JPS5933223B2 - Method and device for measuring alkali or acid concentration - Google Patents

Method and device for measuring alkali or acid concentration

Info

Publication number
JPS5933223B2
JPS5933223B2 JP4108777A JP4108777A JPS5933223B2 JP S5933223 B2 JPS5933223 B2 JP S5933223B2 JP 4108777 A JP4108777 A JP 4108777A JP 4108777 A JP4108777 A JP 4108777A JP S5933223 B2 JPS5933223 B2 JP S5933223B2
Authority
JP
Japan
Prior art keywords
sample solution
temperature
gas
reaction
reagent gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4108777A
Other languages
Japanese (ja)
Other versions
JPS53125897A (en
Inventor
惟光 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4108777A priority Critical patent/JPS5933223B2/en
Publication of JPS53125897A publication Critical patent/JPS53125897A/en
Publication of JPS5933223B2 publication Critical patent/JPS5933223B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 本発明は試料溶液のアルカリまたは酸濃度を測定する方
法およびそのための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring the alkali or acid concentration of a sample solution.

詳しくは、本発明は試薬として酸性またはアルカリ性の
ガスを用い、該ガスが試料溶液に溶解ならびに中和反応
する際発生する熱量を反応前後の温度差で測定し、試料
溶液中のアルカリまたは酸濃度を定量する本法において
、水中媒体により実質的に飽和湿潤させた試料ガスを試
料溶液と共に反応帯域に導入する方法およびそのための
装置に関するものである。従来、試料溶液中のアルカリ
または酸濃度を測定する場合、一定量の試料溶液を既知
濃度の酸またはアルカリ溶液で滴定し、中和点に達した
時の既知濃度の酸またはアルカリ溶液の消費量から試料
溶液のアルカリまたは酸濃度を定量する周知のタイトレ
ータ−が実用されているが、装置が極めて複雑で高価で
あり、かつ試薬溶液を調合して濃度既知にしなければな
らないなどの欠点があつた。
Specifically, the present invention uses an acidic or alkaline gas as a reagent, and measures the amount of heat generated when the gas dissolves in a sample solution and undergoes a neutralization reaction based on the temperature difference before and after the reaction, and calculates the alkali or acid concentration in the sample solution. The present invention relates to a method for introducing a sample gas substantially saturated with an aqueous medium into a reaction zone together with a sample solution, and an apparatus therefor. Conventionally, when measuring the alkali or acid concentration in a sample solution, a fixed amount of the sample solution is titrated with an acid or alkaline solution of a known concentration, and the amount of acid or alkaline solution of a known concentration consumed when the neutralization point is reached. Well-known titrators for quantifying the alkali or acid concentration of sample solutions have been put into practical use, but they have drawbacks such as the equipment being extremely complex and expensive, and the reagent solution having to be prepared to obtain a known concentration. .

本発明者等の一員は前記した欠点をなくした連続式アル
カリまたは酸濃度の測定方法及び装置を先に提案した(
特許第755438号、特公昭49−16516号公報
参照)。しかし、この方法では試薬ガスに伴われて蒸発
する液体の気化熱で反応帯域の温度が低下し、正確な測
定値が得られないことが判つた。
A member of the present inventors previously proposed a continuous alkali or acid concentration measuring method and device that eliminates the above-mentioned drawbacks (
(See Japanese Patent No. 755438 and Japanese Patent Publication No. 16516/1983). However, it has been found that with this method, the temperature of the reaction zone decreases due to the heat of vaporization of the liquid that evaporates with the reagent gas, making it impossible to obtain accurate measured values.

この気化熱は、温度又はガス流量によつて異なるので、
外気の温度又は試薬ガスの流量が変動すると測定値は更
に偏れることになる。例えば試薬として炭酸ガス、試料
溶液として5重量%の苛性ソーダ水溶液を用いた場合の
温度及びガス流量の影響は、第3図及び第4図に示すよ
うに、温度が10℃変化すると測定値は約6%変動し、
また流量が10%変化すると測定値は約2%変動する。
This heat of vaporization varies depending on the temperature or gas flow rate, so
If the temperature of the outside air or the flow rate of the reagent gas fluctuates, the measured value will be further biased. For example, when carbon dioxide gas is used as the reagent and a 5% by weight aqueous solution of caustic soda is used as the sample solution, the influence of temperature and gas flow rate is as shown in Figures 3 and 4. If the temperature changes by 10°C, the measured value will change approximately. 6% fluctuation,
Furthermore, if the flow rate changes by 10%, the measured value will fluctuate by about 2%.

そこで、更に検討を重ねた結果、試薬ガスを水性媒体で
湿潤させておけば、液体の蒸発が起らないので、前記し
た外気温度又は試薬ガス流量の影響が解消されることを
見出し、本発明を完成した。
Therefore, as a result of further studies, it was discovered that if the reagent gas is moistened with an aqueous medium, evaporation of the liquid will not occur, so the effects of the above-mentioned outside temperature or reagent gas flow rate can be eliminated, and the present invention has been made. completed.

本発明方法に使用する装置の一例を示す図面によつて、
本発明方法を詳細に説明する。第1図は連続式アルカリ
または酸濃度測定装置の縦断正面略図である。
By the drawing showing an example of the apparatus used in the method of the present invention,
The method of the present invention will be explained in detail. FIG. 1 is a schematic longitudinal sectional front view of a continuous alkali or acid concentration measuring device.

図中1は試料溶液、2は水性媒体を一定流量流すための
定量装置であり、定量ポンプなどが使用できる。8は試
薬ガスを一定流量流すための定圧装置であり、減圧弁9
、流量計10などから構成される。
In the figure, 1 is a sample solution, and 2 is a metering device for flowing an aqueous medium at a constant flow rate, and a metering pump or the like can be used. 8 is a constant pressure device for flowing a constant flow rate of reagent gas, and a pressure reducing valve 9
, a flow meter 10, etc.

11は試薬ガスを水性媒体で実質的に飽和湿潤させるた
めの湿潤部であり、通常の洗気装置に加熱器12を設置
したものが用いられる。
Reference numeral 11 denotes a wetting section for substantially saturating and wetting the reagent gas with an aqueous medium, and a common air washing device equipped with a heater 12 is used.

湿潤部11は多段接続してもよい。定量装置1,2をで
た試料溶液及び水性媒体は、各々の温度を同一とするた
め温度調節部3に導入される。温度調節部3は細管をコ
イル状にしたものを筒内に配置し、両者間に熱媒(例え
ば水)を満たすことができる熱交換器など、通常知られ
ている熱交換器が使用できる。温度調節部3をでた試料
溶液は反応前温度検出部4を経て反応部6に導入され、
また水性媒体は湿潤部11を出た試薬ガスと混合器5で
混合された後、反応部6へ導入される。試薬ガスの飽和
湿潤は、湿潤部11の水性媒体の温度を、反応前温度検
出部4に於ける試料溶液の温度と実質的に同一温度に保
持することによつて行うのがよいが、通常は湿潤部11
の温度を室温より2〜5℃程度高い温度に保持すること
によつて実施される。
The wet parts 11 may be connected in multiple stages. The sample solution and aqueous medium leaving the quantitative determination devices 1 and 2 are introduced into a temperature control section 3 in order to make each temperature the same. For the temperature control section 3, a commonly known heat exchanger can be used, such as a heat exchanger in which a coiled thin tube is arranged in a cylinder and a heat medium (for example, water) can be filled between the two. The sample solution leaving the temperature adjustment section 3 is introduced into the reaction section 6 via the pre-reaction temperature detection section 4.
Further, the aqueous medium is mixed with the reagent gas exiting the wet section 11 in the mixer 5, and then introduced into the reaction section 6. Saturated wetting of the reagent gas is preferably carried out by maintaining the temperature of the aqueous medium in the wetting section 11 at substantially the same temperature as the temperature of the sample solution in the pre-reaction temperature detection section 4. is the wet part 11
This is carried out by maintaining the temperature at about 2 to 5° C. higher than room temperature.

この処理により試薬ガスは、水性媒体により実質的に飽
和される。反応部6へ連続的に導入された試料溶液は、
先ず第一室19に於いてノズル20から導入された試薬
ガスと水性媒体との混合物と混合され、次いで、気液混
合状態でノズル18より第2室17の液中へ導入される
This treatment substantially saturates the reagent gas with the aqueous medium. The sample solution continuously introduced into the reaction section 6 is
First, it is mixed with a mixture of reagent gas and aqueous medium introduced from the nozzle 20 in the first chamber 19, and then introduced into the liquid in the second chamber 17 through the nozzle 18 in a gas-liquid mixed state.

