JPS593315A - Rod-type detection terminal for measuring flow speed of fluid - Google Patents

Rod-type detection terminal for measuring flow speed of fluid

Info

Publication number
JPS593315A
JPS593315A JP11434582A JP11434582A JPS593315A JP S593315 A JPS593315 A JP S593315A JP 11434582 A JP11434582 A JP 11434582A JP 11434582 A JP11434582 A JP 11434582A JP S593315 A JPS593315 A JP S593315A
Authority
JP
Japan
Prior art keywords
rod
fluid
pipe
sensor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11434582A
Other languages
Japanese (ja)
Other versions
JPH0211847B2 (en
Inventor
Yoshitane Tamura
善胤 田村
Kumata Hioki
日置 熊太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKEN SYST KK
Original Assignee
NIKKEN SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKEN SYST KK filed Critical NIKKEN SYST KK
Priority to JP11434582A priority Critical patent/JPS593315A/en
Publication of JPS593315A publication Critical patent/JPS593315A/en
Publication of JPH0211847B2 publication Critical patent/JPH0211847B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve characteristics for general purpose and durability, by providing the 1st and 2nd sensors on the part inserting into a fluid transport pipe of a rod-type member which is pushed into a streamline of the pipe and transmitting detected signals of total pressure of the 1st sensor and static pressure of the 2nd sensor to the outside of the pipe. CONSTITUTION:The plural number of the 1st pressure/electric current transmitter S1 for total pressure detection and the 2nd pressure/electric current transmitter S2 for static pressure detection are provided to an insertion part 2A of a rod-type member 2 vertically by a streamline in a fluid transport pipe 1. It is constituted so that each electric current of both transmitters S1, S2 is transmitted from the part 2A to the outside of the pipe 1 through the member 2.

Description

【発明の詳細な説明】 本発明は、主として、と水道水・下水道水で代表される
液体、燃焼用ガス、空刺用空気で代表される気体といっ
た各種流体の流量を算出する場合等において必要となる
流体流速を計測するための検出端に関する。
[Detailed Description of the Invention] The present invention is mainly necessary when calculating the flow rate of various fluids such as liquids such as tap water and sewage water, gases for combustion, and gases such as air for pricking. This invention relates to a detection end for measuring fluid flow velocity.

流体流速計側用の検出端としては、 ■ 流体が導電体の場合VCはその流体の流速変化によ
って流体の電磁誘導が変化することを利用して、流体輸
送管内に押入された棒状部材の挿入部分°に、流体の電
磁誘導を検出するセンナ−を取付けて成る電磁式のもの
、@ 流体輸送管内に押入された棒状部材の挿入部分に
、流体VCより回転させられる萬車とこれの回転数を検
出するセンサーとth付けて敗るタービン翼単式のもの
、 @ ピトー 管式のもの が従来から存在する。
As a detection end for the fluid velocity meter side, ■ When the fluid is a conductor, VC uses the fact that the electromagnetic induction of the fluid changes depending on the change in the flow velocity of the fluid to insert a rod-shaped member pushed into the fluid transport pipe. An electromagnetic type in which a sensor for detecting the electromagnetic induction of the fluid is attached to the part °, @ a rod-shaped member pushed into the fluid transport pipe is inserted into the part, and a wheel rotated by the fluid VC and its rotation speed. There have been single-type turbine blades and pitot-tube types that are equipped with a sensor that detects TH.

