JPS5933441B2 - How to ensure uniform material properties of controlled rolled steel plate - Google Patents

How to ensure uniform material properties of controlled rolled steel plate

Info

Publication number
JPS5933441B2
JPS5933441B2 JP3432076A JP3432076A JPS5933441B2 JP S5933441 B2 JPS5933441 B2 JP S5933441B2 JP 3432076 A JP3432076 A JP 3432076A JP 3432076 A JP3432076 A JP 3432076A JP S5933441 B2 JPS5933441 B2 JP S5933441B2
Authority
JP
Japan
Prior art keywords
steel plate
rolling
controlled
rolled steel
material properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3432076A
Other languages
Japanese (ja)
Other versions
JPS52117857A (en
Inventor
浩之 上杉
修三 青木
満弘 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3432076A priority Critical patent/JPS5933441B2/en
Publication of JPS52117857A publication Critical patent/JPS52117857A/en
Publication of JPS5933441B2 publication Critical patent/JPS5933441B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 この発明は制御圧延鋼板の均一な材料特性を確保する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for ensuring uniform material properties of controlled rolled steel sheets.

近年盛んになった寒冷地での資源開発のために供給され
るラインパイプは極寒冷地での使用に加えパイプライン
の高圧化ならびに大径化に対応して、高強度、高靭性が
強く要求される。
Line pipes supplied for resource development in cold regions, which have become popular in recent years, are required to have high strength and toughness to accommodate use in extremely cold regions as well as higher pressure and larger diameter pipelines. be done.

このような要求を満すべきパイプ用鋼板を制御圧延によ
り製造する場合、その要求に合う材料特性を有するのみ
ならず、同−鋼板内で材質のバラツキがあってはならな
いが、制御圧延加工で材料に働く変形条件は本来圧延全
域にわたって一定にはなり得す、上記高強度高靭性化に
関してより優れた材料特性を有する制御圧延鋼板を製造
するには、その制御圧延条件は一層厳しいものとなり、
その条件が厳しくなるにつれ、とくに鋼板の側端部に大
きな材質不均一部が生じて来る。
When manufacturing steel plates for pipes that meet these requirements by controlled rolling, not only must the material properties meet those requirements, but there should be no variation in material within the same steel plate. The deformation conditions acting on the material can originally be constant over the entire rolling region, but in order to produce a controlled rolled steel sheet that has better material properties in terms of the above-mentioned high strength and high toughness, the controlled rolling conditions have to become even stricter.
As the conditions become more severe, large material non-uniformities occur, especially at the side edges of the steel plate.

この発明は制御圧延された全ての鋼板につき、オンライ
ン上で赤外線カメラ等とプロセスコンピューターの組み
合せにより、かような材質不均一部を有利に検出し、次
工程へ適切な切捨量を指令することにより、鋼板内のあ
らゆる部分で要求される材料特性を保証出来る制御圧延
鋼板の製造に関する適切な処理方法を見いだしたもので
ある。
This invention advantageously detects such material non-uniformities in all controlled rolled steel plates online using a combination of an infrared camera, etc. and a process computer, and instructs the appropriate cutting amount to the next process. As a result, we have found an appropriate processing method for producing controlled rolled steel sheets that can guarantee the required material properties in all parts of the steel sheet.

ところで圧延鋼板の製品切断位置は、従来小止り重視の
立場から圧延後の鋼板形状によって決められている。
By the way, the product cutting position of a rolled steel plate has conventionally been determined by the shape of the steel plate after rolling, with emphasis placed on small stops.

一般に制御圧延された鋼板には、鋼板端部に材質不均一
部を有するが、今までは要求特性があまり厳しくなかっ
たので、単に形状不良部を切断するだけで、鋼板全体を
均一な材料特性とすることが可能であった。
Control-rolled steel sheets generally have uneven material properties at the ends of the steel sheet, but until now the required properties have not been very strict, so by simply cutting out the defective parts, the entire steel plate can be made to have uniform material properties. It was possible to do so.

