラフ図、第3図は同改良拡管説明
断面図、第4図は第3図応力歪曲線説明グラフ図、第5
図以下はこの発明の実施例の説明図であり、第5図は原
理態様説明断面図、第6図は同応力歪曲線説明グラフ図
、第7図は1実施例の概略説明断面図、第8図は第2,
4,6図合成説明グラフ図である。
1・・・・・・外管、2・・・・・・内管、P・・・・
・・液圧、T・・・・・・圧縮力、ΔDl,ΔD2,Δ
D3・・・・・・弾性戻り差。Fig. 1 is a schematic sectional view for explaining the conventional fluid pipe expansion, Fig. 2 is a graph for explaining the stress strain curve, Fig. 3 is a sectional view for explaining the improved pipe expansion, and Fig. 4 is a graph for explaining the stress strain curve in Fig. 3. , 5th
The following figures are explanatory diagrams of embodiments of the present invention: FIG. 5 is a cross-sectional view explaining the principle aspect, FIG. 6 is a graph diagram explaining the stress strain curve, and FIG. Figure 8 is the second
Figures 4 and 6 are composite explanatory graphs. 1...Outer pipe, 2...Inner pipe, P...
...Hydraulic pressure, T...Compression force, ΔDl, ΔD2, Δ
D3...Elastic return difference.
Claims (1)
液圧を印加して内管を拡管すると共に外管を随伴拡管し
両管を緊着させ圧力を解放することにより自緊二重管を
製造する方法において、内管軸方向に拡管圧力による軸
力よりも大きな圧縮軸力を印加し、併せて液圧を印加し
て拡管し、内外管の弾性戻り差を大きくして高い嵌合応
力を有すると共に内管に圧縮残留応力を形成させた自緊
二重管を得るようにしたことを特徴とする二重管の製造
方法。1 Inserting an inner tube with a slightly smaller diameter over the outer tube, applying hydraulic pressure to the inner tube to expand the inner tube, and enlarging the outer tube as well, bringing both tubes into close contact and releasing the pressure. In the method of manufacturing a double-walled tube, a compressive axial force larger than the axial force due to the tube expansion pressure is applied in the axial direction of the inner tube, and hydraulic pressure is also applied to expand the tube to increase the difference in elastic return between the inner and outer tubes. A method for manufacturing a double-layered pipe, characterized in that a self-stressing double-layered pipe is obtained which has a high fitting stress and has a compressive residual stress formed in the inner pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16201380A JPS5933452B2 (en) | 1980-11-19 | 1980-11-19 | Double pipe manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16201380A JPS5933452B2 (en) | 1980-11-19 | 1980-11-19 | Double pipe manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5785683A JPS5785683A (en) | 1982-05-28 |
JPS5933452B2 true JPS5933452B2 (en) | 1984-08-16 |
Family
ID=15746386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16201380A Expired JPS5933452B2 (en) | 1980-11-19 | 1980-11-19 | Double pipe manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5933452B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59163088A (en) * | 1983-03-08 | 1984-09-14 | Sumitomo Metal Ind Ltd | Production of seamless clad pipe |
JPH0442024Y2 (en) * | 1986-07-02 | 1992-10-02 | ||
JPH01133624A (en) * | 1987-11-20 | 1989-05-25 | Nippon Steel Corp | Manufacture of tightly attached bimetallic curved tube |
DE19644999C1 (en) * | 1996-10-30 | 1998-08-13 | Schulz Gmbh Wilhelm | Process for manufacturing internally clad metal pipes |
-
1980
- 1980-11-19 JP JP16201380A patent/JPS5933452B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5785683A (en) | 1982-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4069573A (en) | Method of securing a sleeve within a tube | |
USRE30802E (en) | Method of securing a sleeve within a tube | |
JP5027981B2 (en) | Internal swaging fitting | |
US4320568A (en) | Method of expanding tubular members | |
US3228096A (en) | Method for preparing lined piping flanged pipe joints | |
FI95832C (en) | The pipe connections | |
JPS5933452B2 (en) | Double pipe manufacturing method | |
US4262517A (en) | Method of correcting distorted pipe end | |
GB2079204A (en) | Methods of Securing a Tube in the Bore of a Wall | |
JPS6341678B2 (en) | ||
CN105465530B (en) | Pressure-balancing type sleeve expansion joint | |
CN106777780A (en) | Tube-tube plate joint flexible static pressure expanded joint mechanism based method analysis | |
JPS6224216B2 (en) | ||
JPH0240175B2 (en) | ||
JPS58128815A (en) | Method of lining closed profile | |
JPS6328685B2 (en) | ||
CN216952102U (en) | Double-sealing connection structure for lining pipe | |
JPH0127805B2 (en) | ||
JPH0473489A (en) | Tube jointing method | |
JPS644876B2 (en) | ||
JPS6154489B2 (en) | ||
SU1679124A1 (en) | Method of pipe coupling | |
GB2323145A (en) | Forming hoop reinforced stub flange on a liner pipe end | |
SU1013696A1 (en) | Method of non-detachable connection of parts | |
SU1721379A1 (en) | Flanged joint |