この間に一部の試薬ガスが液中に溶解し、中和反応が行
なわれる。この際、第1室19及び第2室17内におい
て溶解熱および中和反応熱が生じ、液相の温度を上昇さ
せる。反応後の溶液および過剰の試薬ガスは第3室16
で気相および液相に分離された後、排出管15より排出
される。上昇した液相の温度は、第3室16の液中に浸
された反応後温度検出器7により測定される。このよう
にして、試料溶液の試薬ガスとの接触前後の温度検出器
4および7で測定された温度を、温度差測定器14で差
動的に取りだす。
During this time, a part of the reagent gas dissolves in the liquid, and a neutralization reaction takes place. At this time, heat of dissolution and heat of neutralization reaction are generated in the first chamber 19 and the second chamber 17, raising the temperature of the liquid phase. The solution and excess reagent gas after the reaction are stored in the third chamber 16.
After being separated into a gas phase and a liquid phase, it is discharged from the discharge pipe 15. The increased temperature of the liquid phase is measured by the post-reaction temperature detector 7 immersed in the liquid in the third chamber 16. In this way, the temperatures measured by the temperature detectors 4 and 7 before and after the sample solution comes into contact with the reagent gas are differentially taken out by the temperature difference measuring device 14.

第2図は温度測定器14の一例の略図を示すが、図のよ
うに差動熱電対21の組合せで測定し、予めアルカリま
たは酸濃度で校正された目盛13(第1図)を付してお
くと、試料溶液中のアルカリまたは酸濃度を直接読むこ
とができる。
FIG. 2 shows a schematic diagram of an example of the temperature measuring device 14, which measures with a combination of differential thermocouples 21 as shown in the figure, and has a scale 13 (FIG. 1) calibrated in advance with alkali or acid concentration. This allows you to directly read the alkali or acid concentration in the sample solution.

なお、温度調節部3および反応部6は周囲温度の影響を
より小さくするため一個のケース内に収納しておくのが
望ましい。
Note that it is desirable that the temperature adjustment section 3 and the reaction section 6 be housed in one case in order to further reduce the influence of ambient temperature.

また第1図に示した装置では、水性媒体は温度調節され
た後、混合器5で試薬ガスと混合され、反応部6へ導入
されているが、定量装置2の出口導管を、定量装置1の
出口導管と接続し、試料溶液と混合した後温度調節を行
なつて反応部6に導入することもできる。
Furthermore, in the apparatus shown in FIG. 1, the aqueous medium is temperature-adjusted, mixed with a reagent gas in the mixer 5, and introduced into the reaction section 6. It is also possible to connect the solution to the outlet conduit of the sample solution, mix it with the sample solution, adjust the temperature, and then introduce it into the reaction section 6.

さらに、反応部6として、第1図に示した2段ノズル吹
込セルの代りに、上部に気液分離部を有する縦長の反応
管の下部より試料溶液、水性媒体及び試薬ガスを導入す
るよう構成された装置等種種の形式のものを用いること
ができる。
Furthermore, the reaction section 6 is configured so that the sample solution, aqueous medium, and reagent gas are introduced from the bottom of a vertically long reaction tube having a gas-liquid separation section at the top, instead of the two-stage nozzle blowing cell shown in FIG. Various types of equipment can be used.

本発明方法によつて濃度を測定できる試料溶液としては
、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム
、炭酸カリウム、重炭酸ナトリウム、水酸化カリウム、
アンモニア、有機塩基などの一種またはそれ以上を含有
するアルカリ性溶液、塩酸、硫酸、硝酸、有機酸などの
一種またはそれ以上を含有する酸性溶液などがあげられ
る。
Sample solutions whose concentrations can be measured by the method of the present invention include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium hydroxide,
Examples include alkaline solutions containing one or more of ammonia and organic bases, and acidic solutions containing one or more of hydrochloric acid, sulfuric acid, nitric acid, and organic acids.

試薬ガスの量は、理論上は当量以上でよいわけであるが
、反応を完結させるため当量の5〜8倍程度の量である
ことが望ましい。また試薬ガスは高純度であることが望
ましいが、不活性ガスで希釈されたものでも使用できる
。しかし純度が低すぎると反応前後の温度差が小さくな
り、測定感度が低下するため、低純度の試薬ガスを使用
する場合は注意を要する。試薬ガスとしては、炭酸ガス
、塩化水素ガス、亜硫酸ガス、酸化窒素ガスなどの酸性
ガス、またはアンモニア、メチルアミンなどのアルカリ
性ガスが挙げられる。
Theoretically, the amount of reagent gas may be equal to or more than the equivalent amount, but in order to complete the reaction, the amount is desirably about 5 to 8 times the equivalent amount. Although it is desirable that the reagent gas be of high purity, it is also possible to use one diluted with an inert gas. However, if the purity is too low, the temperature difference before and after the reaction will be small and the measurement sensitivity will be reduced, so care must be taken when using a reagent gas with low purity. Examples of the reagent gas include acidic gases such as carbon dioxide gas, hydrogen chloride gas, sulfur dioxide gas, and nitrogen oxide gas, and alkaline gases such as ammonia and methylamine.

これら試薬ガスは、被測定溶液中の濃度を測定すべき目
的成分に応じて適宜選択する必要がある。例えば、水酸
化ナトリウムと炭酸ナトリウムが共存するアルカリ性水
溶液系で、水酸化ナトリウムの濃度のみを測定する場合
は、試薬ガスとしては弱酸ガスである炭酸ガスなどが望
ましく、塩化水素などの強酸ガスを使用すると炭酸ナト
リウムとも反応するため正確な測定は不可能である。水
性媒体としては通常、水が用いられるが、メタノール、
エタノール、アセトン等の水溶性有機溶媒や食塩等の中
性塩等の中和反応に不活性な物質を含んだ水を用いるこ
ともできる。
These reagent gases need to be appropriately selected depending on the target component whose concentration in the solution to be measured is to be measured. For example, when measuring only the concentration of sodium hydroxide in an alkaline aqueous solution system where sodium hydroxide and sodium carbonate coexist, it is preferable to use carbon dioxide, which is a weak acid gas, as the reagent gas, and use a strong acid gas such as hydrogen chloride. Then, it also reacts with sodium carbonate, making accurate measurement impossible. Water is usually used as the aqueous medium, but methanol,
It is also possible to use water containing a substance inert to the neutralization reaction, such as a water-soluble organic solvent such as ethanol or acetone, or a neutral salt such as common salt.

水性媒体の供給量は、試料溶液の0.05容量倍程度以
上であればよいが、あまり多量用いると反応前後の温度
差が小さくなり、測定感度が低下するため、上限は10
容量倍程度が望ましい。
The amount of aqueous medium to be supplied should be about 0.05 times the volume of the sample solution or more, but if too much is used, the temperature difference before and after the reaction will become small and the measurement sensitivity will decrease, so the upper limit is 10
It is desirable to double the capacity.

好ましくは0.1〜3容量倍の範囲内から選定される。
試料溶液、水性媒体及び試薬ガスの供給温度は、中和反
応が速やかにおこる温度であれば問題ないが、温度調節
の容易さを考慮すると、室温付近が望ましい。またこれ
らの供給温度に差がある場合は、反応前後の温度差が小
さくなり、測定感度が低下する場合が生ずるので、試料
溶液、水性媒体及び試薬ガスの温度は同一にすることが
好ましい。
It is preferably selected from a range of 0.1 to 3 times the volume.
There is no problem with the supply temperature of the sample solution, the aqueous medium, and the reagent gas as long as the neutralization reaction occurs quickly, but in consideration of ease of temperature control, it is preferable that the supply temperature be around room temperature. Furthermore, if there is a difference in the supply temperatures of these, the temperature difference before and after the reaction becomes small, which may reduce measurement sensitivity, so it is preferable that the temperatures of the sample solution, aqueous medium, and reagent gas be the same.

温度の検出には、通常、熱電対素子が使用されるが、サ
ーミスター素子あるいは抵抗式温度計を使用することが
できる。
A thermocouple element is usually used to detect temperature, but a thermistor element or a resistance thermometer can also be used.

また、温度差を得る手段としては第1図および第2図に
示す如く差動熱電対を使用すれば、最も装置を簡略化で
きて好ましいが、他の方法、例えば各熱電対の電位差を
増巾した後、減算機で温度差を得ることもできる。熱電
対としては、銅一コンスタンタン、クロメルーアルメル
、鉄−コンスタンタンなどの公知の熱電対を使用するこ
とができるが、熱起電力の大きい銅−コンスタンタンが
有利である。以上詳述したように、本発明方法では試薬
ガスを湿潤させた後反応帯域に導入することによつて、
気化熱に起因する反応帯域の温度低下が防止できるので
、外気温度及び試薬ガスの流量変動に影響されることな
く、正確な測定値が得られる。
Furthermore, as a means of obtaining a temperature difference, it is preferable to use differential thermocouples as shown in Figs. 1 and 2, as this can simplify the device the most, but other methods, such as increasing the potential difference between each thermocouple, are preferable. After measuring the width, you can also use a subtractor to get the temperature difference. As the thermocouple, known thermocouples such as copper-constantan, chromel-alumel, and iron-constantan can be used, but copper-constantan is advantageous because of its large thermoelectromotive force. As detailed above, in the method of the present invention, by introducing the reagent gas into the reaction zone after wetting it,
Since a temperature drop in the reaction zone due to heat of vaporization can be prevented, accurate measurement values can be obtained without being affected by outside temperature and reagent gas flow rate fluctuations.

また試料溶液、試薬ガスの他に水性媒体を反応帯域に導
入する場合は、試料溶液中の反応生成物による反応管の
閉塞が防止でき、試料溶液のアルカリまたは酸濃度を精
度よく連続的に測定することができる。しかも、周知の
タイトレーダーなどに比較して安価で、原理操作が簡単
、試薬の調合が不要であるなど種々の利点があり、特に
連続式分析法に適している。
In addition, when an aqueous medium is introduced into the reaction zone in addition to the sample solution and reagent gas, clogging of the reaction tube due to reaction products in the sample solution can be prevented, allowing accurate and continuous measurement of the alkali or acid concentration of the sample solution. can do. In addition, it has various advantages, such as being cheaper than the well-known tie radar, simple to operate, and requiring no preparation of reagents, and is particularly suitable for continuous analysis methods.

また、本発明方法で得られた検出値をアルカリまたは酸
濃度調節用バルブの開閉作動に利用すれば、該濃度を常
に特定範囲内に自動的に保持することができる。
Further, if the detected value obtained by the method of the present invention is used to open and close a valve for adjusting the alkali or acid concentration, the concentration can be automatically maintained within a specific range at all times.

さらに、本発明方法は、前記の中和反応のみならず、他
の発熱または吸熱反応である特にガスと溶液または液体
との反応の測定にも広く応用可能である。次に実施例を
掲げて本発明を具体的に説明する。
Furthermore, the method of the present invention is widely applicable not only to the above-mentioned neutralization reaction, but also to the measurement of other exothermic or endothermic reactions, especially reactions between gases and solutions or liquids. Next, the present invention will be specifically explained with reference to Examples.

実施例 1ホスゲン化反応の排ガス中に含まれるホスゲ
ンを吸収除去して、無公害化するため使用する循環アル
カリ水溶液(NaOH2〜3重量%、Na2cO35重
量%、NaCl5重量%を含む水溶液)中の水酸化ナト
リウムの濃度を、水性媒体として水、試薬ガスとして炭
酸ガスを用いて連続的に測定した。
Example 1 Water in a circulating alkaline aqueous solution (an aqueous solution containing 2 to 3% by weight of NaOH, 35% by weight of Na2cO, and 5% by weight of NaCl) used to absorb and remove phosgene contained in the exhaust gas of the phosgenation reaction to make it non-polluting. The concentration of sodium oxide was measured continuously using water as the aqueous medium and carbon dioxide as the reagent gas.

測定に用いた装置は第1図の構造であり、反応部6は第
1室19、第2室17、第3室16とも10mmφ×1
5mmL1熱電対(第2図)が0.211φ銅−0.0
57!171Lφコンスタンタン5対、指示計〔第1図
14〕は2mの電圧計を使用し、目盛〔第1図13〕は
予め、0〜4重量%のNaOH溶液について同一条件で
対応する電圧を測定し、直接濃度を表示するように目盛
したものである。
The apparatus used for the measurement has the structure shown in FIG.
5mmL1 thermocouple (Figure 2) is 0.211φ copper-0.0
57!171Lφ constantan 5 pairs, the indicator [Fig. 1 14] is a 2 m voltmeter, and the scale [Fig. It is measured and calibrated to directly display the concentration.

試料溶液および水の流量はそれぞれ5d/Rk及び1d
/?、炭酸ガス(約99%)の流量は500m1/―で
測定した。測定誤差はNaOH濃度の±2%(相対誤差
)にすぎず極めて精度が高かつた。
Sample solution and water flow rates are 5d/Rk and 1d, respectively.
/? The flow rate of carbon dioxide gas (approximately 99%) was measured at 500 m1/-. The measurement error was only ±2% (relative error) of the NaOH concentration, and the accuracy was extremely high.

また、1FH1Iこ1回約1時間程度循環アルカリ水溶
液の供給を停止したが、反応生成物の析出、固結による
反応管の閉塞等のトラブルは全くなかつた。
In addition, although the supply of the circulating alkaline aqueous solution was stopped for about 1 hour each time after 1FH1I, there were no problems such as precipitation of reaction products or clogging of the reaction tube due to caking.

なお、比較のために湿潤部11を用いない以外は実施例
1と全く同様にしてNaOHの濃度を測定した。
For comparison, the concentration of NaOH was measured in exactly the same manner as in Example 1, except that the wet part 11 was not used.

測定誤差は室温及び炭酸ガスの流量に影響され、NaO
H濃度の±701)(相対誤差)の間で変動した。
The measurement error is affected by room temperature and the flow rate of carbon dioxide, and NaO
The H concentration varied between ±701) (relative error).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する連続式測定装置の一例の縦断
正面略図、第2図は第1図の温度検出部の説明略図、第
3図及び第4図は温度及び試薬ガス流量と測定誤差の関
係を示す図である。 1,2・・・・・・定量装置、8・・・・・・定圧装置
、3・・・・・・温度調節部、6・・・・・・反応部、
18,20・・・・・・ノズル、4・・・・・・反応前
温度検出器、7・・・・・・反応後温度検出器、15・
・・・・・排出口、21・・・・・・差動熱電対、14
・・・・・・温度差測定器、13・・・・・・目盛。
Figure 1 is a schematic vertical cross-sectional front view of an example of a continuous measuring device used in the present invention, Figure 2 is a schematic illustration of the temperature detection section in Figure 1, and Figures 3 and 4 are temperature, reagent gas flow rate, and measurement. FIG. 3 is a diagram showing the relationship between errors. 1, 2...Quantitative device, 8...Constant pressure device, 3...Temperature adjustment section, 6...Reaction section,
18, 20... Nozzle, 4... Pre-reaction temperature detector, 7... Post-reaction temperature detector, 15.
...Discharge port, 21...Differential thermocouple, 14
...Temperature difference measuring device, 13...Scale.

Claims (1)

【特許請求の範囲】 1 酸性またはアルカリ性の試薬ガスと試料溶液とを反
応帯域に連続的に供給し、反応帯域の前後の試料溶液の
温度差から試料溶液のアルカリ又は酸濃度を測定する連
続式アルカリまたは酸濃度測定方法において、水性媒体
により実質的に飽和湿潤させた試薬ガスを試料溶液と共
に反応帯域に導入することを特徴とする試料溶液のアル
カリまたは酸濃度測定方法。 2 流通式反応器と、この反応器に接続している試料溶
液供給導管および試薬ガス供給導管と、反応器における
反応前後の試料溶液の温度差を検出する手段とを備えて
いるアルカリ又は酸濃度測定装置において、試薬ガス供
給導管がその途中に気液接触手段を有しており、試薬ガ
スが気液接触手段において水性媒体と接触したのち反応
器に流入するように構成されていることを特徴とする装
置。
[Claims] 1. A continuous method in which an acidic or alkaline reagent gas and a sample solution are continuously supplied to a reaction zone, and the alkali or acid concentration of the sample solution is measured from the temperature difference between the sample solution before and after the reaction zone. A method for measuring alkali or acid concentration of a sample solution, which comprises introducing a reagent gas substantially saturated with an aqueous medium into a reaction zone together with the sample solution. 2. An alkali or acid concentration reactor equipped with a flow reactor, a sample solution supply conduit and a reagent gas supply conduit connected to the reactor, and means for detecting the temperature difference between the sample solution before and after the reaction in the reactor. The measuring device is characterized in that the reagent gas supply conduit has a gas-liquid contact means in the middle thereof, and the reagent gas is configured to flow into the reactor after coming into contact with an aqueous medium in the gas-liquid contact means. A device that does this.
JP4108777A 1977-04-11 1977-04-11 Method and device for measuring alkali or acid concentration Expired JPS5933223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4108777A JPS5933223B2 (en) 1977-04-11 1977-04-11 Method and device for measuring alkali or acid concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4108777A JPS5933223B2 (en) 1977-04-11 1977-04-11 Method and device for measuring alkali or acid concentration

