JPS59333A - Catalyst for preparing pyridine bases - Google Patents

Catalyst for preparing pyridine bases

Info

Publication number
JPS59333A
JPS59333A JP57107722A JP10772282A JPS59333A JP S59333 A JPS59333 A JP S59333A JP 57107722 A JP57107722 A JP 57107722A JP 10772282 A JP10772282 A JP 10772282A JP S59333 A JPS59333 A JP S59333A
Authority
JP
Japan
Prior art keywords
catalyst
silica alumina
temperature
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57107722A
Other languages
Japanese (ja)
Inventor
Yukishige Kadowaki
門脇 幸重
Yoshiaki Tanaka
良明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP57107722A priority Critical patent/JPS59333A/en
Publication of JPS59333A publication Critical patent/JPS59333A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a catalyst for preparing pyridine bases from aldehydes and ammonia, obtained by supporting Ru, Rh, Pt or the like in a specific ratio by a silica alumina carrier. CONSTITUTION:Silica alumina having a composition consisting of 5-30wt% Al2O3 and 95-70wt% SiO2 is used as a carrier and one kind or more of Ru, Rh and Pt is supported in a sum amount of 0.01-5wt% relative to silica alumina to obtain a catalyst for preparing pyridine bases from aldehydes and ammonia. By using this catalyst, the yield of pyridine bases is enhanced. This catalyst is relatively is low in the lowering of activity with the elapse of time and, in the regeneration thereof when the activity thereof is lowered, catalytic activity is easily restored by treatment at a temp. about 100 deg.C lower than the treating temp. of other catalyst.

Description

【発明の詳細な説明】 本発明は、アルデヒド類とアンモニアとからピリジン塩
基類1!:!Il!造する為の触媒に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention provides pyridine bases 1! from aldehydes and ammonia. :! Il! It is related to catalysts for the production of

本発明の触媒を用いればピリジン塩基類を収率よく製造
することができ、使用後の触媒の再生処理が大巾に低温
かつ容易に行うことができる。
By using the catalyst of the present invention, pyridine bases can be produced with good yield, and the regeneration treatment of the used catalyst can be carried out easily and at low temperatures.

本発明の触媒音用いて製造されるピリジン塩基類は、ピ
リジン及びその同族体であるα−1β−及びr−ピコリ
ン、ルチジン、コリジンがあるが、ピリジンはゴム、塗
料工業等の塩基性溶剤、工業原料等°に、ピコリンは溶
剤、合成樹脂、加硫促進剤原料等に、ルチジンは溶剤、
医薬用有機合成原料等広く利用されているものである。
The pyridine bases produced using the catalyst of the present invention include pyridine and its homologs α-1β- and r-picoline, lutidine, and collidine. For industrial raw materials, etc., picoline is used as a solvent, synthetic resin, vulcanization accelerator raw material, etc., and lutidine is used as a solvent,
It is widely used as a raw material for organic synthesis of medicines.

従来、ホルムアルデヒド、アセトアルデヒド、アクロレ
イン或はクロトンアルデヒド等のアルデヒド類の−Sま
たは二種以上とアンモニアとを高温の気相にて触媒の存
在下で反応させ上記ピリジン塩基類全製造することは公
知である。そしてこれらの反応の触媒として、シリカ、
アルミナ、シリカアルミナ等が有効であること、特にシ
リカアルミナが優れることも公知である。更にシリカア
ルミナに金属酸化物や・・ロゲン化物等を担持した改良
発明も多く提案されている。しかし本発明者らの知ると
ころによれば、これらアルデヒド類からの上記ピリジン
或はアルキルピリジンの収率は必ずしも高いとは云えず
また使用中の触媒の活性低下が著しく速く、再生処理を
高頻度で要するなど、触媒性能の改善の余地は大きい。
Conventionally, it has been known to produce all of the above pyridine bases by reacting -S or two or more aldehydes such as formaldehyde, acetaldehyde, acrolein or crotonaldehyde with ammonia in the presence of a catalyst in a high temperature gas phase. be. And as a catalyst for these reactions, silica,
It is also known that alumina, silica alumina, etc. are effective, and silica alumina is particularly excellent. Furthermore, many improved inventions have been proposed in which silica alumina supports metal oxides, chlorides, etc. However, according to the knowledge of the present inventors, the yield of the above-mentioned pyridine or alkylpyridine from these aldehydes is not necessarily high, and the activity of the catalyst in use decreases extremely rapidly, requiring frequent regeneration treatment. There is considerable room for improvement in catalyst performance.

