JPS5932896A - Reactor power control device - Google Patents

Reactor power control device

Info

Publication number
JPS5932896A
JPS5932896A JP57142940A JP14294082A JPS5932896A JP S5932896 A JPS5932896 A JP S5932896A JP 57142940 A JP57142940 A JP 57142940A JP 14294082 A JP14294082 A JP 14294082A JP S5932896 A JPS5932896 A JP S5932896A
Authority
JP
Japan
Prior art keywords
signal
pressure
output
load
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57142940A
Other languages
Japanese (ja)
Inventor
住田 「ゆう」
倉町 充治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Engineering Corp
Priority to JP57142940A priority Critical patent/JPS5932896A/en
Publication of JPS5932896A publication Critical patent/JPS5932896A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Linear Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明Q」、原子炉圧力容器内の圧力.&勅6ー抑え/
こ状なりでタービンへの蒸気流1<を制御′ノるJQ了
炉プラントの出力i1i11伺1装置直に門−コ゛る。
DETAILED DESCRIPTION OF THE INVENTION Invention Q", pressure in the reactor pressure vessel. &Cho 6-Suppress/
In this way, the output of the JQ furnace plant which controls the steam flow 1 to the turbine is directly connected to the 1 equipment.

[発明の技術的背);↓〕 一蝦′に、沸騰水形原子炉プラントの111力fli制
御の方式にしl,、炉心を流通−するfl# (1^j
ヤを流;11.を!Ii1.l箔111一する方式と、
主よと気加減弁又はタービンバイパス弁の開度を変化さ
せてタービンへの蒸気流t(4をflfll IIする
方式がある。
[Technical Background of the Invention); ↓] Firstly, in a boiling water reactor plant, the 111 force fli control system is used, and the fl# (1^j
11. of! Ii1. l foil 111 method,
There is a method of controlling the steam flow t(4) to the turbine by changing the opening degree of the main control valve or the turbine bypass valve.

再循片(流用−の制f++]によりプラントの出力肴制
御するB式にL、原子炉圧力容器内のp+循ハ゛j流1
11を環化させることによりポ−f F″発生)jlを
変化さぜ、71ξイ1゛の持っ1′」の反応度係数の増
減を利用して原子炉出力を制御するものである。例えば
lL) jrfI(11流VAを増加させると圧力容器
内のdとイドが渦+7((−的に減少して反応度が11
19加し、」1、囁渡時のJ’]、 1.a、、Il¥
 、に!7 hll r<jトIf カ6 器内t7)
 y1! イY 発生、ii+ トカ・8ランスするま
で原子炉出力が増加しでif Lい出力レベノIが達成
されるのである。
In equation B, which controls the output of the plant by the recirculation piece (diversion - control f++), L, p + circulation high j flow 1 in the reactor pressure vessel.
By cyclizing 11, the value of po-fF'' (generated) is changed, and the reactor output is controlled by utilizing the increase/decrease in the reactivity coefficient of 71ξi1'. For example, 1L) jrfI (11 When the flow VA is increased, d and id in the pressure vessel decrease in a vortex +7 ((-), and the reactivity becomes 11
19 addition, "1, J' at the time of whispering], 1. a,,Il¥
, to! 7 hll r<j tIf 6 inside t7)
y1! The reactor output increases until ii + 8 lances occur, and a low output level I is achieved.

1〜かし、−;4jからこの方式でυ、11、出カ変す
リんζ求fjmす発生時から一ノ°ラントの出力が゛煤
化゛1−≠′牛でに111′fli′flj:l# 1
rir、 副の”rl二A6子山しi4 kJれ3J’
ノrI゛、々いため1・置時間を要し1、負荷が比較的
知い)、−′〒11+1Jで変化4゛る(34合に1、
原子炉プラントの出力を[1荷の変動(・′(−々・[
シ1“量1大連にi、l’lわtさせることQ、11木
1九1(となる、亨メこ、主蒸気加減弁又(」、タービ
ンバイパス弁の開+(+を変化させる方式でし1次(7
勺ような問題がス一)六。4ノfわち沸騰水形JjK 
f’炉シニl、圧カ外jξ時(一対1、できわめで敏感
な特性をイエシフ、例えば二↑−蒸気)1[1減弁の開
4B−を減少させていくと原−r炉J−1カ容器内の月
)−1が上臂(7て炉心部のボイド/)・減少ず/、。
From 1 to 4j, -; 4j to υ, 11, the output is changed using this method. flj:l#1
rir, Vice's "rl2A6Koyamashii4kJre3J'
NorI゛, it takes 1 time to set up, the load is relatively small), -' 〒11+1J changes 4゛(1 in 34 times,
The output of a nuclear reactor plant is expressed as [fluctuation of one load (・′(−−・・[
Q, 11 Tree 191 (to change the main steam control valve or (), the opening of the turbine bypass valve + (+) The method is first-order (7
Problems like S1)6. 4 no f ie boiling water type JjK
When the pressure is outside jξ (one-to-one, for example, two ↑-steam) 1 [1 reduction valve opening 4B- is decreased, the reactor-r reactor J -1 month inside the vessel) -1 is the upper arm (7 points void in the reactor core/)・No decrease/,.