しかし近年盛んになった寒冷地の資源開発に使用される
ようなラインパイプ等の用途では今までになく厳しい材
料特性が要求されるようになり、極寒冷地での使用に加
えて、輸送コスト低減のため使用されるパイプの大径化
、輸送系統内圧の高圧化、またそれに伴うパイプの厚肉
化がますます進行する傾向にあり、こうしてパイプ用素
材としての鋼板に対しても、とくに高強度高靭性化の要
求が強まった。
However, in recent years, applications such as line pipes used in resource development in cold regions have become more demanding than ever before, and in addition to being used in extremely cold regions, transportation costs have also increased. There is a trend toward larger diameter pipes, higher internal pressures in transportation systems, and thicker pipes as a result. Demand for higher strength and toughness has increased.

そこでかような用途に使用されるパイプ用制御圧延鋼板
は、必然的に厳しい制御圧延条件となる。
Therefore, control-rolled steel sheets for pipes used for such purposes are inevitably subjected to strict controlled-rolling conditions.

この場合、制御圧延鋼板の宿命として圧延されたままの
鋼板端部は、圧延中の温度降下が大きく、圧延後の材質
も異り、厳しい制御圧延条件を選べば、それだけ材質不
均一部も広範囲となり、このような鋼板の製品切断位置
をもし従来同様の方法で決定した場合、材質不均一部を
有する鋼板を製品化することになり、かかる鋼板に溶接
を施した場合、造管及びパイプ敷設時の溶接熱の影響に
よる脆化部と母材不良部が連続して存在していることと
なり、パイプ敷設後宮に破壊の危険にさらされることに
なる。
In this case, the fate of a controlled rolled steel plate is that the temperature of the edge of the rolled steel plate is large during rolling, and the material quality after rolling is also different. Therefore, if the product cutting position of such a steel plate is determined using the same conventional method, a steel plate with uneven material will be produced, and if such a steel plate is welded, it will be difficult to manufacture and lay pipes. The brittle part due to the influence of welding heat and the defective part of the base metal continuously exist, and the pipe is exposed to the risk of destruction.

また従来の試料採取位置から採取した試験材の材料試験
値では、該鋼板の信頼すべき代表特性とはなり得ないこ
とは容易に推察できる。
Further, it can be easily inferred that the material test values of the test material taken from the conventional sample collection position cannot be reliable representative characteristics of the steel plate.

さて前述のように一般の制御圧延鋼板では制御条件の厳
しさにより多少の差はあるにしても第1図にみられる材
質不均一部が生じる。
Now, as mentioned above, in general control-rolled steel sheets, material non-uniformities as shown in FIG. 1 occur, although there are some differences depending on the severity of the control conditions.

図は鋼板長手方向の例であるが、幅方向についても同様
の傾向が認められることが調査の結果判っている。
The figure shows an example of the longitudinal direction of the steel plate, but research has shown that a similar tendency is observed in the width direction as well.

この材質不均一部は制御圧延中に行なわれる強制冷却等
により、圧延中の鋼板周囲に著しい温度低下が起り、そ
の部分は予定した制御条件を大きく外れ、その後の圧延
により降伏応力、強度の異常上昇、靭性の著しい劣化(
特に衝撃エネルギーの急激な低下)がもたらされたもの
である。
This material non-uniformity area is caused by a significant temperature drop around the steel plate during controlled rolling due to forced cooling, etc., and this area greatly deviates from the planned control conditions, resulting in abnormal yield stress and strength due to subsequent rolling. rise, significant deterioration of toughness (
In particular, this resulted in a sharp drop in impact energy.

そしてこの様な鋼板中央と周囲の差は制御圧延鋼板の板
厚の厚いほど、鋼板の仕上り温度を低く規制するほどよ
り大きくなり不良部も広範囲になり易い。
The difference between the center and the periphery of the steel plate becomes larger as the thickness of the controlled rolled steel plate increases and as the finishing temperature of the steel plate is regulated lower, and the defective parts tend to become wider.

ここに発明者らはこの不良部を制御圧延の最終仕上げ圧
延の際における鋼板の表面温度分布から検知することの
着想の下でこの温度分布と材料試験値との対応を試みた
ところ非常に良い相関を示すことを見いだした。
Based on the idea of detecting this defective part from the surface temperature distribution of the steel plate during the final finish rolling of controlled rolling, the inventors attempted to correlate this temperature distribution with the material test values, and found that it was very successful. We found that there is a correlation.