例えば特公昭46−41546号公報によると、シリカ
アルミナにフッ化マンガンを添加した触媒を用い、アク
ロレインとアンモニアを420℃で反応させてピリジン
を20%、β−ピコリンを4.4.8チ、合計64.8
チの各収率で得ている。特公昭51−44946号公報
では、71ツカアルミナ(フッ化アンモニウム及びヨウ
化アンモニ17Aを添加した触媒を用い、450℃で反
応してビ1)シy f 17.0 ’Sr、β−ピコリ
ン−< 46.2 alb合計63.2*O各収率で得
ている。しかも高価なアクロレインを原料とする点全考
慮するならば、これら目的物の収率は経済的に充分高い
とは云えりい。
For example, according to Japanese Patent Publication No. 46-41546, acrolein and ammonia are reacted at 420°C using a catalyst made by adding manganese fluoride to silica alumina, and 20% of pyridine and 4.4.8% of β-picoline are reacted. Total 64.8
The yields are as follows: In Japanese Patent Publication No. 51-44946, 71 tsuka alumina (by reacting at 450° C. using a catalyst containing ammonium fluoride and ammonium iodide 17A) is converted into bi1) y f 17.0'Sr, β-picoline-< A total of 46.2 alb was obtained at each yield of 63.2*O. Moreover, considering the fact that expensive acrolein is used as a raw material, it cannot be said that the yields of these target products are economically sufficiently high.

他のアルデヒド會反応原料とする例として特公昭53−
3394号公報金引用すると、71ツカアルミナに硫酸
カドミウムを添加した触媒ケ用い、ホルムアルデヒド、
アセトアルデヒド及びアンモニア全440℃で反応させ
、ピリジンs 1.5 %、  α−ビコリン6,3チ
、合計57.8%の各収率を得ている。この例はピリジ
ンの収率は高いがピコI)ンとの合計収率では高いとは
云え人い。
As an example of other aldehyde reaction raw materials,
Citing Publication No. 3394, 71 Tsuka uses a catalyst containing cadmium sulfate added to alumina, formaldehyde,
Acetaldehyde and ammonia were reacted at a total temperature of 440°C to obtain a total yield of 1.5% for pyridine and 6,3% for α-vicolin, 57.8% in total. Although the yield of pyridine is high in this example, it cannot be said that the total yield with picone is high.

これらの反応に用いられる触媒の他の問題は多端 少の差はあるが経口的活性低下が共通して著るしく速い
ことで、この為一般に反応と再生が高頻度で繰返されて
いる。活性低下の原因は主として触媒への炭素質の沈積
によるものである。厳密にはアルデヒド類とアンモニア
の重縮金物であるが、ここでは炭素質と以後略称する。
Another problem with the catalysts used in these reactions is that their oral activity declines more or less rapidly, which is generally very rapid, so that reactions and regenerations are generally repeated frequently. The cause of the decrease in activity is mainly due to the deposition of carbonaceous matter on the catalyst. Strictly speaking, it is a condensed metal of aldehydes and ammonia, but hereafter it will be abbreviated as carbonaceous.

従って、再生は酸素含有ガスを高温で流通して炭素質を
燃焼除去することによって行われる。問題は活性低下の
速度があまりにも大きい為、再生を高頻度で繰返さなけ
ればならない点である。
Therefore, regeneration is performed by passing oxygen-containing gas at high temperature to burn off carbonaceous matter. The problem is that the rate of activity decline is so high that regeneration must be repeated frequently.

この為、寿命を延長する改良もなされてお抄、例えば特
開昭56−26546号公報はシリカアルミナのみかけ
比重金小さく成型し友ものを触媒とすることで活性低下
が緩和されるとしている。この場合みかけ比重が0.8
2のシリカアルミナを触媒トシ、アクロレインとアンモ
ニアを450℃で反応させ、ビリジ7f 22.0 %
、β−ピコリンを49.4%合計71.4%の各収率で
得ているが、6t、t 10時間後はそれぞれ19.0 %、  49.5饅、
−一チとなっている。
For this reason, improvements have been made to extend the service life, and for example, Japanese Patent Application Laid-Open No. 56-26546 states that by molding silica-alumina with a small apparent specific gravity and using the material as a catalyst, the decrease in activity can be alleviated. In this case, the apparent specific gravity is 0.8
Using silica alumina as a catalyst, acrolein and ammonia were reacted at 450°C, and viridi 7f 22.0%
, β-picoline was obtained with a total yield of 49.4% and 71.4%, but after 6t and 10 hours, the yield was 19.0%, 49.5%, respectively.
-There is one.

この反応を酸素ガスの共存下で行う方法も公知である。A method of carrying out this reaction in the presence of oxygen gas is also known.

例えは特公昭46−6056号公報ではシリカアルミナ
に酸化カルシウムを5重量%担持したものを触媒とし、
アクロレイン、アンモニア、空気及び窒素の混合ガスを
400℃で流通し、ピリジンi27.9%、β−ピコリ
ンf6.8.%、合計34.7 %の各収率で得ている
。特公昭46−8305号公報でにフッ化水素処理した
シリカアルミナに酸化ジルコニウムを担持した触媒で同
様条件でピリジン′fr64.4%、β−ピコリフ’r
:6.9%(D各駅率で得ている。
For example, in Japanese Patent Publication No. 46-6056, 5% by weight of calcium oxide supported on silica alumina is used as a catalyst.
A mixed gas of acrolein, ammonia, air and nitrogen was passed through at 400°C, pyridine i 27.9%, β-picoline f 6.8%. %, with a total yield of 34.7%. Pyridine'fr64.4% and β-picolyph'r were prepared under the same conditions using a catalyst in which zirconium oxide was supported on silica alumina treated with hydrogen fluoride as described in Japanese Patent Publication No. 46-8305.
: 6.9% (obtained from D station rate.

