JP2006119020A - Evaluation method for element deposition on surface of fuel clad and program for it - Google Patents

Evaluation method for element deposition on surface of fuel clad and program for it Download PDF

Info

Publication number
JP2006119020A
JP2006119020A JP2004308041A JP2004308041A JP2006119020A JP 2006119020 A JP2006119020 A JP 2006119020A JP 2004308041 A JP2004308041 A JP 2004308041A JP 2004308041 A JP2004308041 A JP 2004308041A JP 2006119020 A JP2006119020 A JP 2006119020A
Authority
JP
Japan
Prior art keywords
nuclides
power plant
nuclear power
ratio
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004308041A
Other languages
Japanese (ja)
Other versions
JP4660154B2 (en
Inventor
Masato Takahashi
正人 高橋
Shinichi Higuchi
真一 樋口
Shigeto Kikuchi
茂人 菊池
Kazunari Okonogi
一成 小此木
Takeshi Ishida
剛 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004308041A priority Critical patent/JP4660154B2/en
Publication of JP2006119020A publication Critical patent/JP2006119020A/en
Application granted granted Critical
Publication of JP4660154B2 publication Critical patent/JP4660154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate element deposition on the fuel clad surface of a nuclear power plant in operation. <P>SOLUTION: Among the off gas nuclide of an operating nuclear power plant, radioactivity intensity ratio of nuclides Xe-135m, Xe-135, Xe-138 and Kr-88 or nuclides Xe-135m, Xe-135, Xe-138 and Kr-87 is determined by measurement and from the radioactivity ratio, component ratio of them is obtained. From the component ratio, in-core migration time of the off-gas and iodine is evaluated and existence of deposition of fissile nuclides is judged from the in-core migration time of the off-gas and iodine. In another method, radioactivity intensity ratio of nuclides I-132, I-134 and I-135 among iodine isotopes in core water of an operating nuclear power plant is obtained by measurement, and from the radioactivity intensity ratio, the component ratio of the nuclides is obtained. From the component ratio, core water purification system coefficient of Te in the operating nuclear power plant is calculated. From the core water purification system coefficient of Te, fluctuation of deposition of fissile nuclide on the fuel rod outer surface is judged. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、運転中の原子力プラントのルーチンに測定されている放射線データに基づいて燃料被覆管表面での元素付着を評価する方法およびそのためのプログラムに関する。   The present invention relates to a method for evaluating element deposition on the surface of a fuel cladding tube based on radiation data measured in the routine of an operating nuclear power plant and a program therefor.

燃料被覆管の破損が無いプラントでは被覆管中に含まれる不純物のウランが主な起源となって、オフガスにKrとXeの7つの核種、炉水中には5つのヨウ素同位体が検出されている。これらの元素の濃度および同位体組成は通常運転中の被覆管破損の無い状態ではほぼ一定である。被覆管の破損が生じた場合には、これらの元素濃度の上昇と共に燃料棒内に蓄積された半減期の長い同位体が放出されることによって同位体組成も変化する。従来からこの変動を検出することによって燃料被覆管の健全性判定が行なわれている。また、同位体組成の変化からはオフガスの放出メカニズムについて評価する手法が提案されている。これらの手法は特許文献1等に開示されている。   In plants where there is no damage to the fuel cladding, uranium, an impurity contained in the cladding, is the main source, and seven nuclides of Kr and Xe are detected in the offgas, and five iodine isotopes are detected in the reactor water. . The concentrations and isotopic compositions of these elements are almost constant in the absence of cladding failure during normal operation. When the cladding is broken, the isotope composition is changed by releasing the isotopes having a long half-life accumulated in the fuel rod as the concentration of these elements increases. Conventionally, the soundness of the fuel cladding tube is determined by detecting this variation. In addition, a method for evaluating the offgas release mechanism from the change in the isotope composition has been proposed. These methods are disclosed in Patent Document 1 and the like.

オフガスの起源評価方法についての非特許文献1における記述では、燃料破損の経験が無いプラントでのオフガスの主な起源は、ジルカロイ被覆管中に含まれる天然ウランが燃焼によりPuに変化したもので、そのウラン量は炉心平均で約100ppbと評価されている。一方、被覆管破損時に炉水中に放出された核分裂性核種も被覆管表面に付着してオフガスの起源となるので、被覆管破損を経験したプラントでのオフガスレベルの将来の推移を評価するためには、現在のオフガス起源が不純物か付着かを把握することが必要である。しかしながら、ジルカロイ中の不純物ウラン量はジルカロイ被覆管毎には必ずしも同一ではないことから、絶対値であるオフガスの放出値(Bq/s)を用いて不純物と付着量を判定することは困難である。   In the description in Non-Patent Document 1 regarding the method for evaluating the origin of offgas, the main origin of offgas in a plant without experience of fuel failure is that the natural uranium contained in the zircaloy cladding tube is changed to Pu by combustion. The amount of uranium is estimated to be about 100 ppb on average in the core. On the other hand, fissionable nuclides released into the reactor water when the cladding tube breaks also adheres to the surface of the cladding tube and becomes the source of off-gas. Therefore, in order to evaluate the future transition of the off-gas level in the plant that experienced the cladding tube failure It is necessary to understand whether the current off-gas origin is impurities or adhesion. However, since the amount of impurity uranium in zircaloy is not necessarily the same for each zircaloy cladding tube, it is difficult to determine the amount of impurities and adhesion using the off-gas emission value (Bq / s), which is an absolute value. .

原子炉に装荷された燃料集合体の表面にウラン成分が付着しているかどうかを判定するには、一般に燃料集合体表面に付着している成分を採取して化学分析と放射線測定を行なうことが必要であるが、表面付着物の採取とα線測定に必要な化学分離と測定試料調整は非常に煩雑であるために実際には行なわれておらず、付着量の評価は困難とされていた。   To determine whether uranium components are attached to the surface of a fuel assembly loaded in a nuclear reactor, it is generally possible to collect the components attached to the surface of the fuel assembly and perform chemical analysis and radiation measurement. Although necessary, chemical separation and sample preparation necessary for collecting surface deposits and measuring α-rays are very complicated, so they were not actually performed, and it was difficult to evaluate the amount of deposits. .

被覆管表面での核分裂性核種の付着の有無を評価する方法として非特許文献1に記載されている138Xe/88Krの生成比からオフガス起源を評価する方法では、138Xeが短半減期のため、測定データ毎に生成からオフガス系での測定までの移行時間による減衰補正が必要である。この移行時間評価方法はプラント毎の構造や同一プラントにおいても出力やオフガス流量等の運転条件に依存して測定データ(バッチ)毎に異なるため、非特許文献1では移行時間による減衰の補正に同一γ線スペクトル上に得られる135m Xe/135g Xeの同位体の放射能強度比を内部標準とした方法を用いている。 In the method of evaluating off-gas origin from the production ratio of 138 Xe / 88 Kr described in Non-Patent Document 1 as a method for evaluating the presence or absence of fissile nuclide attachment on the surface of the cladding tube, 138 Xe has a short half-life. For this reason, attenuation correction is required for each measurement data based on the transition time from generation to measurement in an off-gas system. This transition time evaluation method differs for each measurement data (batch) depending on the structure of each plant and the operating conditions such as output and off-gas flow rate even in the same plant. A method is used in which the radioactivity intensity ratio of the 135m Xe / 135g Xe isotope obtained on the γ-ray spectrum is used as an internal standard.