すなわち、第2図は制御圧延を行った鋼板の仕上り直後
の表面温度分布を赤外線カメラで走査計測した一例であ
り、鋼板面中央域ではほぼ一定である表面温度が鋼板の
端、側縁に近づくにつれ急激に温度が低下しているのが
判る。
In other words, Figure 2 is an example of scanning measurement using an infrared camera of the surface temperature distribution of a steel plate that has undergone controlled rolling immediately after finishing, and shows that the surface temperature, which is almost constant in the center area of the steel plate, approaches the edges and side edges of the steel plate. It can be seen that the temperature drops rapidly.

またこの鋼板の長手方向の温度分布と降伏点(y、 s
、 )、引張強さくT、S、)の関係を第3図に示す。
In addition, the longitudinal temperature distribution and yield point (y, s
, ) and tensile strength T, S, ) are shown in Figure 3.

本例の場合 温度〜Y、 S、 相関係数γ−0.979温度〜T
、S、 相関係数γ=0.987と高度の相関がみら
れ、同様にして調査した幅方向温度分布とシャルピー吸
収エネルギー(VE−45)についても温度〜vE −
45γ=0.968と高度の相関がある。
In this example, temperature ~ Y, S, correlation coefficient γ - 0.979 temperature ~ T
,S, A high degree of correlation is observed with a correlation coefficient γ = 0.987, and the temperature distribution in the width direction and Charpy absorbed energy (VE-45) investigated in the same way also have a temperature ~ vE −
There is a high correlation of 45γ=0.968.

(第4図参照)このようにして数多くの例で調査した結
果、それらのいずれについても非常に高度の相関が認め
られ、制御圧延を行った鋼板側々について仕上り直後の
表面温度の実測を行うことにより良質部と不良部の識別
が可能であることが確認された。
(Refer to Figure 4) As a result of investigating many examples in this way, a very high degree of correlation was recognized in all of them, and the surface temperature of each side of the steel plate subjected to controlled rolling was measured immediately after finishing. It was confirmed that it was possible to distinguish between good quality parts and defective parts.

すなわち具体的には赤外線カメラ等で実測した鋼板中央
部の平均温度に対し定められた許容範囲内(例えば平均
温度±15°C)にある部分をその鋼板の良質部とみな
しその部分を製品化あるいはその良質部から試料採取す
ることにより鋼板内部の材料特性が均一である鋼板が製
造出来、かつその鋼板の真の代表値となり得る材料試験
値が得られるわけである。
In other words, specifically, the part of the steel plate that is within a specified tolerance range (for example, the average temperature ±15°C) with respect to the average temperature at the center of the steel plate measured using an infrared camera, etc. is considered to be a high-quality part of the steel plate, and that part is commercialized. Alternatively, by collecting samples from the high-quality parts, a steel plate with uniform material properties inside the steel plate can be manufactured, and material test values that can be true representative values for the steel plate can be obtained.

従ってこの発明は上記の良質部、不良部の識別、判定を
オンライン小型計算機と赤外線カメラ等の組み合せで行
いその結果をリアルタイムに切断工程へ指令することに
より均一な材料特性を有する鋼板の製造を可能とするも
のである。
Therefore, this invention makes it possible to manufacture steel plates with uniform material properties by identifying and determining the above-mentioned good quality parts and defective parts using a combination of an online small computer and an infrared camera, etc., and instructing the cutting process with the results in real time. That is.