この/こめ炉心K kJ、過渡的(Lこ11巳の反応ハ
Vが陣入されて中141−子束が増加し、0・いては原
子炉をスクラノ、に一至C)せるおすれもある。そこて
、第1図の如く、ノ0ラントの出力制御と同時に圧力容
器内の圧力も制御できる装置が必曽となる。
There is also a possibility that this/kome reactor core K kJ will be transitional (the reaction of L will be introduced and the flux will increase, and the reactor will become 0.0 and C). . Therefore, as shown in FIG. 1, it is essential to have a device that can control the pressure inside the pressure vessel at the same time as controlling the output of the zero runt.

とこで第1図に示す構成について説、明すると、原子炉
圧力容器1内の伶却利(軟水)は炉心2を通過する際に
加熱され、主蒸気となっで主蒸気配盾3を通してタービ
ン4へ供給され、このタービン4の回転により発電機5
が駆動される。
Now, to explain the configuration shown in Fig. 1, the soft water in the reactor pressure vessel 1 is heated as it passes through the reactor core 2, becomes main steam, and then flows through the main steam shield 3 to the turbine. 4, and the rotation of this turbine 4 generates a generator 5.
is driven.

またタービン4を、1駆動した後の主蒸気は復水器6へ
流入して冷却液化さi7、給水配管7を通1〜イー加子
炉バー力容器1内へ戻される・−また主蒸気l!IL′
、管3中にυj、主蒸q(、加減弁8が介挿さハ、この
上蒸気力(1請、弁B t)) l流11111より腹
水器G−\バイパスするタービンバイパス配管9中には
タービンバイ5・壬゛ス弁10が介挿さhている。
In addition, the main steam after driving the turbine 4 once flows into the condenser 6, is cooled and liquefied, and is returned through the water supply pipe 7 to the Kaji furnace bar power vessel 1. l! IL'
, υj in pipe 3, main steam q (, control valve 8 is inserted, steam power (1 contract, valve B t)) l flow 11111 into turbine bypass piping 9 bypassing ascites G-\ A turbine bypass valve 5 and a bypass valve 10 are inserted.

ぞして、この原子炉プラントに設けられた原子炉出力制
句1装[〆1の構成は次の′31nりである。
Therefore, the configuration of the reactor power control unit installed in this nuclear reactor plant is as follows.

−牛ずタービン4より送111さり、たタービン負荷信
号11と負イi!J設定器12より一1jえられた負荷
設定器出力信号131d’、加碧演f’4:f、’4x
4に:1..−いて加多うされ、加算演算器出力信−号
15として出力される。一方、原子炉圧力容器1内の圧
力信号IAと設定圧力信号16Aとに、圧力調整器16
におい1比較演算され、その演詩結果が圧力調整器出力
信号17として出力される。そして上記υII算演゛n
器出力信−号15は圧力調整器16からの圧力調整器1
4i力信号17と共に低値優先回路)8に入力され、い
ずれか低い値を示す方の玉−1号が低値1愛先回路出力
伯号19と(7て出力さiして、この情け19によシ主
蒸気加減弁8の制御が行なわれる。なお原子炉が正常運
転されているときは圧力調整器114力・1−号17が
加算演算器用力伯@15より低く、従って通常は圧力調
整器用力信号17が低位優先回路出力信号19となる。
- Feed 111 from the cow's turbine 4, and the turbine load signal 11 and negative i! Load setter output signal 131d' received from J setter 12, addition f'4: f, '4x
To 4:1. .. - is added and outputted as an adder output signal 15. On the other hand, the pressure regulator 16 is connected to the pressure signal IA in the reactor pressure vessel 1 and the set pressure signal 16A.
The odor 1 is compared and calculated, and the result is outputted as the pressure regulator output signal 17. And the above υII arithmetic operation n
Pressure regulator 1 output signal 15 from pressure regulator 16
4i power signal 17 is input to the low value priority circuit) 8, and the ball No. 1 which indicates the lower value is the low value 1 destination circuit output No. 19 (7 and outputs i) The main steam control valve 8 is controlled by 19.When the reactor is operating normally, the pressure regulator 114 and 1-17 are lower than the adding unit power ratio @15, so normally The pressure regulator force signal 17 becomes the low priority circuit output signal 19.