これらの例から判るように酸素ガスが共存すると生成物
はピコリンが減少し、ピリジンが増加する傾向にある。
As can be seen from these examples, when oxygen gas coexists, the product tends to have less picoline and more pyridine.

向、アクロレイン全原料とすると生成物tよピリジンと
β−ピコリンが主生成物となり、a−tiはr−ピコリ
ンの生成は一般に少ない。
If all the raw materials are acrolein, the main products are pyridine and β-picoline, and the production of r-picoline in ati is generally small.

本発明者らは、アクロレインとアンモニアカラより高い
収率でピリジンとピコリンk(8るべく触媒の探索を行
った結果、ピリジンとピコリンの合計収率において従来
になく高く、またピリジン全比較的高い収率で得ること
の出来る触媒を見出した。またこの触媒社活性低下も比
較的小さく、意外にも再生処理時の温度が通常のものよ
り大l〕に低温とすることが可能である知見を得、本発
明を完成するに至った。
The present inventors have searched for a catalyst for pyridine and picoline k (8) which has a higher yield than acrolein and ammonia cara. We have found a catalyst that can be obtained with high yield.Also, the decrease in activity of this catalyst is relatively small, and surprisingly, we have found that the temperature during regeneration treatment can be lowered to a temperature much lower than usual. As a result, the present invention has been completed.

即ち、本発明は、アルデヒド類とアンモニアとからピリ
ジン塩基類を製造する為の触媒であって該触媒がシリカ
アルミナにルテニウム、ロジウム及び白金から選ばれた
金属の一種又は二種以上會その合計がシリカアルミナに
対して0.01〜5重量%担持したものであるピリジン
塩基類の製造用触媒を提供するものである。
That is, the present invention provides a catalyst for producing pyridine bases from aldehydes and ammonia, the catalyst comprising silica alumina and one or more metals selected from ruthenium, rhodium, and platinum. The present invention provides a catalyst for producing pyridine bases supported on silica alumina in an amount of 0.01 to 5% by weight.

本発明の触媒を用いれば、アクロレイ/カラピリジンと
β−ピコリンが合計収率約86%で得られ、このときの
ピリジン収率は35%であって同様条件でのピリジン収
率は従来になく高い。更に本発明の触媒はこれらの反応
に使用して経時的活性低下は比較的小さく、低下した触
媒の再生が容易に出来ると云う特徴を有する。一般のシ
リカアルミナをベースとする触媒の再生は、空気を高温
で流通して炭素質全燃焼除去するが、この為の温度は4
80°〜550℃程度とする必要がある。
Using the catalyst of the present invention, acrolei/carapyridine and β-picoline can be obtained in a total yield of about 86%, and the pyridine yield at this time is 35%, which is higher than ever before under similar conditions. . Further, the catalyst of the present invention is characterized in that when used in these reactions, its activity decreases relatively little over time, and the catalyst that has decreased can be easily regenerated. To regenerate a general silica-alumina-based catalyst, air is passed through it at high temperature to completely burn off the carbon, but the temperature for this is 4.
It is necessary to set the temperature to about 80° to 550°C.

これより低温では炭素質の燃焼が不充分で完全に除去す
ることが出来ないし、また約600℃を越えると触媒の
シンターリングで活性劣化するので前記範囲にコントロ
ールする必要がある訳で、この為空気の供給量や濃度會
コントロールして再生操作がなされている。これに比較
し本発明触媒の炭素質の燃焼は約100℃低温で口J能
であって、ピリジン塩基類合成の反応温度と近似してお
り、その為炭素質の沈積により活性の低下した触媒の再
生は、その反応温度で原料ガスを空気’1fcFi酸素
含有ガスに切替えることによって可能である。
If the temperature is lower than this, the combustion of carbonaceous material will be insufficient and it will not be possible to remove it completely, and if it exceeds about 600℃, the activity will deteriorate due to sintering of the catalyst, so it is necessary to control it within the above range. Regeneration operations are performed by controlling the air supply amount and concentration. In comparison, the carbonaceous combustion of the catalyst of the present invention is effective at a low temperature of about 100°C, which is close to the reaction temperature for pyridine base synthesis. Regeneration is possible by switching the feed gas to air'1fcFi oxygen-containing gas at the reaction temperature.

即ち反応と再生の都度反応器温度を上昇させたり冷却す
る操作やその付帯8備を不曹とする。
In other words, the operation of raising and cooling the reactor temperature each time a reaction and regeneration is performed, and its accompanying equipment, are unnecessary.