この場合鋼板中央域すなわち特性安定域における材料特
性が要求性能を満足することの保証を与える必要があり
、このため製品鋼板に所要とされる要求性能を満すよう
に設定した試行制御圧延段階、すなわち材料、性能に見
合う制御圧延スケジュールに含まれる少くとも一部の圧
延段階を経て得られる制御圧延鋼板の最終仕上げ圧延の
際の鋼板表面温度の圧延方向および又は幅方向分布によ
って上記要求性能範囲中央域への的中表面温度と、圧延
方向および又は幅方向温度分布に応じた要求性能の変動
に対する温度差の関係を求めるのであり、これを基準と
して必要なら上記試行制御圧延段階に適宜に修正を加え
以下それと同様の圧延段階を経る制御圧延を施した後続
鋼板につき、最終仕上げ圧延の際における表面温度分布
を走査計測して要求性能に対応する許容温度差から逸脱
域を取捨て切断を行うことにより、均一な材料特性を確
保するのである。
In this case, it is necessary to guarantee that the material properties in the central region of the steel sheet, that is, the property stability region, satisfy the required performance, and for this purpose, a trial controlled rolling stage is set to satisfy the required performance required for the product steel sheet. In other words, the center of the above required performance range is determined by the distribution of the steel plate surface temperature in the rolling direction and/or width direction during the final finish rolling of the controlled rolled steel plate obtained through at least some rolling steps included in the controlled rolling schedule that matches the material and performance. The relationship between the target surface temperature in the area and the temperature difference with respect to the variation in required performance depending on the temperature distribution in the rolling direction and/or width direction is determined, and based on this, if necessary, the trial control rolling stage is modified as appropriate. In addition, for subsequent steel plates that have been subjected to controlled rolling through similar rolling steps, the surface temperature distribution during final finish rolling is scanned and measured, and areas that deviate from the allowable temperature difference corresponding to the required performance are discarded and cut. This ensures uniform material properties.

なおこの方法では制御圧延の工程中少くとも一部の圧延
段階で自動板厚制御装置(A、G、C,)を使用せず、
この制御圧延段階を後続鋼板の制御圧延に踏襲するよう
にしてより正確な材質分布の把握を容易にすることが出
来るのはいうまでもない。
In addition, in this method, automatic plate thickness control devices (A, G, C,) are not used at least in some rolling stages during the controlled rolling process,
It goes without saying that by following this controlled rolling step in the controlled rolling of subsequent steel plates, it is possible to more accurately grasp the material distribution.

以下この発明の方法の実施態様を具体例について説明す
る。
Hereinafter, embodiments of the method of the present invention will be explained using specific examples.

化学成分(重量百分率)がC; 0.07%3 i ;
0.27%、Mn”、1.61%、P;0.15%、S
;0.006%。
Chemical component (weight percentage) is C; 0.07%3i;
0.27%, Mn'', 1.61%, P; 0.15%, S
;0.006%.

v ; 0.063%、Nb;o、oz6%を含み残り
実質的にFeからなるスラブを制御圧延加工により、降
伏点(Y、S、)49.2〜56.2〜、引張強さくT
、s、)56.o%以上、27n7n■ノツチシヤルピ
ー試験における一40°Cでの吸収エネルギ(VE−4
0)7.0’KP−m以上、D、W、T、T、試験にお
ける一40°Cでの延性破面率SA、−4o85%以上
の要求性能を満す厚さ32.0mm0幅3700mm。
v; 0.063%, Nb;
,s,)56. Absorbed energy at -40°C (VE-4
0) 7.0'KP-m or more, D, W, T, T, ductile fracture ratio SA at -40°C in the test, -4o 85% or more, thickness 32.0 mm, width 3700 mm .

長さ20,000mmの鋼板を得るように次の試行制御
圧延段階を含む制御圧延を施した。
Controlled rolling was carried out including the following trial controlled rolling steps to obtain a steel plate with a length of 20,000 mm.

得られた制御圧延鋼板について最終仕上げ圧延の際にお
ける圧延方向および又は幅方向温度分布を計測し、かつ
その温度差とそれに対応する各要求性能の関係を調べて
Y、S、T、S、について第5図aまたVE−40につ
いて第5図b(圧延方向)第5図C(幅方向)、5A−
40について第5図dを得た。
Measure the temperature distribution in the rolling direction and/or width direction during the final finish rolling of the obtained control-rolled steel sheet, and investigate the relationship between the temperature difference and the corresponding required performance to determine Y, S, T, and S. Figure 5a and VE-40 Figure 5b (rolling direction) Figure 5C (width direction), 5A-
Figure 5d was obtained for 40.

この例で温度差に対するY、Sの相関係数はγY=0.
978、同じ<T、Sの相関係数はγ1=0.996、
またvE 40についてもγE=0.990゜0.97
0のごとき高度の相関関係が見出された。
In this example, the correlation coefficient of Y and S with respect to temperature difference is γY=0.
978, the same < T, the correlation coefficient of S is γ1 = 0.996,
Also, for vE 40, γE=0.990°0.97
A correlation as high as 0 was found.