しかしながら、時間減衰補正に用いた135Xeの isomer(同重体)は共に135Iの壊変と直接核分裂により生成されるため、半減期の短い135m Xeは炉水中ヨウ素挙動の影響を強く受ける。一方、最近多くのプラントで実施されている水素や亜鉛(Zn)等の注入に伴い、炉水ヨウ素濃度の低下等のヨウ素挙動に変化が生じることが報告されている。また、炉水ヨウ素濃度はCUW(クリーンアップ水)の流量や除去性能にも依存して変動する。このため、すべてのプラントデータのオフガス移行時間を135m Xe/135g Xeの同位体比のみから算出しオフガスの起源を評価することは困難であった。 However, since 135 Xe isomers (isobares) used for time decay correction are both generated by 135 I decay and direct fission, 135m Xe with a short half-life is strongly influenced by iodine behavior in the reactor water. On the other hand, it has been reported that changes in iodine behavior such as a decrease in the concentration of iodine in reactor water occur with the injection of hydrogen, zinc (Zn), and the like, which are carried out in many plants recently. In addition, the iodine concentration in the reactor water varies depending on the flow rate and removal performance of CUW (cleanup water). For this reason, it was difficult to evaluate the origin of offgas by calculating the offgas transition time of all plant data only from the isotope ratio of 135m Xe / 135g Xe.

一方、構造材料からの溶出等で炉水中に持ち込まれた元素は被覆管表面で放射化され、被爆量を増大させる。このため炉水環境を変化させることで被覆管表面への付着速度を制御して被ばく量を低減させる試みが行なわれている。最近のプラントでは水素や貴金属の注入により、放射性の腐食生成物の生成量を抑制することで、被爆低減を図っている。これらの注入を行なったプラントでは、炉水状態が変化し腐食生成物と同時に通常測定されているヨウ素の他に多種の核分裂生成物の挙動も変化する。   On the other hand, elements brought into the reactor water due to elution from the structural material are activated on the surface of the cladding tube, increasing the amount of exposure. For this reason, attempts have been made to reduce the exposure dose by changing the reactor water environment to control the deposition rate on the surface of the cladding tube. In recent plants, the amount of radioactive corrosion products is suppressed by injection of hydrogen and precious metals to reduce exposure. In the plant in which these injections are performed, the reactor water state changes, and the behavior of various fission products changes in addition to the iodine that is usually measured simultaneously with the corrosion products.

運転プラントで測定されている希ガス成分のクリプトン(Kr)やゼノン(Xe)、および炉水中のヨウ素(I)は60Coや54Mn等の放射性腐食生成物とは化学的性質が大きく異なるが、被覆管表面に付着したウランは腐食生成物に近い挙動を示し、長期間燃料被覆管外表面に付着する。一方、ヨウ素の前駆体であるテルル(Te)は非金属的な性質と金属的な性質の中間的な性質を示す。このため、Teの挙動変化を把握することは運転プラントでの炉水環境条件を把握する上で良い指標となる。 The rare gas components krypton (Kr) and xenon (Xe) measured in the operating plant, and iodine (I) in the reactor water differ greatly in chemical properties from radioactive corrosion products such as 60 Co and 54 Mn. The uranium adhering to the cladding surface behaves like a corrosion product and adheres to the outer surface of the fuel cladding for a long time. On the other hand, tellurium (Te), which is a precursor of iodine, exhibits an intermediate property between non-metallic and metallic properties. For this reason, grasping the behavior change of Te is a good index for grasping the reactor water environmental conditions in the operation plant.

しかしながら、核分裂生成物の放射能強度は多くのプラントでは腐食生成物に比べ低い値であることと、Teは化学的性質がヨウ素と腐食生成物の中間に位置するため、Teの挙動を評価することは困難であった。また、燃料被覆管表面への付着割合の評価は、停止後の燃料体の表面から試料を採取する必要があるため、半減期の短い核種では測定が困難であった。
特開昭60−178392号公報 An Estimation Method for Off-gas Sources in a Boiling Water Reactor with Nondefective Fuel, M.TAKAHASHI, Nucl. Technol. Vol. 135, 230(2001), American Nuclear Society
However, the activity intensity of fission products is lower than that of corrosion products in many plants, and Te has chemical properties located between iodine and corrosion products, so evaluate Te behavior. It was difficult. In addition, since it is necessary to collect a sample from the surface of the fuel body after stopping, it is difficult to measure the adhesion ratio on the surface of the fuel cladding tube with a nuclide having a short half-life.
JP 60-178392 A An Estimation Method for Off-gas Sources in a Boiling Water Reactor with Nondefective Fuel, M. TAKAHASHI, Nucl. Technol. Vol. 135, 230 (2001), American Nuclear Society

燃料被覆管破損が生じると内部に蓄積されていた長半減期のオフガス成分が放出され、オフガス7核種の放射能強度はほぼ同一の値を示すので、この変動を把握することによって燃料の健全性を評価している。被覆管破損が無い場合にはオフガス核種の起源は被覆管中の不純物ウランが主体となるが、被覆管破損時に炉水中に放出された燃料成分の一部が被覆管外表面に付着した場合にも新たなオフガスおよびヨウ素などの核分裂生成物の起源になり、プラント運転に伴う放射線量率の上昇をきたす。   When the fuel cladding tube breaks, the off-gas components with a long half-life accumulated inside are released, and the radioactivity intensity of the seven off-gas nuclides shows almost the same value. Is evaluated. When the cladding tube is not damaged, off-gas nuclides mainly originate from uranium impurities in the cladding tube, but some of the fuel components released into the reactor water when the cladding tube breaks adhere to the outer surface of the cladding tube. Will also be the source of new off-gas and fission products such as iodine, resulting in increased radiation dose rates associated with plant operation.

この付着燃料成分は、被覆管表面に長期間付着し、照射による核変換を続けながら徐々に冷却材中への放出と再付着を繰り返す。この核分裂性核種(主にα放射体)や一部の核分裂生成物(FP)の冷却材中への放出は燃料集合体の照射終了後、一定期間行なわれる冷却貯蔵時にも生じ、燃料貯蔵プールの放射能濃度とプール周辺雰囲気の線量率上昇に寄与する。   The adhering fuel component adheres to the surface of the cladding tube for a long period of time, and gradually discharges into the coolant and reattaches while continuing to transmutate by irradiation. This release of fissionable nuclides (mainly α-emitters) and some fission products (FP) into the coolant also occurs during cooling storage for a certain period after irradiation of the fuel assembly, and the fuel storage pool This contributes to an increase in the radioactivity concentration and the dose rate in the atmosphere around the pool.

また、燃料体を再処理する場合にも再処理貯蔵プールの放射能濃度が規定されているため、できる限り付着量を少なくすることが必要であるが、被覆管表面に付着した核分裂性核種の評価には、被覆管表面からの試料の採取と分析測定が必要である。   In addition, when the fuel body is reprocessed, the radioactive concentration of the reprocessed storage pool is specified, so it is necessary to reduce the amount of adhesion as much as possible, but the fissionable nuclide adhering to the surface of the cladding tube is necessary. For the evaluation, sampling from the surface of the cladding tube and analytical measurement are required.

