JPS593294A - Off-gas monitor system for detecting failure of nuclear fuel cladding tube - Google Patents

Off-gas monitor system for detecting failure of nuclear fuel cladding tube

Info

Publication number
JPS593294A
JPS593294A JP57112398A JP11239882A JPS593294A JP S593294 A JPS593294 A JP S593294A JP 57112398 A JP57112398 A JP 57112398A JP 11239882 A JP11239882 A JP 11239882A JP S593294 A JPS593294 A JP S593294A
Authority
JP
Japan
Prior art keywords
gas
nuclear fuel
fuel cladding
radioactive
nuclide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57112398A
Other languages
Japanese (ja)
Inventor
湯浅 嘉之
正彦 大崎
真 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP57112398A priority Critical patent/JPS593294A/en
Publication of JPS593294A publication Critical patent/JPS593294A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は原子力発電所で排出されるオフガス中に含まれ
る放射性部カスをモニタし、核燃料被覆管の破損を迅速
かつ的確に検出する核燃料被覆管・管の破損を迅速かつ
的確に検出する核燃料被覆管の破損検出用オフガスモニ
タシステムに関する。
Detailed Description of the Invention [Technical Field of the Invention 1 The present invention relates to a nuclear fuel cladding tube that monitors radioactive residue contained in off-gas discharged at a nuclear power plant and quickly and accurately detects damage to the nuclear fuel cladding tube.・Related to an off-gas monitoring system for detecting damage to nuclear fuel cladding tubes that quickly and accurately detects pipe failures.

[発明の技術的背景] 一般に原子力発電所においでは、原子炉で発生した蒸気
をタービンに送り込んで機械的仕事をさせ、この機械的
仕事をさらに電力に変換することが行われている。ター
ビンで仕事をした蒸気は復水器においC熱を奪われて復
水となり再び原子炉に送られるが、復水器で復水とされ
るとき、蒸気中に含まれるガスは空気抽出器によって分
離されて煙突から大気中に放散される。したがって空気
抽出器によって復水器のホットウェルから抽気されたオ
フガス中には核分裂生成物である放射性部カスが通常含
まれている。
[Technical Background of the Invention] Generally, in a nuclear power plant, steam generated in a nuclear reactor is sent to a turbine to perform mechanical work, and this mechanical work is further converted into electric power. The steam that has done work in the turbine is deprived of C heat in the condenser, becomes condensation, and is sent to the reactor again. When it is condensed in the condenser, the gases contained in the steam are extracted by the air extractor. It is separated and released into the atmosphere through chimneys. Therefore, the off-gas extracted from the hot well of the condenser by the air extractor usually contains radioactive scum, which is a nuclear fission product.

このようなオフガス中に含まれる放射性希ガスの核種は
半減期が分のA−ダーの短寿命グループ(Kr−89、
Kr−90、Xe−135m、Xe−137、Xe−1
38)と半減期が時なイシ日のオーダーの長寿命グルー
プ(Kr−86m、1(r−(37、Kr−88、Xo
−133、)(e −135)に分けられるが、これら
放射性希ガスのオフガス中の含有量の多少は核燃料被覆
管の健全性を示す目安と考えられる。
The radioactive rare gas nuclides contained in such off-gases have half-lives of minutes, and are in the A-der short-lived group (Kr-89, Kr-89,
Kr-90, Xe-135m, Xe-137, Xe-1
38) and a long-lived group (Kr-86m, 1(r-(37, Kr-88, Xo
-133, ) (e -135), and the content of these radioactive rare gases in the off-gas is considered to be a measure of the soundness of the nuclear fuel cladding.

すなわち、放射性希ガスの含有はが多いとぎは核燃料被
覆管の破損が考えられるので、含有量の多少は破損状況
を知るうえで重要であり、その七二夕は原子力発電所の
安全を紺持するうえで必須の要件である。
In other words, if there is a high content of radioactive noble gases, the nuclear fuel cladding may be damaged, so the amount of radioactive noble gas contained is important to know the extent of the damage. This is an essential requirement.