この結果に従い後続スラブの制御圧延について上掲試行
制御圧延段階と同様な制御圧延段階を含む制御圧延を経
て得られる制御圧延鋼板の最終仕上げ圧延の際における
圧延方向および幅方向温度分布を計測し、この例で要求
が最もか酷なY、Sの許容範囲に適合する温度差±10
℃から逸脱する部分を切捨てることにより、制御圧延鋼
板の材料特性の均質性を高度にしかも容易に確保できる
わけである。
According to this result, for the controlled rolling of the subsequent slab, the temperature distribution in the rolling direction and width direction during the final finish rolling of the controlled rolled steel plate obtained through controlled rolling including a controlled rolling stage similar to the trial controlled rolling stage described above was measured, In this example, the temperature difference is ±10 to meet the tolerance range for Y and S, which have the most severe requirements.
By cutting off the portions that deviate from ℃, it is possible to easily ensure a high degree of homogeneity in the material properties of the controlled rolled steel sheet.

なおここに上記の試行制御圧延段階は、つくろうとする
鋼板の特性、諸元に応じて適切に選択されるを要し、若
しこれによって得た鋼板につき施した材料試験結果が要
求性能に適合しないときは、制御圧延スケジュールの修
正変更を加える必要があるのは勿論である。
Note that the trial controlled rolling stage described above must be appropriately selected depending on the characteristics and specifications of the steel plate to be produced, and if the material test results performed on the steel plate obtained thereby meet the required performance. Of course, if this is not the case, it is necessary to modify the controlled rolling schedule.

次に側倒では、化学成分がC;0.06%、Si;0.
26%、Mn;1.71%、p ; 0.01 s%、
S;0.006%、V ; 0.042%、Nb;0.
038% を含み、残り実質的にFeの組成になるスラ
ブを用いてY、854.0〜59.0〜、T、S、60
.0〜以上、VE−505,5Kp−m以上、5A−5
o 90%以上の要求性能を満す厚さ19.0朋、幅3
740朋、長さ20.000mmの鋼板を得るように次
の試行制御圧延段階を含む制御圧延を行って、第6図a
に示すY、SおよびT、S、の温度差相関、第6図す、
cに示すVE−50および第6図dに示すS A−5o
の温度差相関が得られた。
Next, on the side, the chemical components were C; 0.06%, Si; 0.
26%, Mn; 1.71%, p; 0.01 s%,
S; 0.006%, V; 0.042%, Nb; 0.
Y, 854.0~59.0~, T, S, 60
.. 0~ or more, VE-505, 5Kp-m or more, 5A-5
o Thickness: 19.0mm, width: 3mm, satisfying over 90% of required performance
Controlled rolling including the following trial controlled rolling step was carried out to obtain a steel plate with a length of 740mm and a length of 20.000mm, as shown in Fig. 6a.
Temperature difference correlation of Y, S and T, S shown in Figure 6.
VE-50 shown in c and SA-5o shown in Figure 6 d.
The temperature difference correlation was obtained.

第6図a、b、c、dから知れるようにY、S。As can be seen from Figure 6 a, b, c, and d, Y and S.

T、Sの温度差に対する相関係数はそれぞれγY=0.
951 γT=0.975、γE=0.921 、0.
970のごとくこれまた高い相関関係を呈する。
The correlation coefficients for the temperature difference between T and S are γY=0.
951 γT=0.975, γE=0.921, 0.
970, this also exhibits a high correlation.

他の例の要目は次のとおりである。Other examples are summarized below.

化学成分(力) C; o、o O7、Si;0.26、Mn ”、 1
.68、P、0.015、S;0.006、V ; 0
.038、Nb;o、o4゜サイズ(=1.− ) 27゜0X3720X20,000 要求性能 長手方向温度分布に対するY、S、T、S、の関係を第
7図aに、長手方向および幅方向温度分布に対するE−
5oの関係を第7図す、cに、長手方向温度分布に対す
る5A−50の関係を第7図dにそれぞれ示した。
Chemical component (force) C; o, o O7, Si; 0.26, Mn'', 1
.. 68, P, 0.015, S; 0.006, V; 0
.. 038, Nb; o, o4゜Size (=1.-) 27゜0X3720X20,000 Required performanceThe relationship of Y, S, T, S with respect to the longitudinal direction temperature distribution is shown in Figure 7a. E- for the distribution
The relationship between 5o and 5A-50 is shown in FIG. 7c, and the relationship between 5A-50 and longitudinal temperature distribution is shown in FIG. 7d.