しかしながら、被覆管表面からの定量的な試料の採取やその後の化学分離測定には特別な装置が必要であり、運転中にはきわめて困難であることから、この付着の有無を簡単に評価する方法を確立することが重要である。   However, since a special device is required for quantitative sample collection from the surface of the cladding tube and subsequent chemical separation measurement, it is extremely difficult during operation. It is important to establish

炉水の化学状態は燃料被覆管表面への元素の付着量に影響する。燃料保証の観点から、炉水化学状態の変化としては、溶存酸素、ヨウ素および金属不純物濃度、pH、導電率等が測定されている。ここで、実際の元素挙動評価には、対象元素を直接測定することが変化を知る上で最も的確である。しかしながら、前記のように半減期の長いウラン(U)ばかりでなく半減期の短い核分裂生成物にいたっては評価する方法が知られていない。   The chemical state of the reactor water affects the amount of elements deposited on the surface of the fuel cladding. From the viewpoint of fuel assurance, dissolved oxygen, iodine and metal impurity concentrations, pH, conductivity, etc. are measured as changes in the reactor water chemical state. Here, in the actual element behavior evaluation, direct measurement of the target element is the most accurate in knowing the change. However, as described above, there is no known method for evaluating not only uranium (U) having a long half-life but also fission products having a short half-life.

また、被覆管中の不純物や表面に付着した核分裂性核種によって生成されるFP核種は多種にわたる。FP核種には炉水の酸化還元状態の変動に敏感なTe等の核種が含まれるが、これらの核種を簡易にかつ定常的に測定することは困難である。   In addition, there are a wide variety of FP nuclides produced by impurities in the cladding and fissile nuclides attached to the surface. FP nuclides include nuclides such as Te that are sensitive to changes in the redox state of reactor water, but it is difficult to measure these nuclides simply and constantly.

一方、炉水中では腐食生成物として鉄、銅、ニッケル、クロム等が測定され、同時にFP成分のヨウ素も併せて測定されているが、水素注入や貴金属注入により変動する炉水中の元素の酸化還元状態の評価には、より酸化還元に敏感な元素の濃度変化や多種の元素について挙動変化を測定することが燃料健全性の評価上重要である。   On the other hand, iron, copper, nickel, chromium, etc. are measured as corrosion products in the reactor water, and iodine of the FP component is also measured at the same time, but the redox of the elements in the reactor water that fluctuates due to hydrogen injection or noble metal injection. In the evaluation of the state of the fuel, it is important for the evaluation of fuel soundness to measure the concentration change of elements more sensitive to redox and the behavior change of various elements.

この発明は上記事情に鑑みてなされたものであって、運転中の原子力プラントの燃料被覆管表面での元素の付着を評価する方法、およびその方法を実現するためのプログラムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for evaluating the adhesion of elements on the surface of a fuel cladding of an operating nuclear power plant, and a program for realizing the method. And

本発明は上記目的を達成するためのものであって、第1の態様は、運転中の原子力プラントの燃料被覆管表面での元素付着評価方法において、運転中の原子力プラントのオフガスの核種のうち、Xe-135m、Xe-135、Xe-138およびKr-88の核種の放射能強度比、またはXe-135m、Xe-135、Xe-138およびKr-87の核種の放射能強度比を測定によって求め、この放射能強度比に基づいて上記核種の組成比を求め、この組成比に基づいて、オフガスとヨウ素の炉内移行時間を評価し、オフガスとヨウ素の炉内移行時間によって核分裂性核種の付着の有無を判定することを特徴とする。   The present invention is for achieving the above object, and the first aspect is a method for evaluating element adhesion on the surface of a fuel cladding tube of an operating nuclear power plant, among the off-gas nuclides of the operating nuclear power plant. Xe-135m, Xe-135, Xe-138 and Kr-88 nuclide radioactivity intensity ratio, or Xe-135m, Xe-135, Xe-138 and Kr-87 nuclide radioactivity intensity ratio Obtain the composition ratio of the above nuclide based on this radioactivity intensity ratio, evaluate the transition time of the off-gas and iodine in the furnace based on this composition ratio, and determine the fissionable nuclide by the transition time of the off-gas and iodine in the furnace. It is characterized by determining the presence or absence of adhesion.

また、本発明の第2の態様は、運転中の原子力プラントの燃料被覆管表面での元素付着評価方法において、運転中の原子力プラントの炉水中のヨウ素同位体のうち、I-132、I-134およびI-135の核種の放射能強度比を測定によって求め、この放射能強度比に基づいて上記核種の組成比を求め、この組成比に基づいて、運転中の原子力プラントでのTeの炉水浄化系係数を算出し、このTeの炉水浄化系係数に基づいて、燃料棒外表面での核分裂性核種の付着の変動を判定することを特徴とする。   The second aspect of the present invention is a method for evaluating element adhesion on the surface of a fuel cladding tube of an operating nuclear power plant. Among iodine isotopes in reactor water of an operating nuclear power plant, I-132, I- The radioactivity intensity ratio of 134 and I-135 nuclides was determined by measurement, the composition ratio of the above nuclides was determined based on this radioactivity intensity ratio, and based on this composition ratio, the Te reactor at the nuclear power plant in operation A water purification system coefficient is calculated, and based on the reactor water purification system coefficient of Te, variation in adhesion of fissile nuclides on the outer surface of the fuel rod is determined.

さらに本発明の第3の態様は、コンピュータに、運転中の原子力プラントの燃料被覆管表面での元素付着評価をさせるプログラムであって、運転中の原子力プラントのオフガスの核種のうち、Xe-135m、Xe-135、Xe-138およびKr-88の核種の放射能強度比、またはXe-135m、Xe-135、Xe-138およびKr-87の核種の放射能強度比を測定によって求めた結果に基づいて上記核種の組成比を求め、この組成比に基づいて、オフガスとヨウ素の炉内移行時間を評価し、オフガスとヨウ素の炉内移行時間によって核分裂性核種の付着の有無を判定するようにコンピュータを機能させることを特徴とする。   Furthermore, a third aspect of the present invention is a program for causing a computer to evaluate element adhesion on the surface of a fuel cladding tube of an operating nuclear power plant, and among the off-gas nuclides of the operating nuclear power plant, Xe-135m Xe-135, Xe-138 and Kr-88 nuclide radioactivity intensity ratio, or Xe-135m, Xe-135, Xe-138 and Kr-87 nuclide radioactivity intensity ratio Based on the composition ratio of the nuclide based on this, the transition time of the off-gas and iodine in the furnace is evaluated, and the presence / absence of the attachment of the fissile nuclide is determined based on the transition time of the off-gas and iodine in the furnace. It is characterized by making a computer function.