本発明の触媒はアルミナ含有率5〜30重its、シリ
カ含有率95〜70重M%の組成の通常の製法によるシ
リカアルミナが担体として使用される。
In the catalyst of the present invention, silica alumina prepared by a conventional method and having an alumina content of 5 to 30% by weight and a silica content of 95 to 70% by weight is used as a carrier.

酸量は多い方が好ましく、ダラム当り0.1ミリ当量以
上、好ましくは0.3 ミIJ当量以上の酸性度を持つ
ものが適する。酸性度の上限は特に定めないが一般には
0.8〜1.2 ミリ当量/グラム程度である。こ\で
云う酸性度はアミン滴定法により求めることができる。
A large amount of acid is preferable, and an acid having an acidity of 0.1 milliequivalent or more, preferably 0.3 milliJ equivalent or more per duram is suitable. There is no particular upper limit to the acidity, but it is generally about 0.8 to 1.2 milliequivalents/gram. The acidity mentioned here can be determined by amine titration.

上記シリカアルミナは例えばゲル混合法、共グル化法、
含浸法等任意の方法で調製し、200〜800℃で、好
ましくは400〜600℃の温度範囲で焼成することに
よって得られる。
The above-mentioned silica alumina can be produced by, for example, gel mixing method, co-gluing method,
It is obtained by preparing it by any method such as an impregnation method and firing it at a temperature range of 200 to 800°C, preferably 400 to 600°C.

テ 上記シリカアルミナへのル會ニウム、ロジウム及び白金
の担持は、一般に行われている方法が採用される。例え
ば、シリカアルミナを使用する形状に成型し、てから行
ってもよく、シリカアルミナ會詞製する途中のゲル状物
に混合する方法であってもよく、また焼成されたシリカ
アルミナの微粉体に相持した後成型する方法であっても
よい。シリカアルミナが一旦焼成され′fCものである
場合は担持すべき金属の水溶性化合物を溶液となし、シ
リカアルミナを浸漬して吸着担持するか或は蒸発乾個ま
たはイオン交換して担持することが出来る。
A commonly used method can be used to support ruthenium, rhodium, and platinum on the silica alumina. For example, silica alumina may be molded into the desired shape and then mixed into a gel-like material during the production of silica alumina, or it may be mixed into a fired silica alumina fine powder. A method of holding them together and then molding may be used. If the silica alumina has been calcined and is at 'fC, the water-soluble compound of the metal to be supported can be made into a solution, and the silica alumina can be immersed and supported by adsorption, or it can be supported by evaporation to dryness or ion exchange. I can do it.

但しここで担持する金属は高価であるので、シリカアル
ミナの粒子全体に均一に分散させる後述の様な工夫が必
要である。
However, since the metal supported here is expensive, it is necessary to take measures to uniformly disperse it throughout the silica-alumina particles as described below.

即ち、上記担持法の中でより好ましい方法は、イオン交
換法で担持することである。この方法によれば、担持す
べき金属は効果的に分散されるので微量用いれによいか
ら経済的であり、また反応の面でも優れた結果が得られ
る。イオン交換法による担持は、シリカアルミナのプロ
トン酸点全担持すべき金属イオンまたは該金属の錯イオ
ンで交換すればよく、この種の金属で通常行われる方法
が用いられる。例えば”触媒tiM]fR化学2(尾崎
草編、講談社1980年刊)第73頁及び241頁に記
されている方法を用いることができる。これによるとま
ずシリカアルミナ’4o、を規定のアンモニア水に1〜
2週間浸漬し、表面プロトン酸点をアンモニウム塩(−
NH4)とする。これ全交換すべき金属のアンミン錯体
、例えば白金については(Pt (NHa )43  
水溶液によってイオン交換し、水洗し、乾燥した後、空
気中で焼成してアンミン錯体を分解し、次いで水素還元
すれば高い分散度のげ全担持シリカアルミナが得られる
。この場合一般にはアンモニア水の濃度゛は0.05〜
2規定を用い、1日〜15日間浸漬しL後、シリカアル
ミナtカラムに充填してアンミン錯体溶液全流通して交
換するか、または回分式に該溶液に浸漬して所定量交換
させる。焼成は300〜600℃、水素還元は200〜
500℃でそれぞれ1−10時間実施すればよい。′1
fc担持金属はピリジン塩基類製造反応使用温度条件で
はメタル状が安定であるので焼成及び還元の工程の一方
或は両方上省略して反応器に充填し、反応前処理として
空気、アンモニアガス等適当なガス全流通して分解及び
還元を行うことも可能である。
That is, a more preferable method among the above-mentioned supporting methods is to support by ion exchange method. According to this method, since the metal to be supported is effectively dispersed, it is economical because only a small amount can be used, and excellent results can be obtained in terms of reaction. For supporting by ion exchange method, all proton acid sites of silica alumina may be exchanged with metal ions to be supported or complex ions of the metal, and a method commonly used for this type of metal is used. For example, the method described in "Catalyst tiM]fR Chemistry 2" (edited by Kusa Ozaki, published by Kodansha, 1980), pages 73 and 241, can be used. According to this method, first silica alumina '4o is added to specified ammonia water at 1: ~
After 2 weeks of immersion, the surface proton acid sites were treated with ammonium salt (-
NH4). For ammine complexes of metals to be completely exchanged, such as platinum (Pt (NHa)43
After ion exchange with an aqueous solution, washing with water, drying, and calcining in the air to decompose the ammine complex, followed by hydrogen reduction, a highly dispersed silica alumina fully supported on shavings can be obtained. In this case, the concentration of ammonia water is generally 0.05~
After soaking for 1 to 15 days using 2N, it is packed into a silica-alumina T-column and the entire ammine complex solution is passed through for exchange, or it is immersed in the solution batchwise to exchange a predetermined amount. Firing at 300-600℃, hydrogen reduction at 200-600℃
Each treatment may be carried out at 500° C. for 1 to 10 hours. '1
Since the fc-supported metal is stable in the metal form under the temperature conditions used in the reaction for producing pyridine bases, one or both of the calcination and reduction steps are omitted and the reactor is filled, and air, ammonia gas, etc. are used as a pre-reaction treatment. It is also possible to carry out decomposition and reduction by circulating all the gases.