以上のべたようにしてこの発明では、圧延ラインに装備
した赤外線カメラ等で制御圧延鋼板の仕上り時の表面温
度を測定し板面中央域平均温度を求め、その平均温度に
対し予じめ実験等で定めた許容温度範囲外を不良部とし
て切捨てる。
As described above, in this invention, the surface temperature of a control-rolled steel plate at the time of finishing is measured using an infrared camera or the like installed in the rolling line, and the average temperature in the center area of the plate surface is determined. Discard parts outside the allowable temperature range as determined by .

この場合、許容温度範囲はコンドロールド−ロールの厳
しさ、要求特性の厳しさによりその大小が決る。
In this case, the allowable temperature range is determined by the severity of the chondral roll and the severity of the required characteristics.

この方法は特にパイプ用鋼板のダブルランダムレングス
材の様に製品長さ許容差の大きい場合非常に有効である
This method is particularly effective when the product length tolerance is large, such as double random length steel plates for pipes.

この発明による効果は次のよ゛うに要約される。The effects of this invention can be summarized as follows.

1、均一な高度の材料特性を有する制御圧延鋼板の製造
が可能である。
1. It is possible to produce controlled rolled steel sheets with uniform and high material properties.

2、適切な試料採取位置を指令することにより、その鋼
板の信頼すべき材料試験値が得られる。
2. Reliable material test values for the steel plate can be obtained by commanding the appropriate sampling location.

3、オンライン小型計算機を用い良質部、不良部の識別
、判定を行うことにより不良部の切捨量の指令が迅速か
つ適確に行うことが可能である。
3. By using a small online computer to identify and judge good quality parts and defective parts, it is possible to quickly and accurately command the amount of defective parts to be cut.

4、均一な材料特性を得るために不良部切捨量一定とし
た場合に比較し、個々の鋼板毎に不良部の判定を行う本
発明による方法は厚板小止の向上につながる。
4. Compared to the case where the amount of defective parts cut is constant in order to obtain uniform material properties, the method according to the present invention in which defective parts are determined for each individual steel plate leads to an improvement in plate reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は制御圧延鋼板の長手方向引張試験結果を示すグ
ラフ、第2図は制御圧延鋼板の仕上り直後の表面温度測
定結果を示すグラフ、第3図はその温度分布(端部)と
引張試験結果(長手方向)を示すグラフ、第4図は同じ
く温度分布とシャルピー衝撃試験結果(幅方向)を示す
グラフ、第5図、第6図および第7図のa、b、c、d
はそれぞれ制御圧延鋼板の表面温度に対するY、S。 T!S、 VE−4oまたはv E −50および5
A−5oの相関関係を示すグラフである。
Figure 1 is a graph showing the longitudinal tensile test results of the controlled rolled steel plate, Figure 2 is a graph showing the surface temperature measurement results of the controlled rolled steel plate immediately after finishing, and Figure 3 is the temperature distribution (edge) and tensile test. Graph showing the results (longitudinal direction), Figure 4 is a graph showing the temperature distribution and Charpy impact test results (width direction), a, b, c, d in Figures 5, 6 and 7.
are Y and S with respect to the surface temperature of the controlled rolled steel plate, respectively. T! S, VE-4o or VE-50 and 5
It is a graph showing the correlation of A-5o.