さらに本発明の第4の態様は、コンピュータに、運転中の原子力プラントの燃料被覆管表面での元素付着評価をさせるプログラムであって、運転中の原子力プラントの炉水中のヨウ素同位体のうち、I-132、I-134およびI-135の核種の放射能強度比を測定によって求めた結果に基づいて上記核種の組成比を求め、この組成比に基づいて、運転中の原子力プラントでのTeの炉水浄化系係数を算出し、このTeの炉水浄化系係数に基づいて、燃料棒外表面での核分裂性核種の付着の変動を判定するようにコンピュータを機能させることを特徴とする。   Furthermore, a fourth aspect of the present invention is a program for causing a computer to evaluate element adhesion on the surface of a fuel cladding tube of an operating nuclear power plant, among iodine isotopes in reactor water of the operating nuclear power plant, Based on the result of measurement of the radioactivity intensity ratio of the nuclides of I-132, I-134 and I-135, the composition ratio of the above nuclides was obtained, and based on this composition ratio, And a computer is made to function so as to determine the fluctuating variation of fissile nuclide attachment on the outer surface of the fuel rod based on the Te water purification system coefficient.

この発明によれば、運転中の原子力プラントの燃料被覆管表面での元素の付着を簡単に評価することができる。   According to the present invention, it is possible to easily evaluate the adhesion of elements on the surface of a fuel cladding tube of an operating nuclear power plant.

以下に、図面を参照して本発明に係る燃料被覆管表面での元素付着評価方法の実施の形態を説明する。   Embodiments of an element adhesion evaluation method on the surface of a fuel cladding according to the present invention will be described below with reference to the drawings.

[第1の実施の形態]
まず、本発明の第1の実施の形態を、図1〜図3を参照して説明する。
[First Embodiment]
First, a first embodiment of the present invention will be described with reference to FIGS.

図1は、一般的な沸騰水型原子炉でのXeの生成と移行挙動を説明する模式的系統図である。原子炉圧力容器10内に炉心1が配置され、ここで炉水2が沸騰して蒸気が発生する。原子炉圧力容器10を出た蒸気は、蒸気系3を経て蒸気タービン8で仕事をし、復水器4で凝縮し、復水になる。復水は復水浄化系6を通って、原子炉圧力容器10へ戻される。   FIG. 1 is a schematic system diagram for explaining the generation and migration behavior of Xe in a general boiling water reactor. The core 1 is disposed in the reactor pressure vessel 10, where the reactor water 2 boils and steam is generated. The steam that exits the reactor pressure vessel 10 passes through the steam system 3 to work in the steam turbine 8, condenses in the condenser 4, and becomes condensate. The condensate is returned to the reactor pressure vessel 10 through the condensate purification system 6.

図1には、炉心1で生成される核分裂生成物のうちオフガス(Kr、Xe)とその生成に関与する前駆体(Xeの場合は主にTeとI、Krの場合は主にBr)が炉水2および蒸気系3を経てオフガス系5に至るまでの移行挙動の概略が示されている。オフガス系5は、復水器4から分岐される。原子炉システムでの炉水および蒸気系は閉ループを形成するため、核分裂で生成されるKrとXeのうち壊変されなかった成分は最終的にすべてオフガス系に移行する。   Fig. 1 shows off-gas (Kr, Xe) among the fission products produced in the core 1 and precursors involved in the production (mainly Te and I in the case of Xe and mainly Br in the case of Kr). An outline of the transition behavior from the reactor water 2 and the steam system 3 to the off-gas system 5 is shown. The off-gas system 5 is branched from the condenser 4. Since the reactor water and steam system in the reactor system forms a closed loop, all the components of Kr and Xe generated by fission that have not been destroyed are finally transferred to the off-gas system.

図1にはさらに、原子炉圧力容器10から炉水を取り出して炉水浄化系7を経て再び原子炉圧力容器10に戻る配管も示されている。   Further, FIG. 1 also shows piping that takes out the reactor water from the reactor pressure vessel 10 and returns to the reactor pressure vessel 10 through the reactor water purification system 7 again.

図2は、一般的な沸騰水型原子炉の燃料被覆管表面での天然ウランと3.2%濃縮ウランの燃焼により炉水中に生成する138Xe/88Krの放射能強度比の照射時間に対する変化を、オフガス生成時の炉水中での値として示したものである。ここで、核分裂によるKrの反跳エネルギーはXeより大きくかつ質量数が小さいので飛程が長くなり、被覆管中の不純物ウランの核分裂ではこの飛程の違いによって炉水中に放出された138Xe/88Krの比が核分裂時の値よりも大きくなる。この結果、被覆管中の不純物ウランによる核分裂では、138Xe/88Kr比は図2に示す35以下を示す。 Figure 2 shows the change of the irradiation intensity ratio of the 138 Xe / 88 Kr activity intensity generated in the reactor water from the combustion of natural uranium and 3.2% enriched uranium on the surface of the fuel cladding of a general boiling water reactor. It is shown as a value in the reactor water at the time of off-gas generation. Here, the recoil energy of Kr due to fission is larger than Xe and the mass number is small, so the range becomes longer. In the fission of impurity uranium in the cladding tube, 138 Xe / The ratio of 88 Kr is larger than that at fission. As a result, in the fission by the impurity uranium in the cladding tube, the 138 Xe / 88 Kr ratio is 35 or less as shown in FIG.

一方、付着成分を起源とするKr/Xe比は飛程による影響を受けないので核分裂による生成比を再現し、燃焼による主要核分裂核種の変化に伴って図2に示す40以上を示す。付着成分のうち被覆管破損により放出された成分は一時的に被覆管表面に供給された後、長期間付着するとともに、新たな破損が生じない限り供給されないため、実質的な燃焼度は製造時の付着成分より高くなり、138Xe/88Kr比は図2中で約50程度を示す。しかしながら、付着量が少ない場合には不純物からの寄与と競合し35から50の範囲に分布する。 On the other hand, the Kr / Xe ratio originating from the adhering component is not affected by the range, so the production ratio by fission is reproduced, and the ratio of 40 or more shown in FIG. Of the adhering components, the components released due to breakage of the cladding tube are temporarily supplied to the surface of the cladding tube, and then adhere for a long period of time and are not supplied unless new damage occurs. The 138 Xe / 88 Kr ratio is about 50 in FIG. However, when the amount of adhesion is small, it is distributed in the range of 35 to 50 in competition with the contribution from impurities.

以上の結果から、運転プラントで常時測定されているオフガスの核種組成の138Xe/88Kr比の値の違いを検出することによって、新たな試料採取や分析操作を必要とせずに被覆管表面に核分裂性核種が付着しているか否かを判定する方法を提供できる。図1に示すように原子炉システムでの炉水および蒸気系は閉ループを形成するため、核分裂で生成されるKrとXeのうち壊変されなかった成分は最終的にすべてオフガス系に移行する。しかし、これらの核分裂生成物は壊変により元素状態が変化するため、オフガス系に到達するまでにこれらの化学状態の違いによる時間遅れを生じる。この移行挙動の違いにより、生成時点での138Xe/88Kr比を比較するに当たって、比較的半減期が短い138Xeについては、生成から測定までの正確な減衰時間補正が必要となる。 Based on the above results, it is possible to detect the difference in the 138 Xe / 88 Kr ratio value of the off-gas nuclide composition that is constantly measured in the operation plant, so that no new sampling or analysis operation is required. A method for determining whether or not a fissile nuclide is attached can be provided. As shown in FIG. 1, the reactor water and steam system in the nuclear reactor system forms a closed loop, so that all the components of Kr and Xe generated by fission that have not been destroyed are finally transferred to the off-gas system. However, since the elemental state of these fission products changes due to decay, there is a time delay due to the difference in these chemical states before reaching the off-gas system. This difference in migration behavior, when comparing the 138 Xe / 88 Kr ratio at generation time, for a relatively short half-life 138 Xe, it is necessary to correct decay time correction from the generation to the measurement.