゛まだ差圧演を9器20では圧力jlA]整器出カイ菖
号17と低値優先回路出力信号19との差が算出され、
この差)L演算器20からの差圧演算器量カイ、−1号
2ノによりタービンノぐイノヤス弁10の制御を行なう
ように構成さ)1ている。
゛Pressure jlA in 9 device 20 with differential pressure function] The difference between regulator output signal 17 and low value priority circuit output signal 19 is calculated,
The turbine pressure valve 10 is controlled by the differential pressure calculation unit quantity Q, -1 and 2 from this difference) L calculation unit 20.

〔背景技術の問題点〕[Problems with background technology]

圧力調整、器16は、原子炉圧力容器1内の圧力信号を
入力し、その圧力容器I内の圧力を所定の設定値にする
だめの信号17を出力する。
A pressure regulator 16 inputs a pressure signal in the reactor pressure vessel 1 and outputs a signal 17 for adjusting the pressure in the pressure vessel I to a predetermined set value.

そし7てこの出力信号17がタービンパイ・やス弁10
の制御信号のもととなっている。従って、タービンバイ
パス弁10は主蒸気加減弁80開度変化に伴なう圧力容
器1内の圧力変動を抑えるメこめに、加減弁8に対l〜
て迅速如追従動作することが望−4;Jするが、圧力調
整器16の動作時間に相当する遅れ時間が生じるため加
減弁8に対し7て迅速に追従動作することができず、圧
力容器1内の圧力変動及び炉心部における中性を束の大
幅な変動を避は得ない、という問題があった。
Then, the output signal 17 of the 7 lever is sent to the turbine piston valve 10.
This is the source of the control signal. Therefore, the turbine bypass valve 10 is designed to suppress pressure fluctuations in the pressure vessel 1 due to changes in the opening degree of the main steam regulator valve 80.
It is desirable to perform a quick follow-up operation with the pressure regulator 16, but since a delay time corresponding to the operating time of the pressure regulator 16 occurs, it is not possible to quickly follow the control valve 7 with the pressure regulator 16, and the pressure vessel There were problems in that pressure fluctuations within the reactor core and large fluctuations in the neutral flux in the reactor core were unavoidable.

第2図は負荷となる′電力系統の周波数変動(A)と、
主蒸気加減、弁8の開度変化(B)と、タービンバイパ
ス弁ノθの開度変化伸)の関係を示すものである。
Figure 2 shows the frequency fluctuation (A) of the electric power system, which is the load, and
It shows the relationship between the main steam control, the change in the opening degree of the valve 8 (B), and the change in the opening degree of the turbine bypass valve θ.

図中仄)の如く電力系統の周波数が変動−4ると、主蒸
気加減弁8はこの系統周波数変動を抑制する方向に(B
)の如く動作する。例えば系統周波数が高くなると、加
減弁8の開度は減少してタービン4への蒸気流量を減少
させるようになる。
When the frequency of the power system fluctuates by -4 as shown in Figure 2), the main steam control valve 8 moves in the direction of suppressing this system frequency fluctuation (B
). For example, as the system frequency increases, the opening degree of the control valve 8 decreases to reduce the steam flow rate to the turbine 4.