また、核燃料ペレットからプレナムへの拡散、ブレナム
から破損孔を通しての放出に関する近似削算により、放
射↑IF希ガスの放出においては破損の有無に応じて反
跳(Recoil ) 、拡散(Dirrt+5ion
> 、平衡(「quiliblium)の各放出モデル
が知られており、これらの放出モデルの占める割合(組
成比)もまた核燃料被覆管の健全性を示す目安となる。
In addition, by approximate reduction of the diffusion from the nuclear fuel pellets to the plenum and the release from the brenum through the damaged hole, in the release of radiation↑IF noble gas, recoil and diffusion (Dirrt + 5 ions) are calculated depending on the presence or absence of damage.
>Equilibrium release models are known, and the proportions (composition ratios) of these release models also serve as an indicator of the soundness of the nuclear fuel cladding.

すなわち核燃料被覆管の破損が生じた場合は反跳モデル
の組成比(R)が急激に減少し、拡散おJ、び平衡モデ
ルの組成比(DおよびE)が増大するので、そのモニタ
もまた核燃料被覆管の破損をただちに検出しfcA子力
発電所の安全性を確保するうえて・必要とされる。
In other words, if a nuclear fuel cladding tube breaks, the composition ratio (R) of the recoil model will rapidly decrease, and the composition ratios (D and E) of the diffusion J and equilibrium models will increase, so the monitor should also This is necessary to immediately detect damage to nuclear fuel cladding and ensure the safety of FCA nuclear power plants.

「背景技術の問題点1 しかしながら従来からのオフガスモニタシステム(こお
いCは、前記空気抽出器と煙突の間を連結Jるオフガス
主配管の途中にオフガスの一部をバイパスさせる配管を
設け、このバイパス管を流れるオフガスをNa ((1
−1,−)検出器でガンマ線のクロス計数率を測定する
方法が用いられCいるため、放射性希ガスの積杆組成お
よび前記放出モデルの組成比に関する情報が1qられな
いという問題があった。
``Problem in the Background Art 1 However, conventional off-gas monitoring systems (Koi C) are equipped with a pipe that bypasses a portion of the off-gas in the middle of the main off-gas pipe that connects the air extractor and the chimney. The off-gas flowing through the bypass pipe is Na ((1
Since a method of measuring the cross-count rate of gamma rays with a -1,-) detector is used, there is a problem in that information regarding the composition of the radioactive rare gas stack and the composition ratio of the emission model cannot be obtained.

し発明の目的] 本発明は原子力発電所で排出されるオフガス中の放射性
希ガスを、知万命グループと長寿命グループに分けてそ
れぞれの核種ごとの放出率および放射性希ガス全体での
反跳、拡散、平衡の各放出モデルの組成比を測定算出す
ることのできる核燃料被覆管の破損検出用オフガスモニ
タシステムを提供することを目的とする。
[Purpose of the Invention] The present invention divides radioactive rare gases in off-gas emitted from nuclear power plants into Chimanmei group and long-life group, and evaluates the release rate of each nuclide and the recoil of the radioactive rare gases as a whole. It is an object of the present invention to provide an off-gas monitoring system for detecting damage to nuclear fuel cladding, which can measure and calculate the composition ratio of each emission model of , diffusion, and equilibrium.