本発明の触媒に用いられる担持される金属は、−Sまた
は二種以上をその合計でシリカアルミナに対して0.0
1〜5重量%好ましくは0.05〜3重量%担持する。
The supported metal used in the catalyst of the present invention is -S or two or more metals in a total amount of 0.0% relative to silica alumina.
It is carried in an amount of 1 to 5% by weight, preferably 0.05 to 3% by weight.

この下限より少ないと本発明の効果が現れず、また上限
を越える使用は反応の選択性全低下させること及び触媒
価格の面で不利である。従って該金属担持は最も優れた
効果が得られる上記調製法を用いるべきであるが、作用
効果と触媒コスIf考慮して上記範囲から実施者が選択
すればよい。
If the amount is less than this lower limit, the effect of the present invention will not be manifested, and if it is used more than the upper limit, the selectivity of the reaction will be completely reduced and the cost of the catalyst will be disadvantageous. Therefore, the above-mentioned preparation method that provides the most excellent effect should be used for supporting the metal, but the metal may be selected by the practitioner from the above-mentioned range in consideration of the effect and catalyst cost If.

本発明の触媒の使用VCついては特に制限されることは
ないので、この種の反応の通常の条件がそのまま適用さ
れる。アルデヒド類としては、ホルムアルデヒド、アセ
トアルデヒド、アクロレイン、クロトンアルデヒド等が
1吏用可能でアルデヒドの合計モル故に対してアンモニ
ア全モル5〜5倍モル程度、気相にて混合し、300〜
500℃に加熱されlc本発明の触媒に1〜20秒の接
触時間で流通すればよい。この場合原料ガスは窒素、水
蒸気、−酸化炭素、二酸化炭素等で希釈されでいてもよ
く、少量の炭化水素ガスの共存も有害ではない。
Since there are no particular restrictions on the VC used in the catalyst of the present invention, the usual conditions for this type of reaction can be applied as is. As aldehydes, formaldehyde, acetaldehyde, acrolein, crotonaldehyde, etc. can be used in one volume.Since the total mole of aldehyde is 5 to 5 times the total mole of ammonia, it is mixed in the gas phase, and 300~
It may be heated to 500° C. and passed through the catalyst of the present invention for a contact time of 1 to 20 seconds. In this case, the raw material gas may be diluted with nitrogen, water vapor, -carbon oxide, carbon dioxide, etc., and the coexistence of a small amount of hydrocarbon gas is not harmful.

原料供給の事情その他で酸素ガスま友は空気の共存する
反応にも本発明の触媒は使用され乙。また原料の一部と
してメタ、ノール、アセトン、メチラール、メチルエチ
ルケトン等を混合使用する反応にも本発明の触媒は有効
である。
Due to raw material supply issues and other reasons, the catalyst of the present invention may not be used in reactions where air is present instead of oxygen gas. The catalyst of the present invention is also effective in reactions that use a mixture of meth, ethanol, acetone, methylal, methyl ethyl ketone, etc. as part of the raw materials.

本発明の触媒を反応に使用して触媒の活性が低下し再生
の必要が生じた場合は、反応系内を窒素、スチーム等不
活性ガスでパージした後、350〜450℃で酸素含有
ガスを流通して触媒層に沈積した炭素質を燃焼除去する
ことにより活性が回復される。上記温度範囲内であれば
、酸素ガスが供給されると本発明の触媒では該炭素質は
燃焼を始め触媒の温度は上昇する。このとき触媒の温度
が急激に上昇したり、600℃以上の高温になると本 触媒の一質的劣化金起すことがあるので、急激な酸素ガ
スの供給は避けるべきである。この為、供給ガス中の酸
素譲度は始めは低めて、例えば空気を窒素、スチーム等
不活性ガスで希釈して供給するかまたは、酸素の供給量
を制限して除々に燃焼させる等の方法が好ましい。再生
が完了したか否かの判定は、充分に酸素が供給されてい
る条件で発熱がなくなったこと、或は出口ガス中の二酸
化炭素の生成がなくなったことで判断されるが、より完
全を期すならば、更に触媒層温度を適当な方法でlθ〜
50C上昇させて出口ガス中の二酸化炭素の生成が実質
的にないことによって確認される。
When the catalyst of the present invention is used in a reaction and its activity decreases and it becomes necessary to regenerate it, the inside of the reaction system is purged with an inert gas such as nitrogen or steam, and then the oxygen-containing gas is heated at 350 to 450°C. The activity is restored by burning and removing the carbonaceous material that has flowed and deposited on the catalyst layer. If the temperature is within the above temperature range, when oxygen gas is supplied, the carbonaceous material starts to burn in the catalyst of the present invention, and the temperature of the catalyst increases. At this time, if the temperature of the catalyst suddenly rises or reaches a high temperature of 600° C. or higher, the catalyst may be completely deteriorated, so rapid supply of oxygen gas should be avoided. For this reason, the oxygen yield in the supplied gas is initially lowered, for example, by diluting air with an inert gas such as nitrogen or steam, or by limiting the amount of oxygen supplied and gradually burning it. is preferred. Judgment as to whether regeneration is complete is made by the disappearance of heat generation under conditions where sufficient oxygen is supplied, or by the disappearance of carbon dioxide generation in the outlet gas, but more complete regeneration is required. If desired, further increase the catalyst layer temperature by an appropriate method.
This is confirmed by the substantial absence of carbon dioxide production in the exit gas at 50C.

以下に実施例金挙げて本発明をより詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

同、収率の定義は次式によるものである。The definition of yield is based on the following formula.

実施例1〜3(触媒の調製例) 直径4m、長さ約6關のシリカアルミナ(アルミナ13
重量%、シリカ87重量%、8揮化学製:X−638L
)’i予めマツフル炉f 600 c、3時間焼成し、
その132 f を0.2規定のアンモニア水溶液2ノ
中に浸し、2日間時々攪拌して放置した。この溶液を分
離した後NH4イオンが洗液に検出されなくなるまで蒸
留水で洗浄し、水を切って2日間室温にて乾燥した。こ
のシリカアルミナを4等分し、その−をビーカーに入れ
その粒子が丁度浸る量の蒸留水を加えて60℃の湯浴中
 7に入れ加温した状態で、表−1に示す各金属のアン
ミン錯体の水溶液を滴下し、時々攪拌した。所定It制
下した後、時々攪拌して同温で2時間保持し、室温下で
更に2日間放置した。このようにして金属アンミン錯体
會イオン交換して担持したシリカアルミナ触媒前駆体音
蒸留水で洗浄してCi−イオンが検出されなくなる゛ま
で洗浄した後、110℃で乾燥した。これ全水素ガスを
流通して400℃で4時間還元処理し、表−1記載の触
媒層それぞれ得た。
Examples 1 to 3 (Catalyst Preparation Example) Silica alumina (alumina 13
Weight%, Silica 87% by weight, 8 Volatile Chemical: X-638L
) 'I pre-fired in a Matsufuru furnace f 600 c for 3 hours,
The 132 f was immersed in two volumes of 0.2N ammonia aqueous solution and left for two days with occasional stirring. After separating this solution, it was washed with distilled water until no NH4 ions were detected in the washing solution, the water was drained, and it was dried at room temperature for 2 days. Divide this silica alumina into four equal parts, put the pieces in a beaker, add enough distilled water to soak the particles, and place in a hot water bath at 60°C. An aqueous solution of ammine complex was added dropwise and stirred occasionally. After controlling the predetermined It, the mixture was kept at the same temperature for 2 hours with occasional stirring, and further left at room temperature for 2 days. The silica-alumina catalyst precursor supported by metal ammine complex ion exchange was washed with sonic distilled water until no Ci- ions were detected, and then dried at 110°C. This was subjected to a reduction treatment at 400° C. for 4 hours while flowing a total hydrogen gas to obtain each of the catalyst layers listed in Table 1.

表−1 実施例4〜6(ピリジン塩基類の製造例)内径i 9m
m、 長す3 o o關のステンレススチール製の反応
管に実施例1〜3で得友触媒25−を充填し、ナイター
浴を介して加熱した。原料ガスとしてアクロレイン6%
、アンモニア5%、窒素89チの混合ガス全空間速度3
00 hr’ (0℃基準)で供給し、反応温度300
〜400℃で5時間反応した。
Table-1 Examples 4 to 6 (Production example of pyridine bases) Inner diameter i 9m
A stainless steel reaction tube with a length of 3 mm and 3 mm was filled with the catalyst 25 obtained in Examples 1 to 3, and heated through a nighter bath. Acrolein 6% as raw material gas
, ammonia 5%, nitrogen 89% mixed gas total space velocity 3
00 hr' (based on 0°C), and the reaction temperature was 300 hr'.
The reaction was carried out at ~400°C for 5 hours.

反応管出口ガスは5〜10℃に冷却して気体と液体に分
離し、それぞれをガスクロマトグラフィーを用いて分析
した。
The reaction tube outlet gas was cooled to 5 to 10°C and separated into gas and liquid, each of which was analyzed using gas chromatography.

反応の結果、ピリジンとβ−ピコリンの合計収率は反応
温度400℃でいずれも最高となり、表−2の如くであ
つfc。反応終了後1素ガスでパージした後冷却し、触
媒を取出し、沈積炭素の燃焼特性會測る為、示差熱分析
(DTAと略記する)1−行った。
As a result of the reaction, the total yield of pyridine and β-picoline was the highest at a reaction temperature of 400°C, as shown in Table 2, and fc. After the reaction was completed, the reactor was purged with elementary gas, cooled, and the catalyst was taken out.Differential thermal analysis (abbreviated as DTA) was conducted to measure the combustion characteristics of the deposited carbon.

1) T A分析条件 サンプル  lOダ 雰囲気  空気50 wl/ml n 加熱速度  10℃/min 温  度   室温 〜800c 各触媒についての燃焼ピーク温度及び燃焼による重量減
少量全表−2に示す。
1) Sample of TA analysis conditions 1O da atmosphere Air 50 wl/ml n Heating rate 10°C/min Temperature Room temperature ~800c The combustion peak temperature and amount of weight loss due to combustion for each catalyst are shown in Table-2.

表−2 比較例1 金属を担持しない実施例1〜3に用いたシリカアルミナ
を、実施例4〜6と同様に反応に使用し友。反応後、実
施例4〜6と同様に生成物の分析及び反応後の触媒のD
TA?Il−行った。結果を表−3に示す。
Table 2 Comparative Example 1 The silica alumina used in Examples 1 to 3, which does not support metal, was used in the reaction in the same manner as Examples 4 to 6. After the reaction, analysis of the product and D of the catalyst after reaction in the same manner as in Examples 4 to 6.
TA? Il-I went. The results are shown in Table-3.

比較例2〜3 金属として亜鉛又はマグネシウム音用いそれぞれ硝酸亜
鉛水溶液又は硝酸マグネシウム水溶液全実施例1〜3と
同様なイオン交換法により実施例1〜3に用い友シリカ
アルミナにそれぞれ金属として1.85重i%、1.0
重ft%担持し、500cで3時間空気中で焼成した触
媒をそれぞれ用い、実施例4〜6と同様の反応及び分析
を行った。結果を表−3に示す。ピリジン収率tli2
2〜25%と低く燃焼温度はいずれも500C以−りと
高がった。
Comparative Examples 2-3 Zinc or magnesium nitrate was used as the metal. Zinc nitrate aqueous solution or magnesium nitrate aqueous solution was used in Examples 1-3 using the same ion exchange method as in Examples 1-3. Weight i%, 1.0
Reactions and analyzes similar to those in Examples 4 to 6 were carried out using catalysts loaded in weight ft % and calcined in air at 500 c for 3 hours. The results are shown in Table-3. Pyridine yield tli2
The combustion temperature was as low as 2 to 25% and rose to over 500C in all cases.

(以下余白) 表−3 実施例7及び比較例4 実施例3及び比較例1で用いた触媒をそれぞれ用い、反
応温度全400℃に保ち、反応時間全8時間とした他は
実施例4〜6と同様に反応全行った。この間に4回生成
物の分析を行った。結果は表−4に示す。
(Leaving space below) Table 3 Example 7 and Comparative Example 4 Examples 4 to 4 except that the catalysts used in Example 3 and Comparative Example 1 were used, the reaction temperature was kept at 400°C, and the reaction time was 8 hours. The entire reaction was carried out in the same manner as in 6. During this time, the product was analyzed four times. The results are shown in Table-4.

反応終了後400℃で窒素ノく一ジし、実施例3で用い
た触媒(Pt/5in2・A)203と略記する)につ
いては400℃で、比較例1で用いた触媒、(8i0z
−人1tOs と略記する)については500℃に昇温
して、空気を流通して再生処理を行った。
After the reaction was completed, nitrogen was purged at 400°C, and the catalyst used in Example 3 (abbreviated as Pt/5in2・A) 203) was heated to 400°C, and the catalyst used in Comparative Example 1, (8i0z
- 1 tOs per person) was heated to 500° C. and air was circulated for regeneration treatment.

空気は最初は窒素ガスで希釈してlO%濃度で供給し序
々に濃度を上げ3時間後100チとした。
Air was first diluted with nitrogen gas and supplied at a concentration of 10%, and the concentration was gradually increased to 100% after 3 hours.

この間出ロガスの分析を行ったがPい102・Aj20
3はCOzが、S iOz JkjzOaではCOzと
COが生成した。
I analyzed this intermittent log gas, but P102 and Aj20
In case 3, COz was generated, and in S iOz JkjzOa, COz and CO were generated.

