JPS5933262B2 - Channel thickness measurement method for semiconductor devices - Google Patents

Channel thickness measurement method for semiconductor devices

Info

Publication number
JPS5933262B2
JPS5933262B2 JP1215377A JP1215377A JPS5933262B2 JP S5933262 B2 JPS5933262 B2 JP S5933262B2 JP 1215377 A JP1215377 A JP 1215377A JP 1215377 A JP1215377 A JP 1215377A JP S5933262 B2 JPS5933262 B2 JP S5933262B2
Authority
JP
Japan
Prior art keywords
channel
substrate
voltage
ccd
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1215377A
Other languages
Japanese (ja)
Other versions
JPS5397778A (en
Inventor
哲生 山田
信雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1215377A priority Critical patent/JPS5933262B2/en
Publication of JPS5397778A publication Critical patent/JPS5397778A/en
Publication of JPS5933262B2 publication Critical patent/JPS5933262B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の不純物濃度測定方式に関する。[Detailed description of the invention] The present invention relates to a method for measuring impurity concentration of a semiconductor device.

一導電形半導体基板の一方内面に反対導電形のチャネル
を設け、該チャネルの両側にソース領域およびドレイン
領域を設け、前記半導体基板上にo絶縁体層を介して少
なくとも一つの電極を設けたMIS構造の半導体装置け
MOSトランジスタCCDなどで知られて周知である。
MIS in which a channel of an opposite conductivity type is provided on one inner surface of a semiconductor substrate of one conductivity type, a source region and a drain region are provided on both sides of the channel, and at least one electrode is provided on the semiconductor substrate via an insulator layer. This structure is well known in semiconductor devices such as MOS transistor CCD.

これら半導体装置のチャネル層の不純物濃度を非破壊的
に測定する方法として従来C−V法(G。
Conventional C-V method (G.

5W、Taylor、SolidStateElect
ron−19、459、1976)が用いられている。
5W, Taylor, SolidStateElect
ron-19, 459, 1976) is used.

しかしながら、このC−V法にけ次のような欠点がある
。1 例えばCCDのような長いチャネルによる抵抗分
及び浮遊容量のため、CCD自体による測”0 定が困
難である。
However, this CV method has the following drawbacks. 1. For example, it is difficult to measure by the CCD itself due to resistance and stray capacitance due to a long channel such as a CCD.

2 測定誤差が大きいなどの欠点がある。2. There are drawbacks such as large measurement errors.

本発明ぱ上記点に鑑みなされたもので、CCDでも誤差
の小さいチャネルの厚さの測定が非破壊的に可能な半導
体装置のチャネルの厚さ測定方式’5を提供するもので
ある。
The present invention has been made in view of the above-mentioned points, and provides a method for measuring the thickness of a channel of a semiconductor device '5, which allows non-destructive measurement of the thickness of a channel with a small error even with a CCD.

即ち本発明は半導体装置からソース領域と半導体基板間
の電圧(VBso)を測定し、次式D:〔2εSilV
bi−VBSOI/eNC)″20+(Ns+Nc))
2〕によりチャネルのチャネル厚さを得る測定方式にあ
る。
That is, the present invention measures the voltage (VBso) between the source region and the semiconductor substrate of the semiconductor device, and calculates the voltage (VBso) from the following equation D: [2εSilV
bi-VBSOI/eNC)″20+(Ns+Nc))
2] is the measurement method to obtain the channel thickness of the channel.

次に本発明方式を埋込みチャネル形CCDのチイ5ヤネ
ルの厚さ測定に適用した実施例を説明する。
Next, an example will be described in which the method of the present invention is applied to thickness measurement of a 5-channel embedded channel type CCD.