[発明の概要] ずなわら本発明は、オフガスと水とを混合するオフガス
混合器と、前記オフガス混合器から吐出されるオフガス
中に含まれる放射性希ガス核種を短寿命グループと長寿
命グループに分けそれぞれ測定検出する検出部と、前記
検出部で検出されたデータを解析し放射性希ガス核種を
同定定量する波高分析器と、前記波高分析器で解析され
たデータをもとに放射性希ガス全体での反跳、拡散、平
衡の各放出モデルの組成比を算出するプロセス計算機と
からなることを特徴とする核燃料被覆管の破損検出用オ
フガスモニタシステムである。
[Summary of the Invention] The present invention provides an off-gas mixer that mixes off-gas and water, and a radioactive rare gas nuclide contained in the off-gas discharged from the off-gas mixer into a short-life group and a long-life group. A detection unit that performs measurement and detection, a pulse height analyzer that analyzes the data detected by the detection unit to identify and quantify the radioactive rare gas nuclide, and a pulse height analyzer that analyzes the data detected by the detection unit to identify and quantify radioactive rare gas nuclides. This off-gas monitoring system for detecting damage to nuclear fuel cladding is characterized by comprising a process calculator that calculates the composition ratios of recoil, diffusion, and equilibrium release models.

[発明の実施例] 以下本発明の一実施例について図面を参照して詳細に説
明する。
[Embodiment of the Invention] An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明にa3けるオフガス中の放射性希ガス核
種のガンマ線検出部の縦断面図である。図に示すように
、全体を符号1で示すガンマ線検出部は鉛遮蔽体2で囲
まれた空間部3に短寿命グループ核種測定部4と長寿命
グループ核種測定部5が遮蔽体外にある遅延管6を挾ん
で設+−1られた構造にならでいる。測定部4.5およ
び遅延管6は図示するj:うに蛇管構造とすることが望
ましい。
FIG. 1 is a longitudinal cross-sectional view of a gamma ray detection unit for radioactive rare gas nuclides in off-gas according to the present invention. As shown in the figure, the gamma ray detection section, which is designated as a whole by reference numeral 1, has a short-life group nuclide measuring section 4 and a long-life group nuclide measuring section 5 located outside the shield in a space 3 surrounded by a lead shield 2. It is shaped like a +-1 structure with 6 in between. It is preferable that the measuring section 4.5 and the delay tube 6 have a spiral tube structure as shown in the figure.

なお、空間部3にはGe  (ゲルマニウム)検出器7
が設けられている。
Note that a Ge (germanium) detector 7 is installed in the space 3.
is provided.

第2図は本発明の一実施例のオフガスモニタシステムの
ブロック図である。図に示すように、空気抽出器(図示
せず)より出たオフガスの一部はオフガス移送ポンプ8
に吸引されてオフガス主配管9の途中に設けられたバイ
パス管10に入り、弁11と応動し、後述する中火プロ
セスユニット18の信号により開閉される弁12を通っ
てオフガス混合器13に送り込まれる。
FIG. 2 is a block diagram of an off-gas monitoring system according to an embodiment of the present invention. As shown in the figure, a portion of the off-gas discharged from the air extractor (not shown) is transferred to the off-gas transfer pump 8.
The off-gas is sucked into the bypass pipe 10 provided in the middle of the off-gas main piping 9, reacts with the valve 11, and is sent to the off-gas mixer 13 through the valve 12, which is opened and closed by a signal from the medium-heat process unit 18, which will be described later. It will be done.

また、オフガス混合器13には水ポンプ14によつ一τ
水タンク15から吸い上げられた清浄水が供給されCお
り、このオフガス混合器13内部で清浄水の一定水流に
オフガスが一定の割合で混合される。すなわち前記弁1
2の開閉によってオフガス混合器13の出口バイブには
オフガス気泡が蜆則的に配列された水流が作られ、これ
が前述のガンマ線検出部1に送られる。
In addition, the off-gas mixer 13 is connected to a water pump 14 with one τ
Clean water sucked up from a water tank 15 is supplied, and off-gas is mixed at a constant rate with a constant stream of clean water inside this off-gas mixer 13. That is, the valve 1
2, a water flow in which off-gas bubbles are arranged in a grid pattern is created at the exit vibe of the off-gas mixer 13, and this water flow is sent to the gamma ray detection section 1 described above.

なお、弁11と弁12は正反対に開閉を繰り返すように
応動させる。すなわちオフガス混合器13にオフガスを
供給する場合は、所定時間弁11を閉じC弁12を開き
、逆に供給を停止する場合は弁12を閉じると同時に弁
11を開き、オフガス移送ポンプ8に吸引されてバイパ
ス管10に入ったオフガスを弁11を通してオフガス主
配管9に戻ずようにする。
Note that the valves 11 and 12 are operated so as to repeat opening and closing in opposite directions. In other words, when off-gas is supplied to the off-gas mixer 13, the valve 11 is closed for a predetermined period of time and the C valve 12 is opened.On the other hand, when the supply is to be stopped, the valve 11 is opened at the same time as the valve 12 is closed, and the off-gas is sucked into the off-gas transfer pump 8. The off-gas that has entered the bypass pipe 10 is prevented from returning to the off-gas main pipe 9 through the valve 11.

次に、オフガス混合器13の出口バイブ内を送られてぎ
たオフガス−水の混合体は第1図に示したガンマ線検出
部1の測定部4を通過する。ここでGe検出器7により
オフガス中の短野命の放射性希ガスが測定検出される。
Next, the off-gas-water mixture sent through the exit vibe of the off-gas mixer 13 passes through the measurement section 4 of the gamma ray detection section 1 shown in FIG. Here, the Ge detector 7 measures and detects the short-lived radioactive rare gas in the off-gas.

次いでオフガス−水は遅延管6を通り1〜5時間に渡っ
て短野命の放射性希ガスの放射能が減衰させられる。そ
の後測定部5に入り、Ge検出器7によりオフガス中の
長寿命の放射性希ガスが測定検出される。
The off-gas-water then passes through a delay tube 6 for 1 to 5 hours to attenuate the radioactivity of the short-lived radioactive noble gas. Thereafter, the gas enters the measuring section 5, and the long-lived radioactive rare gas in the off-gas is measured and detected by the Ge detector 7.

測定部5を出たオフガス−水は気泡セパレータ16にお
いて分離され水はドレンとして排出され、−7= 一方、オフガスはオフガス主配管9に戻されて図示しな
い煙突を杼C大気中に放散される。
The off-gas-water exiting the measuring section 5 is separated in the bubble separator 16, and the water is discharged as drain, -7= On the other hand, the off-gas is returned to the off-gas main pipe 9 and is dissipated into the atmosphere through a chimney (not shown) through a shuttle C. .

Ge検出器7で測定されたガンマ線スペクトルは、まず
波高分析器17に入れられ、ここからざらに中央プロレ
スコニット18に送られ波高分析器17および中央プロ
セスユニット18でスペク1〜ル解析が行なわれ、放射
性希ガス核種の同定定量が行なわれ核種ごとの放出率の
算定がなされる。
The gamma ray spectrum measured by the Ge detector 7 is first input into the pulse height analyzer 17, and from there it is roughly sent to the central prolesconit 18, where spectrum analysis is performed in the pulse height analyzer 17 and the central process unit 18. The radioactive rare gas nuclides are identified and quantified, and the release rate of each nuclide is calculated.

放出率はオフガス主配管9の途中に設けられ−Cいるオ
フガス流量計(図示せず)から送られてくる流量値のデ
ータをもとにして算出されるまた、この中央プロセスユ
ニット18では前述の核種ごとの放出率をもとに放射性
希ガス全体での反跳、拡散、平衡の各放出モデルの組成
比が算出される。すなわち核燃料被覆管の破損状況に応
じて以下に述べるような各放出モデルが対応することが
知られており、各モデルごとに放出率は次式で表わされ
る。
The release rate is calculated based on the flow rate data sent from an off-gas flow meter (not shown) installed in the middle of the main off-gas pipe 9. In addition, in this central process unit 18, the above-mentioned The composition ratio of the recoil, diffusion, and equilibrium release models for the entire radioactive noble gas is calculated based on the release rate of each nuclide. That is, it is known that each release model described below corresponds to the damage state of the nuclear fuel cladding tube, and the release rate for each model is expressed by the following equation.

核燃料被覆管の破損がなくトランプウランから放射性希
ガスが放出される場合、 8− 反跳モデル  Ai =Kに Y1λi破損孔から放射
牲希ガスが放出される場合、拡散モデル  A1−Ko
 YIλ、に平衡モデル  A1−心 Yl ここでAiは核種iの放出率(m Ci /sec )
、Yiは核種iの核分裂収率、A1は核種1の崩壊定数
(1/5ec)を示し、KFL、 K、  、K、  
はそれぞれ定数Cある。
If radioactive noble gas is released from Trump uranium without damage to the nuclear fuel cladding, then 8- Recoil model Ai = K. If radioactive noble gas is released from Y1λi damage hole, then diffusion model A1-Ko.
YIλ, equilibrium model A1-center Yl where Ai is the emission rate of nuclide i (m Ci /sec)
, Yi is the fission yield of nuclide i, A1 is the decay constant (1/5ec) of nuclide 1, and KFL, K, ,K,
each has a constant C.

このような各放出モデルの組成比を算出するには、放射
性希ガスの核種ごとの放出率についての解析および算定
結果を次式 %式% にあてはめ、次式で表わされるSの値を最小にする定数
にえ、KO、KE  の値を求めた後、S=と(β0(
1(Ai /Yi ) −AO(1(Kl(λ1+に5
  Ai” +Ka  ) ) 2これらの値を用い放
射性希ガス核種全体での各組成比を以下の式より算出す
る。
In order to calculate the composition ratio of each release model, apply the analysis and calculation results for the release rate of each radioactive noble gas nuclide to the following formula % formula %, and minimize the value of S expressed by the following formula. After finding the values of KO and KE using constants, S= and (β0(
1(Ai /Yi) -AO(1(Kl(5 to λ1+)
Ai"+Ka)) 2 Using these values, each composition ratio of the entire radioactive rare gas nuclide is calculated from the following formula.

R−Σに良 Yiλ1/Σ(KIYiλi+KD・Y1
λiと +KEYi) 以上のような演算を行ない算出された結果は、中央プロ
セスユニット18からプリンタ19に送られて打ち出さ
れるとともに、表示装置20に送り込まれ、RXD、E
の経時変化および放射性希ガス核種の放出率の合計値が
グラフ上にプロットされる。
Good for R-Σ Yiλ1/Σ(KIYiλi+KD・Y1
λi and +KEYi) The results calculated by performing the above calculations are sent from the central processing unit 18 to the printer 19 and printed out, and are also sent to the display device 20 and displayed on the RXD, E
The changes over time and the total value of the release rate of radioactive noble gas nuclides are plotted on the graph.

また、中央プロセスユニット18から出力される信号に
にり作動するアラーム21が設けられており、Rが減少
しDおよび[が増大した場合にはここから警報が発せら
れる。
Further, an alarm 21 is provided which is activated in response to a signal output from the central process unit 18, and an alarm is issued from this when R decreases and D and [ increase.

第3図および第4図は本発明のシステムによりモニタさ
れ、前記表示装置20に表わされた放射性希ガス核種の
放出率の合計値およびR,D、Eの経時変化を示すグラ
フrある。
3 and 4 are graphs r showing the total value of the release rate of radioactive rare gas nuclides and changes over time of R, D, and E monitored by the system of the present invention and displayed on the display device 20.