Claims (1)

【特許請求の範囲】[Claims] 1 製品鋼板の要求性能を浸すように設定した試行制御
圧延段階を経て得られる制御圧延鋼板の最終仕上げ圧延
の際の鋼板表面温度の圧延方向および又は幅方向分布に
よって上記要求性能範囲中央値への的中表面温度と、圧
延方向および又は幅方向温度分布に応じた要求性能の変
動に対する温度差の関係とを求めておき、上記試行制御
圧延と同様の圧延段階を経る制御圧延を施した後続鋼板
につき最終仕上げ圧延の際における表面温度分布を走査
計測して、要求性能範囲に対応する許容温度差からの逸
脱域を取捨て切断することを特徴とする制御圧延鋼板の
均一な材料特性を確保する方法。
1. The distribution of the surface temperature of the steel plate in the rolling direction and/or width direction during the final finish rolling of the controlled rolled steel plate obtained through the trial controlled rolling stage set to meet the required performance of the product steel plate to the median value of the above required performance range. A subsequent steel plate that has been subjected to controlled rolling through the same rolling steps as the trial controlled rolling, with the target surface temperature and the relationship between the temperature difference and the variation in required performance according to the rolling direction and/or widthwise temperature distribution being determined. To ensure uniform material properties of controlled-rolled steel sheets, the method scans and measures the surface temperature distribution during final finish rolling, and cuts off areas that deviate from the allowable temperature difference corresponding to the required performance range. Method.
JP3432076A 1976-03-31 1976-03-31 How to ensure uniform material properties of controlled rolled steel plate Expired JPS5933441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3432076A JPS5933441B2 (en) 1976-03-31 1976-03-31 How to ensure uniform material properties of controlled rolled steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3432076A JPS5933441B2 (en) 1976-03-31 1976-03-31 How to ensure uniform material properties of controlled rolled steel plate

Publications (2)

Publication Number Publication Date
JPS52117857A JPS52117857A (en) 1977-10-03
JPS5933441B2 true JPS5933441B2 (en) 1984-08-16

Family

ID=12410858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3432076A Expired JPS5933441B2 (en) 1976-03-31 1976-03-31 How to ensure uniform material properties of controlled rolled steel plate

Country Status (1)

Country Link
JP (1) JPS5933441B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101362300B1 (en) 2008-03-31 2014-02-12 제이에프이 스틸 가부시키가이샤 Steel plate quality assurance system

Also Published As

Publication number Publication date
JPS52117857A (en) 1977-10-03

Similar Documents

Publication Publication Date Title
US9221127B2 (en) Method for producing welded tubes from steel
JP4358807B2 (en) Method for preventing cracks in continuous cast pieces of high-strength steel
RU2682737C1 (en) Method of manufacturing a rolled sheet for cold rolling and a method for obtaining a sheet from pure titanium
JPS5933441B2 (en) How to ensure uniform material properties of controlled rolled steel plate
RU2524021C2 (en) Cold-rolled steel sheet with perfect pliability and method of its production
KR0179419B1 (en) Steel sheet of high stress corrosion cracking resistanc for cans and method of manufacturing the same
JP5000148B2 (en) Manufacturing method of welded steel pipe
JP2005002378A (en) Method of producing magnesium alloy sheet
JP7078029B2 (en) Electric pipe and its manufacturing method
KR20180086486A (en) Nitriding plate parts and manufacturing method thereof
KR102225061B1 (en) Manufacturing method of Fe-Ni alloy thin plate and Fe-Ni alloy thin plate
JPH06331530A (en) Method for testing hic characteristic of steel tube material
JP2015193027A (en) Manufacturing method of hot rolled steel plate
JP7126097B2 (en) Steel plate butt welding method
EP4268986A1 (en) Hot-stamped component and method for manufacturing same
JP2002346602A (en) Production method of billet without crack defect
JP5055843B2 (en) Manufacturing method of electric resistance welded tube with good weld characteristics
US11628511B2 (en) Method of manufacture of spot welded joint, steel sheet for spot welding use, and steel sheet member for spot welding use
JPH01218703A (en) Method for doubling rolling of aluminum foil
JPH08281306A (en) Manufacture of wide-width steel strip
EP0070082B1 (en) A high strength hot rolled steel sheet having excellent flash butt weldability
JP2981140B2 (en) Cold rolling of steel strip
RU2152444C1 (en) Method of manufacture of steel strips
KR100456934B1 (en) A manufacturing method of a steel sheet for preventing edge break phenomenon of a steel sheet coil
JPS5952232B2 (en) Continuous repeated bending treatment method for welded intermediate steel strip