第1の実施の形態は核分裂性核種の付着の有無を評価するための138Xe/88Kr比をプラントの構造や運転条件によらずに正確に補正するために必要なオフガスの移行時間を、様々な運転条件と炉形のプラントで評価できる内部標準手法を提供するもので、測定時のオフガス組成と移行時間に対する補正手法を以下に示す。 In the first embodiment, the off-gas transition time required to accurately correct the 138 Xe / 88 Kr ratio for evaluating the presence or absence of fissile nuclide attachment, regardless of the plant structure and operating conditions, An internal standard method that can be evaluated in various operating conditions and furnace-type plants is provided. The correction method for the off-gas composition and transition time during measurement is shown below.

生成点からオフガス測定点へ到達するまでの135Xe 同重体(isomer)の減衰は2つの時間因子によって決定される。1つは炉心沸騰領域から蒸気を介してオフガス測定点まで到達する気相中の移行時間t1である。もう1つは浄化系樹脂へ吸着した135Iの壊変により生成されたXeが樹脂中から炉水を介して炉心沸騰領域に到達する液相中の移行時間t2である。一方、138Iは半減期が短い為、生成後直ちに138Xeに壊変し、核分裂により直接生成されるXe成分に加算される。すなわちt1のみが減衰に寄与する。 The decay of the 135 Xe isomer from the production point to the off-gas measurement point is determined by two time factors. One is the transition time t 1 in the gas phase that reaches the off-gas measurement point via the steam from the core boiling region. The other is the transition time t 2 of the liquid phase in which Xe produced by decay of 135 I adsorbed to clean resin reaches the core boiling region through the reactor water from the resin. On the other hand, 138 I has a short half-life, so it immediately decays to 138 Xe after generation and is added to the Xe component directly generated by fission. That is, only t 1 contributes to attenuation.

ここで135m Xe、135g Xeおよび138Xeの半減期をそれぞれTm、Tgおよび T8とすれば、これらの移行時間は核分裂および135I の壊変により生成する放射能強度A0とオフガス系での測定時の放射能強度A1の比によって表わされる。 Here, if the half-lives of 135m Xe, 135g Xe and 138 Xe are T m , T g and T 8 , respectively, these transition times are the activity intensity A 0 generated by fission and 135 I decay and off-gas system. It is represented by the ratio of the radioactivity intensity A 1 at the time of measurement.

135mA1135mA0 = Am= 0.35(1/2)(t1/Tm)+ 0.65(1/2)((t1+t2)/Tm) (1)
135gA1135gA0 = Ag = 0.04(1/2)(t1/Tg)+ 0.96(1/2)((t1+t2)/Tg) (2)
138A1138A0 = A8 = (1/2)(t1/T8) (3)
ここで、各放射能強度の生成値と測定値の比は
(138A1138A0) / (135mA1135mA0)
= (138A1135mA1) / (138A0135mA0) = Cm (4)
(135mA1135mA0) / (135gA1135gA0)
= (135mA1135gA1) / (135mA0135gA0) = Cg (5)
になるので、液相中での移行時間t2
(1)式の対数を取り、これに(3)式にT8/Tmを乗じた式を代入しT8/Tm≒1と近似することによって
t2 =−Tm(1/log2)log(1/0.65/Cm‐(0.35/0.65)) (6)
により示される。
135m A 1 / 135m A 0 = A m = 0.35 (1/2) (t1 / Tm) + 0.65 (1/2) ((t1 + t2) / Tm) (1)
135g A 1 / 135g A 0 = A g = 0.04 (1/2) (t1 / Tg) + 0.96 (1/2) ((t1 + t2) / Tg) (2)
138 A 1/138 A 0 = A 8 = (1/2) (t1 / T8) (3)
Here, the ratio between the generated value and the measured value of each radioactivity intensity is
(138 A 1/138 A 0 ) / (135m A 1 / 135m A 0)
= (138 A 1 / 135m A 1) / ( 138 A 0 / 135m A 0 ) = C m (4)
( 135m A 1 / 135m A 0 ) / (135g A 1 / 135g A 0)
= (135m A 1 / 135g A 1) / ( 135m A 0 / 135g A 0 ) = C g (5)
Therefore, the transition time t 2 in the liquid phase is
(1) taking the logarithm of equation by which the (3) be approximated with T 8 / T m ≒ 1 is an expression obtained by multiplying the T 8 / T m in formula
t 2 = −T m (1 / log2) log (1 / 0.65 / C m- (0.35 / 0.65)) (6)
Indicated by.

一方、気相中の移行時間t1は、135gXeの生成に関して135mXeの寄与は小さいので式(1)/(2)の対数を取りこれに(6)式のt2を代入すると
t1 =TgTm/(Tm‐Tg)/(log2)
log[Cg0.04+0.96(1/2)((−Tm/Tg/log2)×log(1/0.65/Cm−0.35/0.65))
/ 0.35+0.65(1/2)−1/log2log(1/0.65/Cm−0.35/0.65))] (7)
になり、135mXe、135gXe、138Xeの測定値と、平衡炉心での被覆管表面燃焼条件から算出した生成時の135mXe/135gXeの放射能強度比(135mA0135gA0)=Pm/g、および生成時の 138Xe/135mXeの放射能強度比(138A0135mA0) =P8/mは燃焼度の増加に依存せず、ほぼ一定値を示す。このため、対象となる燃料体の生成時の放射能強度比は燃焼度によらず図3の表の値を適用でき、炉心からオフガス系までの気相中移行時間 t1 が得られる。
On the other hand, the transition time t 1 in the gas phase has a small contribution of 135m Xe to the production of 135g Xe, so if we take the logarithm of equation (1) / (2) and substitute t 2 in equation (6)
t 1 = T g T m / (T m -T g ) / (log2)
log [C g 0.04 + 0.96 (1/2) ((−Tm / Tg / log2) × log (1 / 0.65 / Cm−0.35 / 0.65))
/0.35+0.65(1/2 ) -1 / log2log (1 / 0.65 / Cm-0.35 / 0.65)) ]] (7)
The 135m Xe, 135g Xe, 138 Xe measured values and the 135m Xe / 135g Xe activity intensity ratio ( 135m A 0 / 135g A 0 ) = P m / g, and the radioactivity intensity ratio 138 Xe / 135m Xe during generation (138 a 0 / 135m a 0 ) = P 8 / m is not dependent on an increase of burnup, shows a substantially constant value. For this reason, the values in the table of FIG. 3 can be applied to the radioactivity intensity ratio at the time of production of the target fuel body regardless of the burnup, and the transition time t 1 in the gas phase from the core to the off-gas system can be obtained.