これらのグラフから明らかなように、核燃料被覆管の破
損が生じた場合には放出率の合計値が急激に増加するだ
けで・なく、Rが激減1ノその分りおよび「の値が増大
覆る。従ってアラーム21の作動を待つまひもなく、こ
れらのグラフを連続的に作製し監視Jることにより破損
発生後ただちにこれを検知することかC゛きる。
As is clear from these graphs, when damage to the nuclear fuel cladding occurs, not only does the total value of the emission rate increase rapidly, but also R decreases sharply and the value of R increases accordingly. Therefore, there is no need to wait until the alarm 21 is activated, and by continuously preparing and monitoring these graphs, it is possible to detect damage immediately after it occurs.

また、本発明のシステムにおいCは、ガンマ線検出部1
と気泡セパレータ16との間に、第5図C示−リーよう
な遅延管22およびβ線検出部23を設けることにより
β線を放出する放射性希ガス核種を測定検出することが
できる。
In addition, in the system of the present invention, C is the gamma ray detection unit 1
By providing a delay tube 22 and a β-ray detector 23 as shown in FIG. 5C between the air bubble separator 16 and the bubble separator 16, radioactive noble gas nuclides that emit β-rays can be measured and detected.

すなわちオフカス−水は測定部5を出た後、遅延管22
に入りここで5時間以上遅延減衰された後、β線検出部
23の測定部24に導入され、電離精力゛スク[]カウ
ンタ、プラスチックシンナレーション検出器のようなβ
線検11器25によりβ線を測定検出される。
That is, after the off-dregs water leaves the measuring section 5, it passes through the delay tube 22.
After being delayed and attenuated for more than 5 hours, it is introduced into the measurement section 24 of the beta ray detection section 23, where it is introduced into the measurement section 24 of the beta ray detection section 23, where it is introduced into the measurement section 24 of the beta ray detection section 23, where it is introduced into the measurement section 24 of the beta ray detection section 23.
The β rays are measured and detected by the line detector 11 25 .

検出結果はh1測部26を経て中央プロセスユニット1
8に送られ、ここでβ線核種の同定定量がなされる。
The detection results are sent to the central process unit 1 via the h1 measuring section 26.
8, where the β-ray nuclide is identified and quantified.

Jなわち遅延管22での減衰により測定部24でβ線を
放出Jる主な核種はXe−133、Kr−85、Kr 
−85m  、Kr−88、Xe−,135であるが、
Kr−85のβ線]−ネルギー(約660KOV)が他
の4核種のそれより大幅に高い値を示1のC゛、測定結
果から主にKr−85の同定定量がなされる。
In other words, the main nuclides that emit β-rays in the measuring section 24 due to attenuation in the delay tube 22 are Xe-133, Kr-85, and Kr.
-85m, Kr-88, Xe-,135, but
The β-ray]-energy (about 660 KOV) of Kr-85 is significantly higher than that of the other four nuclides, and the measurement results mainly identify and quantify Kr-85.

Kr−85の測定定量は従来はなされでいなかったもの
C・、この測定により破損の生じた核燃料の燃料度を評
価することが61能となり、破損位置をもある程度用る
ことがひきる。
The quantitative measurement of Kr-85 has not been done in the past.This measurement makes it possible to evaluate the fuel content of damaged nuclear fuel, and the location of the damage can also be used to some extent.