また、タービンパイノソス弁10の動作は(C)の如く
加減弁8とは逆になり、加減弁8による圧力変動を抑え
る方向に動作する。例えば加減弁8の開度が減少すると
原子炉ffE力容型容器1内力増加を抑えるだめに・々
イパス弁10は開度を増加させ、タービンパイノ9ス配
管9へのノ々イノソス流量を増加させるようになる。と
ころが、第1図に示す従来装置(・(あっては、タービ
ン/マイ・ぐス弁10の動作が(C)図中に実線で示す
如く多少遅れているために、圧力容器1内の圧力変動や
、これに伴なう中性子束の変動をバイパス弁10の動作
によって十分抑制できないおそれがあり、これを(C)
図中に破線で示すような遅れのないものにすることが望
まれた。
Further, the operation of the turbine pinosus valve 10 is opposite to that of the regulating valve 8 as shown in (C), and operates in the direction of suppressing pressure fluctuations caused by the regulating valve 8. For example, when the opening degree of the regulating valve 8 decreases, in order to suppress the increase in the internal force of the reactor ffE force vessel 1, the Ipass valve 10 increases its opening degree and increases the flow rate to the turbine pinos pipe 9. It becomes like this. However, in the conventional device shown in FIG. (C)
It was desired that there would be no delay as shown by the broken line in the figure.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情にもとづいてなされたもので
、その目的は、原子炉I■、力容器内の急激な圧力変動
−や中性子束の大幅な変動を伴なうことなく、負荷変動
に対して迅速にタービンへの蒸気流量を追従させること
ができる)Q子炉プラントの出力制御装置を提供するこ
とにある。
The present invention was made based on these circumstances, and its purpose is to suppress load fluctuations without causing sudden pressure fluctuations in the reactor I and the force vessel or large fluctuations in neutron flux. An object of the present invention is to provide an output control device for a Q sub-reactor plant (which can quickly follow the flow rate of steam to a turbine).

〔発明の概要〕[Summary of the invention]

本発明に係る出力制御装置(#、i、負荷設定器と、こ
の負荷設定器の出力信号とタービン負荷(i号とを加算
演算して主蒸気加減弁制御信号を出月する加算演算器と
、原子炉圧力容器内の圧カイg号と設定圧力信号との差
信号を出力する圧力調整器と、この圧力調整器より出力
されメこ差信号と前配加算演H器より出力された主蒸気
加減弁制御信号とを入力して圧力偏差信号を出力する差
分演算器と、この差分演算器より出力さhだ圧力偏差信
号に正の制限値全加算する正の制限器と、前記圧力偏差
信号に負の制限値を加算する負の制限器と、原子炉圧力
容器内の熱出力検出信号と前記加算演算器より出力され
た主蒸気加減弁制御信号とを比較1〜でその差信号を負
イWj伯号として出力する比較器と、この比較器より出
力された負荷(i号と前記両制限器からの出力信号とを
入力しその3信号の中から中間値を示す信号をタービン
パイ・ぐス弁開度要求信号として出力するパイ・Pス弁
制御信号選択回路とを具備したことを特徴とするもので
ある。
An output control device (#, i, load setting device) according to the present invention; , a pressure regulator that outputs a difference signal between the pressure in the reactor pressure vessel and a set pressure signal; a difference calculator that inputs a steam control valve control signal and outputs a pressure deviation signal; a positive limiter that adds the entire positive limit value to the pressure deviation signal output from the difference calculator; Compare the negative limiter that adds a negative limit value to the signal, the thermal output detection signal in the reactor pressure vessel, and the main steam control valve control signal output from the addition calculator 1 to obtain the difference signal. A comparator that outputs negative i Wj and a load (i) output from this comparator and the output signals from both limiters are input, and a signal indicating an intermediate value from among the three signals is input to the turbine pipe. - A pi/p valve control signal selection circuit that outputs a gas valve opening request signal.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例を示すものである。 FIG. 3 shows an embodiment of the present invention.

原子炉プラントのIN成については第1図と同様である
ので同一符号を付して説明を省略する。
Since the IN configuration of the nuclear reactor plant is the same as that in FIG. 1, the same reference numerals are given and the explanation will be omitted.

まだ原子炉プラントの出力制御装置の構成は次の通りで
ある。
The configuration of the power control device for a nuclear reactor plant is as follows.