ここで、TK88Krの半減期、Rmは測定により得られた138Xe/88Krの放射能強度比、生成時の135mXe/135gXeの放射能強度比(135mA0135gA0)=Pm/gは7.3、 138Xe/135mXeの放射能強度比(138A0135mA0) =P8/mは全量が付着か不純物かの2ケースについての値3.55および3.80を用いて移行時間を算出し、以下の式(8)にこれらの値を代入することによって生成時の138Xe/88Kr比の上下限値が求まる。 Here, the half-life of T K is 88 Kr, R m is the radioactivity intensity ratio of 138 Xe / 88 Kr obtained by measuring the radioactivity intensity ratio of 135m Xe / 135 g Xe during generation (135m A 0 / 135g a 0) = P m / g 7.3, radioactivity intensity ratio of 138 Xe / 135m Xe (138 a 0 / 135m a 0) = P 8 / m values for the total amount deposited or impurities of 2 cases 3.55 and By calculating the transition time using 3.80 and substituting these values into the following equation (8), the upper and lower limits of the 138 Xe / 88 Kr ratio at the time of generation can be obtained.

Rp =(138Xe/88Kr)= Rm・2 t1((1/T8)(1/TK)) (8)
上記の(7)式に、従来のルーチン測定で得られている放射能強度を代入することによりオフガスの生成から測定までの移行時間を算出し、この移行時間を (8)式に代入し生成時のXe/Kr比Rpを算出する。被覆管表面に付着が無い場合にはRpは放射線計測上の誤差を含めて35±5の範囲に入る。一方、被覆管表面への付着がある場合にはRpは40以上の値を示すので、オフガスの起源を評価できるとともに、被覆管表面における核分裂性成分の付着の有無を判定できる。
R p = ( 138 Xe / 88 Kr) = R m · 2 t1 ((1 / T8) - (1 / TK)) (8)
Calculate the transition time from off-gas generation to measurement by substituting the radioactivity intensity obtained in the conventional routine measurement into the above equation (7), and substitute this transition time into equation (8) to generate calculating the Xe / Kr ratio R p when. When there is no adhesion on the surface of the cladding tube, R p falls within the range of 35 ± 5 including errors in radiation measurement. On the other hand, when there is adhesion on the surface of the cladding tube, R p shows a value of 40 or more, so that the origin of off-gas can be evaluated and the presence or absence of adhesion of fissile components on the surface of the cladding tube can be determined.

なお、以上の説明では88Krを用いて評価する例を示したが、88Krの代わりに87Krを用いることもできる。 In the above explanation, an example is shown in which 88 Kr is used for evaluation, but 87 Kr can be used instead of 88 Kr.

[第2の実施の形態]
次に、本発明の第2の実施の形態を図4〜図6を参照して説明する。ただし、第1の実施の形態と同一または類似の部分には共通の符号を付して、重複説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. However, parts that are the same as or similar to those in the first embodiment are denoted by common reference numerals, and redundant description is omitted.

図4に、ルーチンに測定されている炉水中のヨウ素同位体の生成過程を示した。5つのヨウ素同位体のうち質量数135と134の濃度はヨウ素の化学特性を反映した値を示すが、質量数132の濃度は半減期の長いTe-132の壊変で生成されているため、Teの挙動を反映した値となっている。   FIG. 4 shows the process of producing iodine isotopes in the reactor water measured routinely. Among the five iodine isotopes, the concentrations of mass numbers 135 and 134 reflect the chemical properties of iodine, but the concentration of mass number 132 is generated by the decay of Te-132 with a long half-life. The value reflects the behavior of.

IとTeは原子炉水中では、図5に示すように、炉心1で生成し、溶解性で揮発性を持つヨウ素は炉水浄化系7と、一部はキャリーオーバーで蒸気系3に移行した後、復水浄化系6で除去される。一方、Teは揮発性でなく、ほとんどが炉水浄化系7で除去されるため、浄化係数が両者で異なる。炉水浄化系6による元素の除去は炉水に溶解または移行している成分が対象となるため、元素の浄化係数は溶解性に相関し被覆管表面への付着の程度を表わす指標となる。また、この変動から原子炉水中での元素の存在状態の変化を知ることができる。   As shown in FIG. 5, I and Te are generated in the reactor core 1 and dissolved and volatile iodine is transferred to the reactor water purification system 7 and partly transferred to the steam system 3 by carryover. Thereafter, it is removed by the condensate purification system 6. On the other hand, since Te is not volatile and is mostly removed by the reactor water purification system 7, the purification coefficients are different between the two. The removal of elements by the reactor water purification system 6 targets components dissolved or transferred to the reactor water, so the element purification coefficient correlates with solubility and becomes an index representing the degree of adhesion to the cladding surface. In addition, it is possible to know the change in the existence state of elements in the reactor water from this fluctuation.

そこで炉水中でのヨウ素の原子数をZ、放出率(atoms/s)をR、壊変定数をλとすれば、ヨウ素の全浄化係数β(s-1)は
dZ/dt = R ‐Z・(λ+β) (9)
となる。式(9)のRは、
R = Z・λ・(λ+β) /λ (10)
のように表わされ、式(10)に質量数134と135の放射能強度を代入すると両者の比が式(11)で表わされる。
Therefore, if the number of iodine atoms in the reactor water is Z, the release rate (atoms / s) is R, and the decay constant is λ, the total purification coefficient of iodine β (s -1 ) is
dZ / dt = R ‐Z ・ (λ + β) (9)
It becomes. R in equation (9) is
R = Z ・ λ ・ (λ + β) / λ (10)
When the radioactivity intensities 134 and 135 are substituted into equation (10), the ratio between the two is represented by equation (11).

R134I/R135I
=(λ134I+β)/λ134I・Z134I・λ134I/(λ135I +β)/λ135I・Z135I・λ135I (11)
被覆管破損が無いプラントでは両者の比は核分裂収率と壊変定数の比で置き換えられることから、式(11)は以下に書き換えられ、各同位体の炉水中の放射能濃度をCとして、
cY134IcY135I
= (λ134I+β)・λ135I/(λ135I+β)・λ134I・(C134I/C135I) (12)
が得られる。ここでヨウ素の全浄化係数βは、次の式(13)で表わされる。

Figure 2006119020
R 134I / R 135I
= (λ 134I + β) / λ 134I・ Z 134I・ λ 134I / (λ 135I + β) / λ 135I・ Z 135I・ λ 135I (11)
Since the ratio of both is replaced by the ratio of the fission yield and the decay constant in a plant without cladding failure, Equation (11) is rewritten as follows, and the radioactivity concentration of each isotope in the reactor water is C:
c Y 134I / c Y 135I
= (λ 134I + β) ・ λ 135I / (λ 135I + β) ・ λ 134I・ (C 134I / C 135I ) (12)
Is obtained. Here, the total purification coefficient β of iodine is expressed by the following equation (13).
Figure 2006119020