[発明の効果] 以上の記載から明らかなように、本発明のオフガスモニ
タシステムによれば、オフガス中の放射性希ガス核種の
放出率および反跳、拡散、平衡の各放出モデルの組成比
を連続的かつ自動的にモニタするので、核燃料被覆管の
破損が生じた場合にただちにこれを検出することができ
、事故の発生を未然に防ぐことができる。
[Effects of the Invention] As is clear from the above description, according to the off-gas monitoring system of the present invention, the release rate of radioactive rare gas nuclides in the off-gas and the composition ratio of each release model of recoil, diffusion, and equilibrium can be continuously monitored. Since the nuclear fuel cladding tube is monitored automatically and automatically, any damage to the nuclear fuel cladding tube can be detected immediately, and accidents can be prevented from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるガンマ線検出部の縦
断面図、第2図は本発明の一実施例のオフガスモニタシ
ステムのブロック図、第3図および第4図は本発明の一
実施例により得られた放射性希ガス核種の放出率の合h
1値およびR,D、Eの経時変化を示(グラフ、第5図
はβ線検出部の縦断面図である。 1・・・・・・・・・・・・ガンマ線検出部6.22・
・・遅延管 7・・・・・・・・・・・・Qe検出器8・・・・・・
・・・・・・オフガス移送ポンプ9・・・・・・・・・
・・・オフガス主配管10・・・・・・・・・・・・バ
イパス管11.12・・・弁 13・・・・・・・・・・・・オフガス混合器14・・
・・・・・・・・・・水ポンプ16・・・・・・・・・
・・・気泡セパレータ17・・・・・・・・・・・・波
高分析器18・・・・・・・・・・・・中央プロセスユ
ニット19・・・・・・・・・・・・プリンタ20・・
・・・・・・・・・・表示装置23・・・・・・・・・
・・・β線検出部25・・・・・・・・・・・・β線検
出器26・・・・・・・・・・・・削測部 代理人弁理士   須 山 佐 −
FIG. 1 is a vertical cross-sectional view of a gamma ray detection section in an embodiment of the present invention, FIG. 2 is a block diagram of an off-gas monitoring system in an embodiment of the present invention, and FIGS. 3 and 4 are an embodiment of the present invention. The sum of the emission rates of radioactive rare gas nuclides obtained from the example h
1 value and changes over time of R, D, and E (graph; Figure 5 is a vertical cross-sectional view of the β-ray detection section. 1...... Gamma ray detection section 6.22・
...Delay tube 7...Qe detector 8...
・・・・・・Off gas transfer pump 9・・・・・・・・・
... Off-gas main pipe 10 ... Bypass pipe 11.12 ... Valve 13 ... Off-gas mixer 14 ...
・・・・・・・・・Water pump 16・・・・・・・・・
...Bubble separator 17... Wave height analyzer 18... Central process unit 19... Printer 20...
......Display device 23...
...Beta-ray detector 25...Beta-ray detector 26...Representative Patent Attorney of the Removal Measurement Department Satoshi Suyama −

Claims (1)

【特許請求の範囲】[Claims] (1)Aフガスと水とを混合するオフガス混合器と、前
記オフガス混合器から吐出されるオフガス中に含まれる
放射性部ガス核種を短寿命グループと長寿命グループに
分け、それぞれ測定検出する検出部と、前記検出部で検
出されたデータを解析し放射性部ガス核種を同定定量す
る波高分析器と、前記波高分析器で解析されたデータを
もとに放射性希ガス全体での反跳、拡散、平衡の各放出
モデルの組成比を算出するプロセス計算機とからなるこ
とを特徴とする核燃料被覆管の破損検出用オフガスモニ
タシステム。
(1) An off-gas mixer that mixes A fugas and water, and a detection unit that divides the radioactive gas nuclides contained in the off-gas discharged from the off-gas mixer into a short-life group and a long-life group, and measures and detects each of them. and a wave height analyzer that analyzes the data detected by the detection unit to identify and quantify the radioactive gas nuclide; and a wave height analyzer that analyzes the data detected by the detection unit to identify and quantify the radioactive gas nuclide; and based on the data analyzed by the wave height analyzer, recoil, diffusion, and An off-gas monitoring system for detecting damage to nuclear fuel cladding, comprising a process calculator that calculates the composition ratio of each equilibrium release model.
JP57112398A 1982-06-29 1982-06-29 Off-gas monitor system for detecting failure of nuclear fuel cladding tube Pending JPS593294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112398A JPS593294A (en) 1982-06-29 1982-06-29 Off-gas monitor system for detecting failure of nuclear fuel cladding tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112398A JPS593294A (en) 1982-06-29 1982-06-29 Off-gas monitor system for detecting failure of nuclear fuel cladding tube

Publications (1)

Publication Number Publication Date
JPS593294A true JPS593294A (en) 1984-01-09

Family

ID=14585656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112398A Pending JPS593294A (en) 1982-06-29 1982-06-29 Off-gas monitor system for detecting failure of nuclear fuel cladding tube

Country Status (1)

Country Link
JP (1) JPS593294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147590A (en) * 1984-08-14 1986-03-08 株式会社東芝 Detector for damaged fuel
JP2006119020A (en) * 2004-10-22 2006-05-11 Toshiba Corp Evaluation method for element deposition on surface of fuel clad and program for it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873698A (en) * 1972-01-10 1973-10-04
JPS55107998A (en) * 1979-02-15 1980-08-19 Tokyo Shibaura Electric Co Nuclear reactor fuel failure diagnosis device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873698A (en) * 1972-01-10 1973-10-04
JPS55107998A (en) * 1979-02-15 1980-08-19 Tokyo Shibaura Electric Co Nuclear reactor fuel failure diagnosis device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147590A (en) * 1984-08-14 1986-03-08 株式会社東芝 Detector for damaged fuel
JP2006119020A (en) * 2004-10-22 2006-05-11 Toshiba Corp Evaluation method for element deposition on surface of fuel clad and program for it
JP4660154B2 (en) * 2004-10-22 2011-03-30 株式会社東芝 Method for evaluating fissile nuclide deposition on the surface of a fuel cladding tube and program therefor

Similar Documents

Publication Publication Date Title
US3712850A (en) Method for determining reactor coolant system leakage
Cooper et al. Minimum detectable concentration and concentration calculations
WO2021010864A1 (en) Method of monitoring the radionuclide content of radioactive waste
JPS593294A (en) Off-gas monitor system for detecting failure of nuclear fuel cladding tube
KR101197002B1 (en) Unified Non-Destructive Assay System to measure a Given Nuclide Amount in the Mixed Nuclear Material Sample, Which is Composed of a Measurement Part and a Unified Analysis Part
JP3524203B2 (en) Neutron monitor and criticality management method for spent nuclear fuel
JP2010112726A (en) Method for determining nuclide composition of fissionable material
JP2931750B2 (en) Continuous measurement method of radioactive iodine in off-gas
Tonoike et al. Power profile evaluation of the jco precipitation vessel based on the record of the gamma-ray monitor
JP2000193784A (en) Device for detecting fracture of fuel
JPS626199A (en) Off-gas monitor
Caldwell-Nichols et al. Radiation monitoring, environmental and health physics aspects during the first JET tritium experiment
Roach Detection of steam generator tube leaks in pressurized water reactors
Hartwell et al. An on-line automated gamma spectrometer for coolant monitoring at the loss of fluid test facility (LOFT)
Besar Installation, calibration and independent verification of the performance of a primary water radioactivity monitor in a one megawatt TRIGA research reactor
JPH06214038A (en) Neutron monitoring method and device therefor
JPS6212831A (en) Sample collecting system
Braid et al. Operation of cover-gas system during SLSF tests
Delorme et al. Experience with different methods for on-and off-line detection of small releases of fission products from fuel elements at the HOR
Lodde et al. Assessment and control of the Three Mile Island Unit 2 reactor building atmosphere
JPH11133186A (en) Gaseous waste disposal facility having radiation monitor
Wakat et al. On-line radiochemical analysis for controlling rapid ion exchange recovery of transplutonium elements
Hull et al. Lessons learned from a NUREG-0737 review of high-range effluent monitors and samplers
Hull et al. A review of monitoring, sampling and analysis of reactor coolant, reactor containment atmosphere and airborne reactor effluents in post accident concentrations
Nieschmidt et al. Application of a real time stack monitor using a Ge (Li) detector and a PDP-9 processor