才ずタービン4より送出されたタービン負荷信号11と
負荷設定器12からの負荷設定器出力信号13は加算演
算器14において加算され、加算演算器出力信号が主蒸
気加減弁8を制御する主蒸気加減弁制御信号15′とI
7て出力される。
The turbine load signal 11 sent from the Saizu turbine 4 and the load setter output signal 13 from the load setter 12 are added in the addition calculator 14, and the addition calculator output signal is used to control the main steam control valve 8. Adjustment valve control signal 15' and I
7 is output.

一方、上記主蒸気加減弁制御信号15′は原子炉圧力器
I内の熱出力検出信号22と共に比較器23に人力し、
両信号15’、 22は比較器23において比較され、
その差信号が負荷信号24として出力される。一方、原
子炉圧力容器1内の圧力信号IAと設定圧力信号16A
とは圧力調整器16において比較演算され、その演尊結
果が圧力調整器出力信号17とL−で出力される。そし
て前記主蒸気加減弁制御信号15’kl、圧力調整器1
6からの圧力調整器出力信号17と共に差分演算器25
に入力され、差分演嘗器25では両信号15’、 17
を比較してLL力偏差信号26を114力する。そして
この圧力偏差信号26は2分され、その一方は正の制限
器27に入力1−て基準出力の数多〜10%に相当する
止の制限値を加栃され、正差圧信号、?7Aと[7て出
力される。また他方は負の制限器28に入力して基準出
力の数条〜10チに相当・4゛る負の制限値を減算され
、負差圧信号28Aとして出力される。そして上記負荷
信号24、正差圧信号27k及び負差圧信号28にはバ
イノ♀ス弁制御伯号選択回路29に入力する。このパイ
ノ!ス弁制御信号選択回路29は上記3つの信号24゜
、? 7 A 、 2 、’? Aのうち中間の値を示
す1つの信1を選択し、その選択した信りをタービン・
々イ・やスか[″−1度要求信号30としてタルビンバ
イパス弁1θへ出力するものであり、この(N−号30
によって、タービンパイ・ぞス弁IQの開度が制御され
る。
On the other hand, the main steam control valve control signal 15' is manually input to the comparator 23 together with the thermal output detection signal 22 in the reactor pressure regulator I,
Both signals 15', 22 are compared in a comparator 23,
The difference signal is output as the load signal 24. On the other hand, the pressure signal IA in the reactor pressure vessel 1 and the set pressure signal 16A
are compared and calculated in the pressure regulator 16, and the result is outputted as a pressure regulator output signal 17 and L-. and the main steam control valve control signal 15'kl, pressure regulator 1
difference calculator 25 along with pressure regulator output signal 17 from 6
and in the differential enumerator 25, both signals 15', 17
The LL force deviation signal 26 is generated by comparing the LL force deviation signal 26. This pressure deviation signal 26 is then divided into two parts, one of which is input to a positive limiter 27 and applied with a limit value corresponding to several to 10% of the reference output, resulting in a positive differential pressure signal, ? 7A and [7 are output. The other signal is input to the negative limiter 28, where a negative limit value of 4.5 times corresponding to several to 10 points of the reference output is subtracted, and the resultant signal is output as a negative differential pressure signal 28A. The load signal 24, positive differential pressure signal 27k, and negative differential pressure signal 28 are inputted to a binosu valve control number selection circuit 29. This pieno! The valve control signal selection circuit 29 selects the above three signals 24°, ? 7 A, 2,'? Select one signal 1 showing an intermediate value from A, and apply the selected signal to the turbine.
This is output to the Talvin bypass valve 1θ as a -1 degree request signal 30.
The opening degree of the turbine piston valve IQ is controlled by.

ここで、原子炉定格運転時には圧力調整器出力信号17
と主蒸気加減弁制御信号15′との間に差Q;(無く、
従ってタービン・々イAス弁を動作さ止る必要もないこ
とから、圧力偏差信号26は零である。従ってバイパス
弁1fill ?1lll信叶選択回路29に入力され
ている正差出信号、?7A及び負差圧信号21?Aの値
はそれぞり、正の制限値信号及び負のjfill限値信
号28Aそのものである。
Here, during the reactor rated operation, the pressure regulator output signal 17
and the main steam control valve control signal 15'.
Therefore, the pressure deviation signal 26 is zero since there is no need to deactivate the turbine seat valve. Therefore, 1fill bypass valve? The positive difference signal input to the 1llll signal selection circuit 29, ? 7A and negative differential pressure signal 21? The values of A are the positive limit signal and negative jfill limit signal 28A, respectively.

土だ、・4−(・!ス弁徨1仰信号選択回路29へのも
う一つの人力信号である負荷信号24も原子炉定格運転
時には零である。従−)で、少くとも負荷信け24がi
Eの制限値と狛の制限値との間で変化する限り、との負
荷信号24がタービンパイ・やス井開度要求イイ号30
としてバイパス弁制千1〜で同時にタービン負荷信号1
ノは、主蒸気加減弁8の制御をも行なうことになる。従
って負荷設定器12より負荷設定器出力信号13が出力
低下要求と12で出力さノ1だ場合にQ、L、主蒸気υ
11減弁8に71して主蒸気加減弁制御(M号15′が
開度減少要求の1言号と17て出力され、同時にJ −
ヒンパイ・Pス弁10に対し7てはタービン・ぐ・イア
・クス弁開度要求信号と17で出力されることに一7f
、る。ぞの結宋、主蒸気加減弁8の開度減少にf1″い
発生−する圧力上列の外乱をタービンパイ・そス弁の迅
速な開度増加によって抑制することができ、負M側の出
力低下要求に対し、原子炉)I−力容器1内の急激な圧
力上列や中性子束の大幅な増加を抑えてタービン4・\
の蒸気流量を低下させ、発電機50出力を低下させるこ
とができろ。−吋た、これとは逆に負荷設定器12より
出力上ゼ要求がIli力された場合には主蒸気加減弁8
に開度を増加させ、タービン4への蒸気流(4を増加さ
せると同時に、タービンパイ・ぐス弁10 ir:、1
開度減少信月を受けることになり、タービンパイ・9ス
管9へ流れていた余剰蒸気の一部がタービン4側へ流)
1て発′巾冒六5の出力が上列し、負荷設>’を器12
からの要求を満たずととになる。そ(7てこの場合も原
子炉圧力容器1内の急激々圧力低下や中性子束の大幅な
減少が抑制さ)7−る。
Earth, ・4-(・! The load signal 24, which is another human input signal to the valve control signal selection circuit 29, is also zero during rated reactor operation.), so at least the load signal is 24 is i
As long as the load signal 24 changes between the E limit value and the Koma limit value, the turbine pi/well opening request No. 30
As bypass valve control 1,1 to 1 at the same time turbine load signal 1
This also controls the main steam control valve 8. Therefore, if the load setting device output signal 13 from the load setting device 12 is an output reduction request and the output is 1, then Q, L, main steam υ
11 to the reducing valve 8 to control the main steam regulating valve (M number 15' is output as a word 17 for opening reduction request, and at the same time J-
For the Himpais valve 10, 7 is output as the turbine valve opening request signal 17.
,ru. Conclusion In the Song Dynasty, it was possible to suppress the disturbance in the upper pressure range that occurs due to the decrease in the opening of the main steam control valve 8 by quickly increasing the opening of the turbine pi-slot valve, and the negative M side In response to the power reduction request, the turbine 4.
could reduce the steam flow rate and reduce the generator 50 output. - On the contrary, if an output increase request is made from the load setting device 12, the main steam control valve 8
At the same time, the steam flow to the turbine 4 (4) is increased, and at the same time the opening degree of the turbine pipe gas valve 10 ir:,1
Due to the reduced opening, part of the surplus steam that was flowing to the turbine pipe 9 flows to the turbine 4 side)
1, the output of 65 is on the upper row, and the load setting is set to 12.
If you don't meet the demands of the. (Also in the case of lever 7, a sudden pressure drop in the reactor pressure vessel 1 and a large decrease in neutron flux are suppressed).

次に、何らかの異常事態発生に上り4荷信号24の値が
止差LL1.−f号27にないし2負差圧信号28Aの
範囲から逸脱することとなった場合に1r、シ、正差出
信号27k又は負差圧信号28Aのい一1′れかが、タ
ービンパイ・ぐス弁開度要求信号30としてバイノやス
弁制御信号選択回路29より出力されることになり、こ
のいずれかの信号にもとづいてタービンバイパス弁10
がii+l 御されることに在る。
Next, some abnormality occurs and the value of the 4-load signal 24 changes to the stop difference LL1. - If the signal deviates from the range of the negative differential pressure signal 28A from 27 to The valve opening request signal 30 is output from the binos and valve control signal selection circuit 29, and based on either of these signals, the turbine bypass valve 10 is selected.
is ii+l being controlled.

従って、以上の構成では原子炉定格運転時にか31ター
ビンぐイ・Pス弁10が比較器23より出力される負荷
信号24によつ1制御さi]−ることしこなるので、タ
ービン−々イ/やス弁10が第2図中に破線で示す如く
系統周波数の変動やこれを力容器1内の圧力変動や中性
子束の変動をタービン・々イ・やス弁10の動作によっ
て抑制することができる。
Therefore, in the above configuration, during the rated operation of the reactor, the turbine valve 10 is controlled by the load signal 24 outputted from the comparator 23. As shown by the broken line in FIG. 2, the turbine/railway valve 10 suppresses fluctuations in the system frequency, pressure fluctuations in the force vessel 1, and neutron flux fluctuations by the operation of the turbine/railway valve 10. can do.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る原子炉フ0ラントの11i
力制御装置によれば、主蒸気加減弁及びタービンパイ・
Pス弁を系統周波数変動に追従させて開閉i力作させる
ことができ、これによって短時間内に変化する負荷要求
に対しても、原子炉圧力容器内の急激な圧力変動や中性
子束の大幅な変Xi!+を伴なうことなくタービンへの
蒸気流量を迅i虫に追従させることができ、負荷変動に
It!1応しだirを力供給を行なうことができる。
As described above, 11i of the reactor flut according to the present invention
According to the power control device, the main steam control valve and the turbine pipe
The PS valve can be opened and closed with great effort by following system frequency fluctuations, and as a result, even in response to load demands that change within a short period of time, rapid pressure fluctuations in the reactor pressure vessel and large neutron flux fluctuations can be avoided. Weird Xi! It is possible to quickly follow the steam flow rate to the turbine without causing any load fluctuations. In response, the IR can be used to supply power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す原子炉プラントの出力制御域(〆
の構成図、第2図(A) 、 (B) 、 (C)はそ
れぞれ系統周波数変動、主蒸気加減弁の開度変化及びタ
ービンバイノ9ス弁の開度変化を示す図、第3図V、1
、本発明の一実施例を示す原子炉プラントの出力制御装
置の構成図である。 l・・・原子炉圧力容器、3・・・主蒸気配管、4・・
・り〜ビン、5・・・発電機、8・・・主蒸気加減弁、
9・・・タービンパイノ9ス配管、10・・・タービン
パイ・!ス弁、11・・・タービン負荷信号、−12・
・・、負荷設定器、14・・・加η゛演算器、15′・
・・主蒸気加減弁制御18号、16・・・圧力、1.i
I整器、23・・・比較器、24・・・負荷信号、25
・・・差分波n器、26・・・圧力差r−L信号、27
・・・正の制限器、28・・・負の制限器、27k・・
・正差圧信号、28A・・・負差圧信号、29・・・バ
イパス弁制御信号選択回路、?0・・・タービンバイ・
9ス弁開度要求信号。
Figure 1 shows a conventional example of the output control range of a nuclear reactor plant. Diagram showing changes in the opening degree of the turbine binos 9 valve, Figure 3 V, 1
FIG. 1 is a configuration diagram of an output control device for a nuclear reactor plant showing an embodiment of the present invention. l... Reactor pressure vessel, 3... Main steam piping, 4...
・Li~bin, 5... Generator, 8... Main steam control valve,
9... Turbine pipe 9 piping, 10... Turbine pipe! valve, 11...turbine load signal, -12...
..., load setting device, 14...addition η' calculation unit, 15'.
...Main steam control valve control No. 18, 16...Pressure, 1. i
I rectifier, 23... Comparator, 24... Load signal, 25
...Difference wave n device, 26...Pressure difference r-L signal, 27
...Positive limiter, 28...Negative limiter, 27k...
・Positive differential pressure signal, 28A... Negative differential pressure signal, 29... Bypass valve control signal selection circuit, ? 0...Turbine by...
9th valve opening request signal.

Claims (1)

【特許請求の範囲】[Claims] 負荷設定負荷設定器負荷設定器の出力信号とタービン負
荷1.−?Fj’とを加算演豹して主蒸気加減弁制御信
号を出力する加算演榊:器と、原子炉圧力容器内の圧力
信号と設定圧力信号との差信号を出力する圧力A整器と
、この圧力調整器より出力さitた差信号とi?fI記
加算演W器より出力さf+ /j主蒸気加減弁制御信号
とを人力[7で圧力偏差信号をlli力する差分演算器
と、この差分演算器より出力された圧力偏差信号に正の
71flll限値を加灼する正の制限器と、前記圧力偏
差信号に負の制限値を加治する負の制限器と、原子炉圧
力容器内の熱出力検出信号と前記加算演算器より出力さ
れた主蒸気加減弁制御信号とを比11’=> 1〜でそ
の差信号を負荷信号として出力する比較器と、この比較
器より出力された負荷信号と前記両制限器からの出力信
号とを人力しその3信号の中から中間値を汀4−j信号
をタービン負荷イ・ぐス弁開1埃要求信号とし7て出力
するバイパス弁制御(Ut ’:j選択回路とを−U、
備したことを牛1徴とする原子炉〕0ラントの出力制御
装置。
Load setting Load setter Output signal of load setter and turbine load 1. −? a pressure A controller that outputs a difference signal between a pressure signal in the reactor pressure vessel and a set pressure signal; The difference signal output from this pressure regulator and i? f + /j The main steam control valve control signal outputted from the addition operator W is inputted manually to a difference calculator which inputs the pressure deviation signal, and a positive difference is added to the pressure deviation signal output from this difference calculator. a positive limiter for adding a negative limit value to the pressure deviation signal; a negative limiter for adding a negative limit value to the pressure deviation signal; A comparator that outputs the difference signal as a load signal with the main steam control valve control signal at a ratio of 11'=> 1, and the load signal output from this comparator and the output signals from both limiters are manually input. Bypass valve control (Ut':j selection circuit and -U, which outputs the intermediate value from among the three signals as the 4-j signal as the turbine load I/gus valve open 1 dust request signal 7)
A nuclear reactor that is uniquely equipped with a zero-rated output control device.
JP57142940A 1982-08-18 1982-08-18 Reactor power control device Pending JPS5932896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142940A JPS5932896A (en) 1982-08-18 1982-08-18 Reactor power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142940A JPS5932896A (en) 1982-08-18 1982-08-18 Reactor power control device

Publications (1)

Publication Number Publication Date
JPS5932896A true JPS5932896A (en) 1984-02-22

Family

ID=15327178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142940A Pending JPS5932896A (en) 1982-08-18 1982-08-18 Reactor power control device

Country Status (1)

Country Link
JP (1) JPS5932896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204193A (en) * 1986-03-05 1987-09-08 株式会社日立製作所 Method of controlling natural circulation type boiling watertype reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204193A (en) * 1986-03-05 1987-09-08 株式会社日立製作所 Method of controlling natural circulation type boiling watertype reactor

Similar Documents

Publication Publication Date Title
EP4257878A1 (en) Steam generator system, steam generator pressure control system, and control method therefor
US3247069A (en) Control of nuclear power plant
JPS6033971B2 (en) Control device for power generation equipment
JPH0566601B2 (en)
JPS5932896A (en) Reactor power control device
CN110070951B (en) Pressure control method and system for two-loop steam pipeline of small reactor
JPS6239919B2 (en)
JP2599026B2 (en) Steam drum water level control method when water supply control valve is switched
JP2549195B2 (en) Auxiliary steam supply method for combined cycle power plant
JPS58205005A (en) Controller for drum level of waste heat boiler
JPS6180095A (en) Controller for water level of nuclear reactor
JPS5828689A (en) Method and device for controlling reactor power at load loss
JPS639638B2 (en)
JPS61215404A (en) Control device for steam turbine
JPS6123995A (en) Water-supply-pressure cooperation controller for nuclear reactor
JPS613904A (en) Controller for drum level
JPH04113298A (en) Controlling of nuclear reactor pressure
JP2022175232A (en) Output control method, control device and nuclear power plant
KR20010039185A (en) Apparatus controlling of steam temperature
JPS58145803A (en) Controller for drum level of waste-heat boiler
JPH01114797A (en) Speed controller for steam turbine
JPS63180003A (en) Feedwater flow controller
JPS61269094A (en) Controller for output from nuclear reactor
JPS6010303A (en) Temperature controller
JPS61107197A (en) Controller for feedwater to nuclear reactor