空気100%として1時間後に両者共CO2及びCOの
生成量は無視し得るまでに減少したので、それぞれ温度
f、50℃上げてみたが、CO2、COの生成は増加せ
ず、炭素質の燃焼は完了したとみなせた。
After 1 hour with 100% air, the amount of CO2 and CO produced in both cases decreased to a negligible level, so I tried raising the temperature f by 50℃, but the production of CO2 and CO did not increase, indicating that the combustion of carbonaceous material was considered completed.

両触媒について再度反応に使用した結果を表−4に併せ
て示した。両者共、はソ第−回反応の収率であり、再生
されたことが判るが、Pt/5i02 ・AjO社8 
ioz・Aj203に比べioo℃低温の400℃で再
生されこの温度は反応温度と同じであった。
The results of using both catalysts in the reaction are also shown in Table 4. In both cases, is the yield of the second reaction, and it can be seen that it has been regenerated, but Pt/5i02 ・AjO Company 8
It was regenerated at 400° C., which is io0° C. lower than that of ioz.Aj203, and this temperature was the same as the reaction temperature.

(以下余白) 表−4 特許出願人  三菱油化株式会社 代理人 弁理士 古 川 秀 利 代理人 弁理士 長 谷 正 久(Margin below) Table-4 Patent applicant: Mitsubishi Yuka Co., Ltd. Agent: Patent Attorney Hidetoshi Furukawa Agent: Patent Attorney Masahisa Nagatani

Claims (1)

【特許請求の範囲】[Claims] (1)  アルデヒド類とアンモニアとからピリジン塩
基類を製造する為の触媒であって該触媒がシリカアルミ
ナにルテニウム、ロジウム及び白金から選ばれた金属の
一種又は二種以上會その合計がシリカアルミナに対して
0.O1〜5重Wk%担持したものであるピリジン塩基
類の製造用触媒。
(1) A catalyst for producing pyridine bases from aldehydes and ammonia, the catalyst comprising silica alumina and one or more metals selected from ruthenium, rhodium and platinum, the total of which is silica alumina. Against 0. A catalyst for producing pyridine bases, which supports 1 to 5 wk% of O.
JP57107722A 1982-06-23 1982-06-23 Catalyst for preparing pyridine bases Pending JPS59333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57107722A JPS59333A (en) 1982-06-23 1982-06-23 Catalyst for preparing pyridine bases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57107722A JPS59333A (en) 1982-06-23 1982-06-23 Catalyst for preparing pyridine bases

Publications (1)

Publication Number Publication Date
JPS59333A true JPS59333A (en) 1984-01-05

Family

ID=14466285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57107722A Pending JPS59333A (en) 1982-06-23 1982-06-23 Catalyst for preparing pyridine bases

Country Status (1)

Country Link
JP (1) JPS59333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173815A (en) * 1985-01-30 1986-08-05 Amada Co Ltd Control device of electrode in electric discharge machining
JPS61265209A (en) * 1985-05-20 1986-11-25 Amada Co Ltd Control device for electrode in electric discharge machining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173815A (en) * 1985-01-30 1986-08-05 Amada Co Ltd Control device of electrode in electric discharge machining
JPS61265209A (en) * 1985-05-20 1986-11-25 Amada Co Ltd Control device for electrode in electric discharge machining

Similar Documents

Publication Publication Date Title
US5395812A (en) Silver catalyst for production of ethylene oxide and method for production of the catalyst
KR100277241B1 (en) Process for preparing unsaturated aldehyde and unsaturated carboxylic acid
US4212772A (en) Catalyst for the manufacture of ethylene oxide
US4471071A (en) Silver catalysts, and a process for their preparation
JPS6159178B2 (en)
JPS6155416B2 (en)
JPH11262664A (en) Silver-containing supported catalyst, catalyst intermediate, its production and method for using same
JP2997039B2 (en) Selective monoepoxidation of styrene, styrene analogs and styrene derivatives to the corresponding oxides with molecular oxygen
JPS63137755A (en) Reactivation of catalyst
KR940011892B1 (en) Regeneration of catalyst
US3962126A (en) Reactivation of a magnesium oxide catalyst
JPH0533100B2 (en)
EP0109259B1 (en) Method for production or activation of antimony-containing metal oxide catalysts
US6346646B1 (en) Process for producing methacrolein and methacrylic acid
JPS59333A (en) Catalyst for preparing pyridine bases
JPS6340577B2 (en)
KR20010021870A (en) Process for producing styrene
JPS6272632A (en) Transhydrogenation of hydrocarbon blend
CA1253507A (en) Preparation process of indoles
JPS6332338B2 (en)
JPH0463140A (en) Zeolite catalyst
KR100324873B1 (en) A method for recycling Fe-Pd solid catalyst
JP4025502B2 (en) Catalyst for producing aldehyde from lower hydrocarbon and method for producing aldehyde using carbon dioxide as oxidizing agent
JPH03207454A (en) Method for regenerating catalyst
JP2903073B2 (en) Method for producing ethylene