Publications (2)

Publication Number Publication Date
JPS53125897A JPS53125897A (en) 1978-11-02
JPS5933223B2 true JPS5933223B2 (en) 1984-08-14

Family

ID=12598679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4108777A Expired JPS5933223B2 (en) 1977-04-11 1977-04-11 Method and device for measuring alkali or acid concentration

Country Status (1)

Country Link
JP (1) JPS5933223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211876A1 (en) 2017-05-17 2018-11-22 国立研究開発法人農業・食品産業技術総合研究機構 Production method and production device for dried vitrigel film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551987A (en) * 1978-10-12 1980-04-16 Sanden Corp Positive displacement fluid compressor
JPS63150654A (en) * 1986-12-16 1988-06-23 Hisao Ishimori Method for measuring ozone concentration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211876A1 (en) 2017-05-17 2018-11-22 国立研究開発法人農業・食品産業技術総合研究機構 Production method and production device for dried vitrigel film

Also Published As

Publication number Publication date
JPS53125897A (en) 1978-11-02

Similar Documents

Publication Publication Date Title
Bark et al. Thermometric Titrimetry: International Series of Monographs in Analytical Chemistry
Douglas Vapor pressure of methyl sulfoxide from 20 to 50. Calculation of the heat of vaporization
ES2201407T3 (en) PROCEDURE TO DETERMINE THE STRATEGY OF A SALT.
Christensen et al. An isothermal titration calorimeter
Priestley et al. Continuous-flow enthalpimetry
JPS6196446A (en) Method and device for measuring and monitoring concentrationof hydrogen peroxide in liquefied reaction medium
JPS5933223B2 (en) Method and device for measuring alkali or acid concentration
US3852033A (en) Process for controlling chlorate and hydrogen ion content in the manufacture of chlorine dioxide from alkali metal chlorate and an inorganic acid
Peters et al. Vapor–and Liquid–Phase Reactions between Nitrogen Dioxide and Water
Emmett et al. Equilibria in the Fe-HO system. Indirect calculation of the water gas equilibrium constant
Eatough et al. Determination of the enthalpy of solution of tris-(hydroxymethyl) aminomethane in 0.1 M HCl solution and the enthalpy of neutralization of HClO4 with NaOH at low ionic strengths by use of an improved isothermal titration calorimeter
Midgley Investigations into the use of gas-sensing membrane electrodes for the determination of carbon dioxide in power station waters
Stitt et al. Photometric determination of glucose in presence of fructose
Ferguson THE EQUILIBRIUM BETWEEN CARBON MONOXIDE, CARBON DIOXIDE, SULFUR DIOXIDE AND FREE SULFUR.
JPH0656370B2 (en) Continuous alkali or acid concentration measuring method
Emmett et al. Equilibrium in the system Co-CO2-CoO-CO. Indirect calculation of the water gas equilibrium constant
JPH01217251A (en) Continuous type alkali or acid concentration measurement
Nakagawa et al. The tribromide equilibrium in aqueous acetic acid
Secoy et al. The effect of temperature and pressure on the solubility of chlorine monoxide in water
Luick et al. Nitrosyl and nitryl chloride formation in H2SO4/HNO3/H2O/HCl solutions at 200 K
Grases et al. Sensitive reaction-rate determination of Co (II) based on its catalytic action in the aerial oxidation of sulphite by use of a simple monitored thermometric technique
Bar‐Eli et al. A kinetic method for measuring solubilities of gases in liquids
Crompton et al. Measurement of total organoaluminum-reactable impurities in hydrocarbons by continuous flow thermometric analysis
JP2000074809A (en) Prediction method for survival rate of chemical substance
Myers THERMOCHEMISTRY OF CYANATES; ACID HYDROLYSIS OF POTASSIUM CYANATE