一方、Teの全浄化係数αを式(12)と同様に核分裂収率の比で表わし質量数132と135について積算核分裂収率cYで示すと、
cY132Te cY135I
= ((λ132Te+α)・λ135I) / ((λ135I+β)・λ132Te)・(C132Te/C135I) (14)
ここで、質量数132のヨウ素濃度は直接核分裂により生成される成分とTe-132の壊変により生成される成分から構成されているため、直接核分裂により生成される濃度成分をFC132I とすれば
iY132I cY135I
= ((λ132I+β)・λ135I)/((λ135I+β)・λ132I)・(FC132I/C135I) (15)
FC132I
= C135I・(iY132IcY135I)・((λ135I+β)・λ132I)/((λ132I+β)・λ135I) (16)
ここで iY132I は、 132mI と132I が直接生成される個別核分裂収率の和を示す。
On the other hand, when the total purification coefficient α of Te is expressed by the ratio of the fission yield in the same manner as in the equation (12), and the mass number 132 and 135 are indicated by the accumulated fission yield c Y,
c Y 132Te / c Y 135I
= ((λ 132Te + α) ・ λ 135I ) / ((λ 135I + β) ・ λ 132Te ) ・ (C 132Te / C 135I ) (14)
Here, since the iodine concentration of mass number 132 is composed of a component generated by direct fission and a component generated by the decay of Te-132, if the concentration component generated by direct fission is F C 132I
i Y 132I / c Y 135I
= ((λ 132I + β) ・ λ 135I ) / ((λ 135I + β) ・ λ 132I ) ・ ( F C 132I / C 135I ) (15)
F C 132I
= C 135I・ ( i Y 132I / c Y 135I ) ・ ((λ 135I + β) ・ λ 132I ) / ((λ 132I + β) ・ λ 135I ) (16)
Here, i Y 132I represents the sum of individual fission yields in which 132m I and 132 I are directly generated.

定常状態での132Te の壊変により生成される132I と132Te の濃度は以下の
C132Te = (λ132I+β)・(C132I FC132I) /λ132I (17)
により得られるので、式(14)と(17)からTeの全浄化係数αは次の式(18)により算出できる。

Figure 2006119020
The 132 I and 132 Te concentrations produced by the decay of 132 Te in the steady state are
C 132Te = (λ 132I + β) ・ (C 132I -F C 132I ) / λ 132I (17)
Therefore, the total purification coefficient α of Te can be calculated by the following equation (18) from the equations (14) and (17).
Figure 2006119020

式(13)および(18)中で用いる各核分裂収率は、プラントによらず燃焼開始初期を除いて運転期間中はほぼ一定値を示すので、全てのプラントについて図6の表に示した値を用いることができる。ここで得られる元素の浄化係数が炉水の浄化係数と同じであれば、元素は全て炉水中に存在し容器等の壁面への付着は生じていないことになるが、元素の浄化係数が炉水の浄化係数よりも小さい場合には構造材表面に付着していることになるので、元素と炉水の浄化係数の比から元素の特性がわかり、この浄化係数の変化から付着状況の変化および元素挙動の変化を知ることができる。   The fission yields used in equations (13) and (18) are almost constant during the operation period except for the initial stage of combustion regardless of the plant, and therefore the values shown in the table of FIG. 6 for all plants. Can be used. If the purification factor of the element obtained here is the same as the purification factor of the reactor water, all the elements are present in the reactor water and no adhesion to the wall of the vessel or the like has occurred. If it is smaller than the water purification coefficient, it means that it adheres to the surface of the structural material. Therefore, the characteristics of the element can be found from the ratio of the purification coefficient of the element to the reactor water. Change in elemental behavior can be known.

以上説明した実施の形態の方法のいずれについても、実際の計算処理はコンピュータによって実行するのが好ましい。   In any of the methods of the embodiments described above, it is preferable that the actual calculation process is executed by a computer.

沸騰水型原子炉でのXeの生成と移行挙動を説明するための模式的系統図。A schematic system diagram for explaining the generation and migration behavior of Xe in a boiling water reactor. オフガス生成時の炉水中での138Xe/88Kr放射能強度比の照射時間に対する変化を示すグラフ。The graph which shows the change with respect to irradiation time of the 138 Xe / 88 Kr activity intensity ratio in the reactor water at the time of off gas production. 核分裂性核種付着判定の式(6)、(7)、(8)で使用する値を示す表。The table | surface which shows the value used by Formula (6), (7), (8) of fissile nuclide adhesion determination. 炉水中のヨウ素同位体の生成過程を示す説明図。Explanatory drawing which shows the production | generation process of the iodine isotope in a reactor water. 沸騰水型原子炉の炉水中でのIとTeの挙動を説明するための模式的系統図。A schematic system diagram for explaining the behavior of I and Te in the reactor water of a boiling water reactor. ヨウ素とテルルの浄化係数算出式(13)と(18)で使用する値を示す表。The table | surface which shows the value used by the purification coefficient calculation formula (13) and (18) of iodine and tellurium.

符号の説明Explanation of symbols

1:炉心
2:炉水
3:蒸気系
4:復水器
5:オフガス系
6:復水浄化系
7:炉水浄化系
8:蒸気タービン
10:原子炉圧力容器
1: Reactor core 2: Reactor water 3: Steam system 4: Condenser 5: Off gas system 6: Condensate purification system 7: Reactor water purification system 8: Steam turbine 10: Reactor pressure vessel

Claims (4)