しかし乍ら、■のvjjL磁式のものによるときは、非
導電性の流体の流速を計測することかで@ないから使用
範囲が狭く、シかも、センサー構造が複雑であるのみな
らず、大型で、流体流れを阻害し、その上、センサーが
高価で、かつ、電力を消費するものであることにより、
製造コスト、ランニングコスト(点検整備費)が非常に
品いといった欠点がある。 @のタービン翼単式のもの
によるときは、翼車回転部の摩耗等が不ロエ避であるた
め、耐久性に欠け、しかも、流体の流速変化のみならず
、流体の粘度や異物の混入具合等によって翼車の回転数
が変化するから、測定精度が低く、その玉、翼車が流体
流れ抵抗として作用して流体流れを阻害するといった欠
点がある。 θのピトー管式のものによるときは、総圧
、静圧を管外部に導くための導圧管内の水垢等による詰
り、導圧管内への異物侵入、エアー付着等によって、測
定精度が低く、しかも、総圧、静圧を管外部に導く念め
、計測VC3tイムラグが生じ、特に、流体が水の場合
には導圧管内の水が凍結するといった欠点がある。
However, when using the vjjL magnetic type in (■), the range of use is narrow because it measures the flow velocity of a non-conductive fluid, and the sensor structure is not only complicated but also large. , which obstructs fluid flow, and the sensors are expensive and power-hungry.
The drawback is that manufacturing costs and running costs (inspection and maintenance costs) are very low. When using a single type turbine blade, it lacks durability because wear of the rotating part of the impeller is unavoidable, and it also suffers from not only changes in fluid flow speed but also changes in fluid viscosity and foreign matter contamination. Since the rotational speed of the impeller changes due to the change in the rotation speed of the impeller, measurement accuracy is low, and the balls and impeller act as fluid flow resistance and impede fluid flow. When using the Pitot tube type for θ, the measurement accuracy is low due to clogging with water scale, etc. in the impulse tube that guides the total pressure and static pressure to the outside of the tube, foreign matter entering the impulse tube, air adhesion, etc. Moreover, in order to introduce the total pressure and static pressure to the outside of the pipe, an im- lag occurs in the measurement VC3t, and in particular, when the fluid is water, there is a drawback that the water in the impulse pipe freezes.

本発明は、以上詳述した従来欠点を一掃しようとする点
に目的を有する。
The present invention has an object to eliminate the conventional drawbacks detailed above.

本発明による流体流速計測用a型検出端は、流体輸送管
内に流線に対して垂直又はほぼ当直な姿勢に押入される
棒状部材の管内押入部分に、総圧を電気信号として検出
する第1センサーと、静圧を電気信号として検出する第
2センサーとを取付けるとともに、これら両センサーの
検出信号を管内挿入部分から管外に棒状部材内を介して
伝送すべく構成しである事を特徴とする。
The A-type detection end for fluid flow rate measurement according to the present invention has a first detection end that detects the total pressure as an electric signal at the part of the rod-shaped member pushed into the pipe in a position perpendicular to the flow line or almost on duty in the fluid transport pipe. A sensor and a second sensor that detects static pressure as an electric signal are attached, and the detection signals of both sensors are transmitted from the insertion part inside the pipe to the outside of the pipe via the rod-shaped member. do.

このような本発明の特徴i成によれば、■ ピトー管式
と同様VC総圧と静圧とから流体の流速を検出するから
、非導電性の流体であっても、その流体の流速を計測で
き、汎用性を同上でき、 ■ 翼車等のりIEI]部材がなく、かつ、棒状である
ことにより汚れにくいから、耐久性及びメンテナンス性
を向上でき、 ■ 棒状部材の管内押入部分Vc総圧検出用の第1 セ
ンf−と静圧検出用の@2センサートヲ収付けであるか
ら、計測タイムラグを皆無にできるとともに、センサー
の受圧面が流体に直接に触れて流体によるセンサー受圧
面の浄化作用を期待できることとの相乗によって、流体
の粘度や異物の混入等の外乱にかかわらず、流速計測を
安定的に、かつ、精度良く行なうことができ、 ■ 両センサーとして、後述実施例で示すように、小型
、安価な圧力/電流トンスミツタ−を用いることができ
るから、製造コスト及びランニングコストを著しく低減
できることはもちろん、両センサーの検出信号を管内挿
入部分から管外に棒状部材内を介して伝送すべく構成し
て管内に押入させる部材をセンサー付の棒状部材のみに
しであることの相乗によって、流体の流れ抵抗を小さく
できる といった利点がある。
According to such features of the present invention, (1) the flow velocity of the fluid is detected from the VC total pressure and static pressure, similar to the Pitot tube type; therefore, even if the fluid is non-conductive, the flow velocity of the fluid can be detected; It can be measured and has the same versatility as above, ■ There are no adhesive parts such as impellers, etc., and since it is rod-shaped, it is difficult to get dirty, so durability and maintainability can be improved. Since the first sensor f- for detection and the @2 sensor for static pressure detection are housed, measurement time lag can be completely eliminated, and the pressure-receiving surface of the sensor comes into direct contact with the fluid, allowing the fluid to cleanse the sensor pressure-receiving surface. By synergistically, it is possible to measure the flow velocity stably and with high accuracy regardless of disturbances such as fluid viscosity and foreign matter. Since a small and inexpensive pressure/current tonometer can be used for this purpose, manufacturing costs and running costs can be significantly reduced, and the detection signals of both sensors can be transmitted from the insertion part inside the pipe to the outside of the pipe via a rod-shaped member. There is an advantage that the fluid flow resistance can be reduced due to the fact that the only member pushed into the pipe is a rod-shaped member equipped with a sensor.

以下、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

総1f(Pl)と静圧(Pりとから流速(V)を求め、
流速(v)から流量を求める流鳳計用の検出端であって
、これは、流体輸送管[11内に流線に対して垂直な姿
勢で挿入される棒状部材(21の管内押入部分(2A)
[、総圧横圧用の複数の@l圧力/電流トランスミツタ
ー(Sl)・・を棒状部材(2)長手方向に適宜間隔を
隔てて埋込み状態に取付けるとともに、前記管内押入部
分(2AIC1靜圧検出用の複数の第2圧力/電流ト2
ンスミツター(St)・・を棒状部材(2)長手方向に
適宜間隔をli4’t’?埋込み伏畷に収付けて、構成
され、かつ、前記両種トランスミツター(81) 、 
(S2)・・の電流を管内押入部0(2A)から管外に
棒状部材(2)内を介して伝送すべく構成されている。
Calculate the flow velocity (V) from the total 1f (Pl) and static pressure (Pli),
This is a detection end for a flow meter that determines the flow rate from the flow velocity (v), and this is a rod-shaped member inserted into the fluid transport pipe [11 in a position perpendicular to the streamlines (the part pushed into the pipe of 21)]. 2A)
[, A plurality of @l pressure/current transmitters (Sl) for total pressure lateral pressure are embedded in the rod-shaped member (2) at appropriate intervals in the longitudinal direction, and the pressure/current transmitters (Sl) for total pressure and lateral pressure are installed in an embedded state at appropriate intervals, and A plurality of second pressures/currents for detection 2
Smitters (St)... are spaced appropriately in the longitudinal direction of the rod-shaped member (2). both types of transmitter (81) configured to be housed in an embedded abutment;
(S2)... is configured to transmit the current from the intra-tube insertion part 0 (2A) to the outside of the tube via the inside of the rod-shaped member (2).

前記トランスミツター(S+)、(s2)@・の電流を
棒状部材(2)丙を介して伝送する手段としては、棒状
部材(2)内に伝送用電線を埋込む手段を挙げることが
できる。
As a means for transmitting the current of the transmitter (S+), (s2)@・ via the rod-shaped member (2), there can be mentioned a means of embedding a transmission wire in the rod-shaped member (2). .

前記両種トランスミツター(Sl) 、 (S2)・嗜
の受圧面は、夫々、棒状部材(2)の表面よりも突出し
ない状態のダイヤプラム(ぺa−ズでも可)(al)、
(幻〕・・から構成されて−る。
The pressure-receiving surfaces of both types of transmitters (Sl) and (S2) are each a diaphragm (peas may be used) (al) that does not protrude beyond the surface of the rod-shaped member (2),
(Illusion) It is composed of...

前記棒状部材(2)は、ルーズ7ランジ(3)及びスト
ップ弁(Vlを介して流体輸送管111K !jy、付
けられている。゛ [11J記棒状部材(2)の外端VCは、第1トランス
ミツター(S、)・・による検出総圧の平均値と第2ト
ランスミツター(S2)・・による検出静圧の平均値と
刀1ら流速、流1illを計算する演算回路を内装する
とともに、流ii*示メータ(4)と積算流量表示メー
タt51及び流量信号出力用のコネクター(6)を備え
た流量計(7)が付設されている。
The rod-shaped member (2) is attached to a fluid transport pipe 111K!jy through a loose 7 flange (3) and a stop valve (Vl). Built-in calculation circuit that calculates the average value of the total pressure detected by the first transmitter (S,), the average value of the static pressure detected by the second transmitter (S2), and the flow velocity and flow rate. At the same time, a flow meter (7) equipped with a flow rate II* indicator (4), an integrated flow rate display meter t51, and a connector (6) for outputting a flow rate signal is attached.

+81は、流量計171 K付された矢視マークであり
、これは第1センサー(Sl)・@におけるダイヤフラ
ム(al)・・の向きを示すものである。
+81 is an arrow mark attached to the flowmeter 171 K, which indicates the direction of the diaphragm (al) in the first sensor (Sl).

従って、矢視マーク18)を上流側に回けるように棒状
部材(2)を管tjl vc取付けることにより、第1
センサー(Sl)を総圧検出姿勢に位置させることがで
きる。
Therefore, by attaching the rod-shaped member (2) to the pipe tjl vc so that the arrow mark 18) can be turned to the upstream side, the first
The sensor (Sl) can be positioned in a total pressure detection position.

前記流速間、流量tQlに、次式によって計算さPl−
総圧、P2=靜圧、p=流体の密度、八−管内11i向
積、■=管内平均流速、R=流量計の固有m差(実験で
求められる係数)上記実施例のように、両種センサー(
Sl)。
Between the above flow rates, the flow rate tQl is calculated by the following formula: Pl-
Total pressure, P2=quiet pressure, p=density of fluid, 8-11i cross-sectional area in the pipe, ■=average flow velocity in the pipe, R=specific m difference of flowmeter (coefficient determined by experiment). Seed sensor (
SL).

(S2)を複数個づつ設け、各センサー(Sl)。A plurality of sensors (S2) are provided for each sensor (Sl).

(S2)・・の検出値の平均値tもって流速を演算する
よl 5r、K +L、て実施する場合には、管ill
内での流速分布の乱れを補正でき、検出精度を勝れたも
のにでき、又、ストップ弁ff+及びルーズ゛フランジ
(3)を介してflll[IX付ける場合には、雪(1
1内での流体流れを止めずに、かつ、管ill外に流体
を噴出させることなく、メンテナンス等に伴なう敗付け
、収外しを容易に行なえる。
(S2) Calculate the flow velocity using the average value t of the detected values.
It is possible to correct disturbances in the flow velocity distribution within the interior, improve detection accuracy, and also prevent snow (1
It is possible to easily carry out installation and removal for maintenance etc. without stopping the flow of fluid within the tube 1 and without spouting the fluid outside the tube.

又、棒状部材(2)の取付は姿勢は、流+wl!VC対
する垂直姿勢に対して前後夫々に8に程度傾いた姿勢ま
で許容することができる。
Also, when installing the rod-shaped member (2), the posture is Flow+wl! It is possible to allow a posture tilted by about 8 in both the front and rear with respect to the vertical posture with respect to the VC.

加えて、両センサー(Sl)、(Sりの各個数は、1個
でも艮く、例えば、小口径(100〜200)(1)場
合Vci、1つづつ、大口性(2oo’以上)の場合[
d、複数個といったように、管111の口径や流体の種
類、或いは、必要とされる検出精度等に基づいて決定さ
れ、棒状部材(2)の管内挿入部分(2A)長さは、f
 illの口径に基づいて決定される。
In addition, the number of both sensors (Sl) and (Sri) may be at least one. For example, in the case of small diameter (100 to 200) (1), Vci, one each, large diameter (2oo' or more) case[
d, a plurality of pieces, etc., is determined based on the diameter of the pipe 111, the type of fluid, the required detection accuracy, etc., and the length of the part (2A) of the rod-shaped member (2) inserted into the pipe is f
It is determined based on the caliber of ill.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は使用状態の概念図、第2図は斜視図である。 FIG. 1 is a conceptual diagram of the device in use, and FIG. 2 is a perspective view.

Claims (1)

【特許請求の範囲】 ■ 流体輸送管fil内に流線に対して垂直又はほぼ垂
直な姿勢に押入される棒状部材(2)の管内押入部分(
2A) vc、総圧を電気信号としてす(出する第1セ
ンサー(Sl)と、静圧を電気信号として検出する@2
センサー(S2)とを取付けるとともに、これら両セン
サー(Sl)。 (S2)の検出信87に管内押入部分(2A)から管外
に棒状部材(2)内を介して伝送すべく構成しである事
を特徴とする流体流速計測用棒型検出喘〇 ■ 前記両センサー(Sl) 、 (Ss)がともVC
複数個づつ設けられている特tIf請求の範囲第0項に
記載の流体流速計測用棒型検出喘。
[Claims] ■ A portion of the rod-shaped member (2) pushed into the fluid transport pipe fil in a position perpendicular or almost perpendicular to the streamline (
2A) vc, the total pressure is output as an electrical signal (the first sensor (Sl) that outputs, and the static pressure is detected as an electrical signal @2
Attach the sensor (S2) and both these sensors (Sl). (S2) A rod-shaped detection sensor for fluid flow rate measurement, characterized in that it is configured to transmit the detection signal 87 from the inside of the pipe push-in part (2A) to the outside of the pipe through the inside of the rod-shaped member (2). Both sensors (Sl) and (Ss) are both VC
A rod-shaped detection element for fluid flow rate measurement according to claim 0, wherein a plurality of rod-shaped detection elements are provided.
JP11434582A 1982-06-30 1982-06-30 Rod-type detection terminal for measuring flow speed of fluid Granted JPS593315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11434582A JPS593315A (en) 1982-06-30 1982-06-30 Rod-type detection terminal for measuring flow speed of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11434582A JPS593315A (en) 1982-06-30 1982-06-30 Rod-type detection terminal for measuring flow speed of fluid

Publications (2)

Publication Number Publication Date
JPS593315A true JPS593315A (en) 1984-01-10
JPH0211847B2 JPH0211847B2 (en) 1990-03-16

Family

ID=14635434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11434582A Granted JPS593315A (en) 1982-06-30 1982-06-30 Rod-type detection terminal for measuring flow speed of fluid

Country Status (1)

Country Link
JP (1) JPS593315A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194773U (en) * 1984-11-28 1986-06-18
JPS63215487A (en) * 1987-03-03 1988-09-07 Kayaba Matsukuguregoo Nabiiles Kk Foldable ramp way
KR102124571B1 (en) * 2019-01-17 2020-06-18 필즈엔지니어링 주식회사 Flow meter
KR102124570B1 (en) * 2019-01-17 2020-06-18 필즈엔지니어링 주식회사 Flow measurement method using vent nozzle
WO2020149599A1 (en) * 2019-01-17 2020-07-23 필즈엔지니어링 주식회사 Flowmeter, method for measuring flow rate using flowmeter, flowmeter correcting device, and method for correcting flowmeter by said device
KR20210011183A (en) * 2019-07-22 2021-02-01 필즈엔지니어링 주식회사 Hydrogen production apparatus using flare gas and hydrogen production method using this apparatus
KR20210117610A (en) * 2020-03-19 2021-09-29 필즈엔지니어링 주식회사 Calorie measuring system of flare stack exhaust gas and calorie measuring method by this system
KR20220069768A (en) * 2021-01-13 2022-05-27 필즈엔지니어링 주식회사 Direct combustion calorimetry system of flare gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101357A (en) * 1978-01-09 1979-08-09 Dieterich Standard Corp Pitot tube system flow meter
JPS56164960A (en) * 1980-05-23 1981-12-18 Hitachi Ltd 1-hole pitot tube device
JPS5737214A (en) * 1980-08-19 1982-03-01 Omron Tateisi Electronics Co Flow measuring device utilizing semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101357A (en) * 1978-01-09 1979-08-09 Dieterich Standard Corp Pitot tube system flow meter
JPS56164960A (en) * 1980-05-23 1981-12-18 Hitachi Ltd 1-hole pitot tube device
JPS5737214A (en) * 1980-08-19 1982-03-01 Omron Tateisi Electronics Co Flow measuring device utilizing semiconductor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194773U (en) * 1984-11-28 1986-06-18
JPH0236093Y2 (en) * 1984-11-28 1990-10-02
JPS63215487A (en) * 1987-03-03 1988-09-07 Kayaba Matsukuguregoo Nabiiles Kk Foldable ramp way
KR102124571B1 (en) * 2019-01-17 2020-06-18 필즈엔지니어링 주식회사 Flow meter
KR102124570B1 (en) * 2019-01-17 2020-06-18 필즈엔지니어링 주식회사 Flow measurement method using vent nozzle
WO2020149599A1 (en) * 2019-01-17 2020-07-23 필즈엔지니어링 주식회사 Flowmeter, method for measuring flow rate using flowmeter, flowmeter correcting device, and method for correcting flowmeter by said device
KR20210011183A (en) * 2019-07-22 2021-02-01 필즈엔지니어링 주식회사 Hydrogen production apparatus using flare gas and hydrogen production method using this apparatus
KR20210117610A (en) * 2020-03-19 2021-09-29 필즈엔지니어링 주식회사 Calorie measuring system of flare stack exhaust gas and calorie measuring method by this system
KR20220069768A (en) * 2021-01-13 2022-05-27 필즈엔지니어링 주식회사 Direct combustion calorimetry system of flare gas
KR20230002114A (en) * 2021-01-13 2023-01-05 필즈엔지니어링 주식회사 Direct combustion calorimetry system of flare gas
KR20230002115A (en) * 2021-01-13 2023-01-05 필즈엔지니어링 주식회사 Direct combustion calorimetry system of flare gas
KR20230002116A (en) * 2021-01-13 2023-01-05 필즈엔지니어링 주식회사 Direct combustion calorimetry system of flare gas

Also Published As

Publication number Publication date
JPH0211847B2 (en) 1990-03-16

Similar Documents

Publication Publication Date Title
EP0255056B1 (en) Method for measuring the speed of a gas flow
EP0048588B1 (en) Vortex-shedding flowmeter and method of measuring fluid flow
US8291773B2 (en) Ultrasonic measurement of flow velocity
DE69434859D1 (en) FLOW METER
EP0763718A1 (en) Flowmeter
US3874234A (en) Vortex shedding flowmeter
CN104641118B (en) Drum pump including flowmeter
WO2005038410A3 (en) Device for determining and/or monitoring the volume and/or mass flow rate of a medium in a pipeline
JPS593315A (en) Rod-type detection terminal for measuring flow speed of fluid
EP0137623B1 (en) A flowmeter
US20110107847A1 (en) Acoustic Sensor For Averaging Pitot Tube Installation
US6883389B2 (en) Flow averaging tube and method of using same
US6481293B1 (en) Elbow mounted turbine flowmeter
WO2001086235A3 (en) Magnetic float type flowmeter
US8714028B2 (en) Insertion vortex fluid flow meter with adjustable geometry
WO2008118615A1 (en) Differential pressure measuring probe with bottoming indicator
WO2009074162A1 (en) Ultrasonic type fluid flow measurement apparatus
AU5200399A (en) Device for measuring the volume flow of a fluid in a pipe
JP2579349B2 (en) Fluid measurement device
CN221882661U (en) Temperature and pressure integrated Pitot flowmeter
JP3144986B2 (en) Flowmeter
US4549434A (en) Pressure level sensor
KR100232397B1 (en) Flowmeter
JP3398251B2 (en) Flowmeter
CN210719272U (en) Industrial flowmeter convenient to reading