一導電形半導体基板例えば不純物濃度(Ns)が1.2
5×1015/(V7l2のp形Si基板1の一内面に
該基板1と異なる導電形のチヤネル例えば不純物濃度(
NO)が1.31×1016/C:Fl2のn形の埋込
みチヤネル2を設け、該チヤネル2に電荷を供給する如
く前記基板1の一内面ソース領域3を設け、前記チヤネ
ル2からの電荷を受け取る如く前記基板1の内面にドレ
イン領域4を設け、前記チヤネル2上の前記基板1上に
絶縁体層例えば誘電率(ε0x)が3.8×8.85×
10−12〔フアラド/c:r!l〕のSiO2膜5を
例えば厚さ1200人位形成し、このSiO2膜5を介
して少なくとも一つの電極例えば多数の転送電極6を設
けた構成の埋込みチヤネル形CCD7のチヤネル2の厚
みを次のようにして測定する。なおp形Si基板1の誘
電率(ε81)は11.8×8.86×10−12〔フ
アラツド/CTn〕で、その基板の真性キヤリア濃度(
Ni)は1.4×1010/Cm2で、拡散電位のRT
/eは0.026〔V〕である。転送電極6の総てを電
気的に接続してCCD7を実効的に1個のMOSトラン
ジスタとする。
One conductivity type semiconductor substrate, for example, impurity concentration (Ns) is 1.2
5×1015/(V7l2) A channel of a conductivity type different from that of the substrate 1, for example, an impurity concentration (
An n-type buried channel 2 with NO) of 1.31×10 16 /C:Fl2 is provided, a source region 3 on one inner surface of the substrate 1 is provided so as to supply charge to the channel 2, and the charge from the channel 2 is A drain region 4 is provided on the inner surface of the substrate 1 so as to receive the drain region 4, and an insulating layer, for example, with a dielectric constant (ε0x) of 3.8×8.85× is provided on the substrate 1 on the channel 2.
10-12 [Fualad/c:r! The thickness of the channel 2 of the embedded channel type CCD 7 is as follows: a SiO2 film 5 of 1) is formed to a thickness of, for example, 1200 mm, and at least one electrode, for example, a large number of transfer electrodes 6 are provided through the SiO2 film 5. Measure as follows. The dielectric constant (ε81) of the p-type Si substrate 1 is 11.8 x 8.86 x 10-12 [farad/CTn], and the intrinsic carrier concentration (
Ni) is 1.4×1010/Cm2, and the RT of the diffusion potential is
/e is 0.026 [V]. All of the transfer electrodes 6 are electrically connected to make the CCD 7 effectively one MOS transistor.

共通接続した転送電極6からスイツチ回路8に接続し、
該回路8の他の端子には電源9.10が接続される。他
方、ソース領域3を基準例えば接地し、ドレイン領域4
に電流計11を介して電圧例えば小電圧の0.1Vが直
流電源121から印加され、この電圧によ勺ソース・ド
レイン間にチヤネル2を介して流れる電流1Dを前記電
流計11により検出する。
Connect the commonly connected transfer electrode 6 to the switch circuit 8,
A power source 9.10 is connected to the other terminal of the circuit 8. On the other hand, the source region 3 is grounded as a reference, and the drain region 4
A voltage, for example, a small voltage of 0.1 V is applied from the DC power source 121 via the ammeter 11, and the ammeter 11 detects the current 1D flowing between the source and drain via the channel 2 due to this voltage.

該電流Dは電圧値に変換してX−Yレコーダ12のY軸
に供給する。
The current D is converted into a voltage value and supplied to the Y axis of the XY recorder 12.

スイツチ8を図のA側へ.設定すると、転送電極6は、
電源9に連結され基板1は、三角波形電圧発生器10に
連結される。又、スイツチ8をB側へ切換えると、転送
電極が三角波形電圧発生器10へ基板1が直流電圧電源
9に連結するように配線されている。三角波形電圧発生
器10の三角波電圧の周波数は低周波(たとえば0.0
1〜0.1Hz)であることが望ましい。
Move switch 8 to side A in the diagram. When set, the transfer electrode 6 is
The substrate 1 connected to a power source 9 is connected to a triangular waveform voltage generator 10 . Further, when the switch 8 is switched to the B side, the transfer electrode is wired to the triangular waveform voltage generator 10 so that the substrate 1 is connected to the DC voltage power source 9. The frequency of the triangular wave voltage of the triangular wave voltage generator 10 is low frequency (for example, 0.0
1 to 0.1 Hz).

この場合、電圧の振幅は、10−20V程度が望ましい
。この電圧は又、X−Yレコーダ12のX軸へ入力され
るように配線されて−いる。なお、振幅を補い、測定時
間の短縮の効果も兼ねて、DCバイアス電源13が直列
に接続されている。電源9,E,は、n型埋込みチヤネ
ルCCD7の場合、負電圧(p型の場合は正)を、切b
換えスイツチ8により転送電極6又は基板1へ供給する
ためのものである。
In this case, the voltage amplitude is preferably about 10-20V. This voltage is also wired to be input to the X-axis of the X-Y recorder 12. Note that a DC bias power supply 13 is connected in series to compensate for the amplitude and also to shorten the measurement time. The power supply 9,E, disconnects the negative voltage in the case of the n-type embedded channel CCD 7 (positive in the case of the p-type).
This is for supplying to the transfer electrode 6 or the substrate 1 by the changeover switch 8.

要求される性能としては、0〜−30V程度の範囲で連
続可変であれば良い。以上によりチヤネル2の厚さ測定
装置は構成されている。測定方法 手順1・・・・・・電源E,を調整してVGS(ソース
に対するゲート電圧)を、常に価電子帯ピンニング状態
を保つに十分な負電圧(たとえば−20V程度)として
おく。
The required performance is that it can be continuously variable in the range of about 0 to -30V. The thickness measuring device for channel 2 is configured as described above. Measurement method Step 1: Adjust the power source E to set VGS (gate voltage to source) to a negative voltage (for example, about -20 V) sufficient to maintain the valence band pinning state at all times.

このときVBSは、三角波電圧発生器10により1ゆつ
くD変化する。この状態でのVBS−1D特性をX−Y
レコーダ12に記舜すると、第2図が得られる。第2図
において領域Aは、パンチスルーの起きていない状態で
あり1領域Bは、パンチスルーの起きている状態に対応
する。従つて、その境界に相当するVBSをもつてVB
SO(ピンニング状態でパンチスルの開始される基板電
圧)とすることができる。次に、前記方法により測定し
たVBSOの値から埋込みチヤネルの厚みの算出を説明
する。
At this time, VBS changes by 1 D by the triangular wave voltage generator 10. The VBS-1D characteristics in this state are
When recorded in the recorder 12, FIG. 2 is obtained. In FIG. 2, region A corresponds to a state where punch-through has not occurred, and region B corresponds to a state where punch-through has occurred. Therefore, with VBS corresponding to the boundary, VB
It can be SO (substrate voltage at which punch-through starts in pinning state). Next, calculation of the thickness of the embedded channel from the VBSO value measured by the above method will be explained.

第3図のようにn型埋込みチヤネルの、SiO,(5)
一Si(1)界面よりの深さをxとする。xに対する不
純物濃度分布として第4図に示すような空乏層近似モデ
ルを仮定しても、実際上問題はない。この仮定を基にし
て、一充元ポアソン方程式を用い、前述した状態、すな
わち、パンチスルーが価電子帯ピンニング状態で開始さ
れる臨界状態についての解を求めると次式が得られる。
チヤネルの厚さDは従つて第1図の測定装置で測定した
測定値を(1)(2)式に代入することによりチヤネル
2の厚みを測定することができる。
As shown in Figure 3, the n-type buried channel is SiO, (5)
Let x be the depth from the -Si(1) interface. There is no practical problem even if a depletion layer approximation model as shown in FIG. 4 is assumed as the impurity concentration distribution with respect to x. Based on this assumption, the following equation is obtained by using the one-member Poisson equation to find a solution for the above-mentioned state, that is, the critical state in which punch-through starts in the valence band pinning state.
Therefore, the thickness D of the channel 2 can be determined by substituting the measured values measured by the measuring device shown in FIG. 1 into equations (1) and (2).

例えば上記実施例で示した値及び測定値を(1)式及び
(2)式に代入して算出すると、室温(3001K)に
}けるチヤネルの厚さDは0.85μmとなる。上記説
明においてパンチスルー卦よび価電子帯ピンニングにつ
いての定義を第5図を用いて説明する。
For example, when calculating by substituting the values and measured values shown in the above example into equations (1) and (2), the thickness D of the channel at room temperature (3001 K) is 0.85 μm. In the above description, the definitions of the punch-through hexagram and valence band pinning will be explained using FIG. 5.

パンチスルーとは:ソースに対するゲート電圧VGSを
負に印加(P型の場合は正)すると、表面より空乏層が
形成される。
What is punch-through? When a negative gate voltage VGS is applied to the source (positive in the case of P type), a depletion layer is formed from the surface.

一方、基板電圧VBSを負(P型の場合は正)印加する
とp一n接合部に空乏層が形成される。この両空乏層は
、VGS,VBSをより負に増すことによ勺n層は完全
空乏化され、ソースとチヤネルは電気的に切b離される
。この状態をパンチスルーという。価電子帯ピンニング
とは:nチヤネルに対して、VGSをある電圧値以上負
に増加させても、n層の表面電位は、基板電位よ勺下が
ることはできない。
On the other hand, when a negative substrate voltage VBS (positive in the case of P type) is applied, a depletion layer is formed at the p1n junction. By increasing VGS and VBS to a more negative value, the n-layer is completely depleted, and the source and channel are electrically separated. This condition is called punch-through. What is valence band pinning? For an n-channel, even if VGS is increased negative by a certain voltage value or more, the surface potential of the n-layer cannot be lowered below the substrate potential.

これは、CCDのチヤネルストツパ一として一般に形成
されているp+層から表面を通じてホールが供給される
ためである。この場合、価電子帯の状態密度は高いので
、ホールの供給は十分になされ、基板電位以下になるこ
とはない。この状態をピンニングという。以上の説明か
ら明らかなように、本発明の方法によりチヤネルの厚み
を測定できる。
This is because holes are supplied through the surface from the p+ layer, which is generally formed as a channel stopper in a CCD. In this case, since the density of states in the valence band is high, holes are sufficiently supplied and the potential does not drop below the substrate potential. This condition is called pinning. As is clear from the above description, the thickness of a channel can be measured by the method of the present invention.

以上説明したように本発明によれば、CCD全体をMO
Sトランジスタとして、電圧一電流特性を測定すること
により、CCDから直接測定することができ、しかもC
−法の場合測定誤差となる配線容量は、誤差の要因とは
ならない利点がある。
As explained above, according to the present invention, the entire CCD is
As an S transistor, it can be directly measured from a CCD by measuring the voltage-current characteristics, and
- method has the advantage that the wiring capacitance, which causes measurement errors, does not become a cause of errors.

また、測定回路は、第1図で明らかなように非常に簡単
なも9であ勺、しかも測定精度が良いという利点もある
。なお上記実施例ではCCDに適用した実施例について
説明したMOSトランジスタなどのMISトランジスタ
など半導体基板上に絶縁膜を介して電極を設けた構造で
あれば適用できることは説明するまでもないことである
Further, as is clear from FIG. 1, the measuring circuit is a very simple one, which also has the advantage of good measurement accuracy. It goes without saying that the above embodiments can be applied to any structure in which an electrode is provided on a semiconductor substrate via an insulating film, such as a MIS transistor such as a MOS transistor described in the embodiment applied to a CCD.

さらに第1図の装置においてCCDは、n形埋込みチヤ
ネルCCDに限らずP形埋込みチヤネルCCDlさらに
デプレシヨン形のMOSFETのチヤネルの不純物濃度
と深さ方向の厚みを測定することができる。
Furthermore, in the apparatus shown in FIG. 1, the CCD can measure not only the n-type buried channel CCD, but also the p-type buried channel CCD1, as well as the channel impurity concentration and thickness of the depletion type MOSFET.

また、第1図の装置に卦いては、X−Yレコーダを使用
したが、代bにメモリ機能があるCRTを使用してもよ
い。
Furthermore, although an X-Y recorder is used in the apparatus shown in FIG. 1, a CRT having a memory function may also be used instead.

さらに、三角波形発生器の代勺に、正弦波状の電圧波形
、または繰返し波形でなくある電圧値から他のある電圧
値へ徐々に変化するような単一の電圧波形の発生器を使
用することができる。また、第1図の実施例では、各転
送電極に共通の電圧を印加したが、特定の電極にのみ実
施例と同じ電圧を印加し、他の転送電極には、常に大き
い正の直流電圧を印加することにより特定の電極Fのチ
ヤネルの厚みを測定してもよい。
Additionally, instead of a triangular waveform generator, a sinusoidal voltage waveform or a generator with a single voltage waveform that gradually changes from one voltage value to another rather than a repetitive waveform can be used. I can do it. In the example shown in Figure 1, a common voltage was applied to each transfer electrode, but the same voltage as in the example was applied only to a specific electrode, and a large positive DC voltage was always applied to the other transfer electrodes. The channel thickness of a particular electrode F may be measured by applying

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方式をCCDのチヤネルの不純物濃度の
測定に適用した実施例説明図、第2図は第1図の動作を
説明するためのVBS−D特性曲線図、第3図及び第4
図、第5図は第1図測定結果から不純物濃度を得るため
の説明図である。 1・・・・・・半導体基板、2・・・・・・チヤネル、
3・・・・・・ソース領域、4・・・・・・ドレイフ領
域、5・・・・・・絶縁体層、6・・・・・・電極、8
・・・・・・スイツチ回路、9,10.121・・・・
・・電源、12・・・・・・X−Yレコーダ。
FIG. 1 is an explanatory diagram of an embodiment in which the method of the present invention is applied to measurement of impurity concentration in a CCD channel, FIG. 2 is a VBS-D characteristic curve diagram for explaining the operation of FIG. 1, and FIGS. 4
FIG. 5 is an explanatory diagram for obtaining the impurity concentration from the measurement results shown in FIG. 1... Semiconductor substrate, 2... Channel,
3... Source region, 4... Drain region, 5... Insulator layer, 6... Electrode, 8
...Switch circuit, 9,10.121...
...Power supply, 12...X-Y recorder.

Claims (1)

【特許請求の範囲】 1 一導電形半導体基板の一方内面に該基板とは反対導
電形のチャネルを設け、該チャネルに電荷を供給する如
く前記基板内面にソース領域を設け、前記チャネルから
の電荷を受け取る如く前記基板内面にドレイン領域を設
け、前記基板のチャネル上に絶縁体層を介して少なくと
も一つの電極を設けた半導体装置の前記チャネルの厚さ
Dを次式を満足させて得ることを特徴とする半導体装置
の不純物濃度測定方式。 D=〔2ε_s_i|V_b_i−V_B_S_O|/
e¥N_c¥〕^1^/^2〔1+{N_c/(N_s
+N_c)}^1^/^2〕上記式において−e:電子
の電荷量 ε_s_i:前記半導体基板の誘電率 V_b_i:(RT/e)ln〔N_sN_c/ni^
2〕V_B_S_O:前記ソース領域と前記基板間の電
圧R:ボルツマン定数T:温度 ni:基板の真性キャリア密度 N_s:基板の不純物濃度 N_c:チャネル不純物濃度
[Claims] 1. A channel of a conductivity type opposite to that of the substrate is provided on one inner surface of a semiconductor substrate of one conductivity type, a source region is provided on the inner surface of the substrate so as to supply charge to the channel, and a source region is provided on the inner surface of the substrate so as to supply charge to the channel. In a semiconductor device, a drain region is provided on the inner surface of the substrate, and at least one electrode is provided on the channel of the substrate via an insulating layer, so that the thickness D of the channel can be obtained by satisfying the following equation. Features a method for measuring impurity concentrations in semiconductor devices. D=[2ε_s_i|V_b_i−V_B_S_O|/
e¥N_c¥]^1^/^2[1+{N_c/(N_s
+N_c)}^1^/^2] In the above formula, -e: Electron charge amount ε_s_i: Dielectric constant of the semiconductor substrate V_b_i: (RT/e)ln[N_sN_c/ni^
2] V_B_S_O: Voltage between the source region and the substrate R: Boltzmann constant T: Temperature ni: Substrate intrinsic carrier density N_s: Substrate impurity concentration N_c: Channel impurity concentration
JP1215377A 1977-02-08 1977-02-08 Channel thickness measurement method for semiconductor devices Expired JPS5933262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215377A JPS5933262B2 (en) 1977-02-08 1977-02-08 Channel thickness measurement method for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215377A JPS5933262B2 (en) 1977-02-08 1977-02-08 Channel thickness measurement method for semiconductor devices

Publications (2)

Publication Number Publication Date
JPS5397778A JPS5397778A (en) 1978-08-26
JPS5933262B2 true JPS5933262B2 (en) 1984-08-14

Family

ID=11797514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215377A Expired JPS5933262B2 (en) 1977-02-08 1977-02-08 Channel thickness measurement method for semiconductor devices

Country Status (1)

Country Link
JP (1) JPS5933262B2 (en)

Also Published As

Publication number Publication date
JPS5397778A (en) 1978-08-26

Similar Documents

Publication Publication Date Title
US4812756A (en) Contactless technique for semicondutor wafer testing
Klaassen Characterization of low 1/f noise in MOS transistors
US4325025A (en) Automated channel doping measuring circuit
CN111354779A (en) Semiconductor device and method for manufacturing semiconductor device
CN107037284A (en) The method for measuring the graphene microcell mobility using semiconductor as substrate
Hofstein Minority carrier lifetime determination from inversion layer transient response
Das High-frequency network properties of MOS transistors including the substrate resistivity effects
US6456082B2 (en) Method for polysilicon crystalline line width measurement post etch in undoped-poly process
Ronen Low-frequency 1/f noise in MOSFET's
JPS5933262B2 (en) Channel thickness measurement method for semiconductor devices
CN114266169A (en) FinFET device threshold voltage model construction method
CN114242605A (en) Defect extraction method and defect extraction system
Huang et al. A modified charge-pumping method for the characterization of interface-trap generation in MOSFETs
JPS5931974B2 (en) Impurity concentration measurement method for semiconductor devices
Whitfield et al. An electrical method to measure SOI film thicknesses
Schroen Failure analysis of surface inversion
Sheu et al. An analytical model for intrinsic capacitances of short-channel MOSFETs
JPS6312144A (en) Evaluating method for semiconductor element
JPH11108985A (en) Mosfet overlap length measuring method
Wang et al. Phenomenon of Short-Time Threshold Voltage Shift and Its Application in Junction Temperature Estimation
JPH0578847B2 (en)
de Beaumont ZTO Thin film transistor parameter extraction and modeling
JPS6312143A (en) Evaluating method for semiconductor element
Noh et al. Effect of channel width-to-length ratio on isothermal point of MOSFET-ISFET structure
Batignani et al. Characterization of MOS transistors integrated on high resistivity silicon with a DSSD process