運転中の原子力プラントの燃料被覆管表面での元素付着評価方法において、
運転中の原子力プラントのオフガスの核種のうち、Xe-135m、Xe-135、Xe-138およびKr-88の核種の放射能強度比、またはXe-135m、Xe-135、Xe-138およびKr-87の核種の放射能強度比を測定によって求め、この放射能強度比に基づいて上記核種の組成比を求め、この組成比に基づいて、オフガスとヨウ素の炉内移行時間を評価し、オフガスとヨウ素の炉内移行時間によって核分裂性核種の付着の有無を判定することを特徴とする、燃料被覆管表面での元素付着評価方法。
In the element deposition evaluation method on the surface of the fuel cladding of an operating nuclear power plant,
Of the off-gas nuclides of the operating nuclear power plant, the radioactivity intensity ratio of the nuclides Xe-135m, Xe-135, Xe-138 and Kr-88, or Xe-135m, Xe-135, Xe-138 and Kr- The radioactivity intensity ratio of 87 nuclides was determined by measurement, the composition ratio of the above nuclides was determined based on this radioactivity intensity ratio, and the off-gas / iodine transition time in the furnace was evaluated based on this composition ratio. A method for evaluating element adhesion on the surface of a fuel cladding tube, wherein the presence or absence of adhesion of fissile nuclides is determined based on the time of iodine transfer into the furnace.
運転中の原子力プラントの燃料被覆管表面での元素付着評価方法において、
運転中の原子力プラントの炉水中のヨウ素同位体のうち、I-132、I-134およびI-135の核種の放射能強度比を測定によって求め、この放射能強度比に基づいて上記核種の組成比を求め、この組成比に基づいて、運転中の原子力プラントでのTeの炉水浄化系係数を算出し、このTeの炉水浄化系係数に基づいて、燃料棒外表面での核分裂性核種の付着の変動を判定することを特徴とする、燃料被覆管表面での元素付着評価方法。
In the element deposition evaluation method on the surface of the fuel cladding of an operating nuclear power plant,
Of the iodine isotopes in the reactor water of the operating nuclear power plant, the radioactivity intensity ratio of I-132, I-134 and I-135 nuclides was determined by measurement, and the composition of the above nuclide was determined based on this radioactivity intensity ratio. Based on this composition ratio, calculate the reactor water purification system coefficient of Te at the operating nuclear power plant, and based on this Te reactor water purification system coefficient, the fissile nuclide on the outer surface of the fuel rod An element adhesion evaluation method on the surface of a fuel cladding tube, characterized by determining a variation in adhesion of the fuel.
コンピュータに、運転中の原子力プラントの燃料被覆管表面での元素付着評価をさせるプログラムであって、
運転中の原子力プラントのオフガスの核種のうち、Xe-135m、Xe-135、Xe-138およびKr-88の核種の放射能強度比、またはXe-135m、Xe-135、Xe-138およびKr-87の核種の放射能強度比を測定によって求めた結果に基づいて上記核種の組成比を求め、この組成比に基づいて、オフガスとヨウ素の炉内移行時間を評価し、オフガスとヨウ素の炉内移行時間によって核分裂性核種の付着の有無を判定するようにコンピュータを機能させることを特徴とする、燃料被覆管表面での元素付着評価プログラム。
A program for causing a computer to evaluate the adhesion of elements on the surface of a fuel cladding of an operating nuclear power plant,
Of the off-gas nuclides of the operating nuclear power plant, the radioactivity intensity ratio of the nuclides Xe-135m, Xe-135, Xe-138 and Kr-88, or Xe-135m, Xe-135, Xe-138 and Kr- Based on the result of measurement of the radioactivity intensity ratio of 87 nuclides, the composition ratio of the above nuclides was determined, and based on this composition ratio, the transition time of the off-gas and iodine in the furnace was evaluated, A program for evaluating element adhesion on the surface of a fuel cladding tube, wherein the computer functions so as to determine the presence or absence of fissile nuclide adhesion based on the transition time.
コンピュータに、運転中の原子力プラントの燃料被覆管表面での元素付着評価をさせるプログラムであって、
運転中の原子力プラントの炉水中のヨウ素同位体のうち、I-132、I-134およびI-135の核種の放射能強度比を測定によって求めた結果に基づいて上記核種の組成比を求め、この組成比に基づいて、運転中の原子力プラントでのTeの炉水浄化系係数を算出し、このTeの炉水浄化系係数に基づいて、燃料棒外表面での核分裂性核種の付着の変動を判定するようにコンピュータを機能させることを特徴とする、燃料被覆管表面での元素付着評価プログラム。
A program for causing a computer to evaluate the adhesion of elements on the surface of a fuel cladding of an operating nuclear power plant,
Of the iodine isotopes in the reactor water of the operating nuclear power plant, the composition ratio of the above nuclides is determined based on the result of the measurement of the radioactivity intensity ratio of the nuclides of I-132, I-134 and I-135, Based on this composition ratio, calculate the reactor water purification system coefficient of Te at the operating nuclear power plant, and based on this Te reactor water purification system coefficient, fluctuating fissile nuclide deposition on the fuel rod outer surface A program for evaluating element adhesion on the surface of a fuel cladding tube, wherein the computer is operated so as to determine
JP2004308041A 2004-10-22 2004-10-22 Method for evaluating fissile nuclide deposition on the surface of a fuel cladding tube and program therefor Expired - Fee Related JP4660154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308041A JP4660154B2 (en) 2004-10-22 2004-10-22 Method for evaluating fissile nuclide deposition on the surface of a fuel cladding tube and program therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308041A JP4660154B2 (en) 2004-10-22 2004-10-22 Method for evaluating fissile nuclide deposition on the surface of a fuel cladding tube and program therefor

Publications (2)

Publication Number Publication Date
JP2006119020A true JP2006119020A (en) 2006-05-11
JP4660154B2 JP4660154B2 (en) 2011-03-30

Family

ID=36537040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308041A Expired - Fee Related JP4660154B2 (en) 2004-10-22 2004-10-22 Method for evaluating fissile nuclide deposition on the surface of a fuel cladding tube and program therefor

Country Status (1)

Country Link
JP (1) JP4660154B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185421A (en) * 2015-09-23 2015-12-23 中国核电工程有限公司 Method for detecting degree of cleanliness of reactor core fuel assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873698A (en) * 1972-01-10 1973-10-04
JPS593294A (en) * 1982-06-29 1984-01-09 日本原子力事業株式会社 Off-gas monitor system for detecting failure of nuclear fuel cladding tube
JPH04344498A (en) * 1991-05-22 1992-12-01 Toshiba Corp Clad pipe leakage detecting device
JP2001524679A (en) * 1997-11-21 2001-12-04 エービービー アトム アクチボラグ Nuclear fuel integrity evaluation method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873698A (en) * 1972-01-10 1973-10-04
JPS593294A (en) * 1982-06-29 1984-01-09 日本原子力事業株式会社 Off-gas monitor system for detecting failure of nuclear fuel cladding tube
JPH04344498A (en) * 1991-05-22 1992-12-01 Toshiba Corp Clad pipe leakage detecting device
JP2001524679A (en) * 1997-11-21 2001-12-04 エービービー アトム アクチボラグ Nuclear fuel integrity evaluation method and apparatus

Also Published As

Publication number Publication date
JP4660154B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
Lewis et al. Overview of experimental programs on core melt progression and fission product release behaviour
Reichenberger et al. Micro-Pocket Fission Detectors (MPFDs) for in-core neutron detection
JP2006322727A (en) Measuring method of axial-direction void fraction distribution, and fuel assembly neutron multiplication factor evaluation method before storage in storing device
Tommasi et al. Analysis of the PROFIL and PROFIL-2 sample irradiation experiments in Phénix for JEFF-3.1 nuclear data validation
JP4660154B2 (en) Method for evaluating fissile nuclide deposition on the surface of a fuel cladding tube and program therefor
Seifried et al. A general approach for determination of acceptable FLiBe impurity concentrations in Fluoride-Salt Cooled High Temperature Reactors (FHRs)
Hosokawa et al. Investigation of cobalt deposition behavior with zinc injection on stainless steel under BWR conditions
Scates et al. Fission product monitoring and release data for the advanced gas reactor-1 experiment
Gesh A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors
Mehboob et al. Comprehensive review of source term analysis and experimental programs
JP2013257209A (en) Method for subcritical concentration monitoring using measured value of nuclear fission produced gas
JP2008241510A (en) Method for determining failure of fuel rod, method for estimating burn-up of failed fuel and method for operating nuclear reactor
Lacroix et al. Validation of bison calculation of hydrogen distribution by comparison to experiment
Rao et al. Assay of nuclear grade primary sodium in the fast breeder test reactor for radionuclides and corrosion elements
JP7390618B2 (en) Radioactivity evaluation method, radioactivity evaluation program, and radioactivity evaluation device
Konyashov et al. Radioactive fission product release from defective light water reactor fuel elements
March et al. First results of the PHEBUS FPT3 test
Bremier et al. Fission gas release and fuel swelling at burn-ups higher than 50 MWd/kgU
Necib et al. Overview OF 14C release from irradiated zircaloys in geological disposal conditions
Lin et al. Monitoring of fission product release in a boiling water reactor
JP2005283412A (en) Evaluation method for reactor core structure material
JP6110915B2 (en) How to monitor subcriticality
Choi et al. Review of Instant Release Fractions of Long-lived Radionuclides in CANDU and PWR Spent Nuclear Fuels Under the Geological Disposal Conditions
Larsson et al. On-line monitoring of control rod integrity in BWRs using a mass spectrometer
Cartwright et al. Fission-product measurements in the SCARABEE mono and seven-pin loss-of-coolant experiments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees