JPS5932865A - Ultrasonic wave inspector - Google Patents

Ultrasonic wave inspector

Info

Publication number
JPS5932865A
JPS5932865A JP57142951A JP14295182A JPS5932865A JP S5932865 A JPS5932865 A JP S5932865A JP 57142951 A JP57142951 A JP 57142951A JP 14295182 A JP14295182 A JP 14295182A JP S5932865 A JPS5932865 A JP S5932865A
Authority
JP
Japan
Prior art keywords
signal
output
output signal
probe
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57142951A
Other languages
Japanese (ja)
Inventor
「と」木 和弘
Kazuhiro Hajiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57142951A priority Critical patent/JPS5932865A/en
Publication of JPS5932865A publication Critical patent/JPS5932865A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/40Detecting the response signal, e.g. electronic circuits specially adapted therefor by amplitude filtering, e.g. by applying a threshold or by gain control

Abstract

PURPOSE:To record data such as distance to a defect and amplitude by measuring the thickness of a material to be inspected and sound velocity upon contact of a probe therewith by arranging probes for detecting a wave transmitting the material being inspected and a distance detector for detecting the distance therebetween. CONSTITUTION:When a transmission wave is received with an R probe from a material to be inspected interposed between a transmitting/receiving probe and the receiving R probe, as the existence of a defect in the material being inspected is not conceivable, the sound velocity of the material being inspected is computed with an arithmetic unit 48 based on the output of a V/f converter 34 and the output of a time measuring section 39. When a defect exists, the level of the transmission wave lowers or won't be received, the output of a reflected wave receiver 37 is provided to a time measuring section 41 to measure the ultrasonic wave propagation time from the surface to the defect and the distance from the surface of the material being inspected to the defect is computed with a thickness computing unit 49 from the sound velocity and the ultrasonic wave propagation time. The results are recorded on a recorder 44 and indicated on a display 14 together with the outputs such as echo height from an A/D converter 42.

Description

【発明の詳細な説明】 この発明は超音波を用いて利料の内部を、非破壊にて検
査する装置に関するものである。金属零の固体物中に存
在する欠陥を見つける手段として超音波を材料中に入射
させて欠陥からの反射波(以下エコーという)をとらえ
、CRT等の表示器へ表示することに」、って欠陥の大
きさや月利中の欠陥イル装置を測定するための装置とし
て超音波検査装置がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for non-destructively inspecting the inside of a utility vehicle using ultrasonic waves. As a means of finding defects in solid objects made of zero metal, we decided to inject ultrasonic waves into the material, capture the reflected waves from the defects (hereinafter referred to as echoes), and display them on a display such as a CRT. There is an ultrasonic inspection device as a device for measuring the size of a defect and the monthly defectiveness of the device.

まず従来この種の装置に一ついて−3−1図により説明
する。同図において、(1)は各回路に必要な同M信号
を発生する同回部、(2)は上記同期部からの出力信号
をもとにして送信信号を発生する送信部、に3)は破検
イーイ、(4)は上記送信部から生ずる送信信号を招音
波信号に変換して被検材に超音波を入射させるとともに
、に記被検材からの反射波を小、気信賢に変II′(す
る探触子、(5)はJ1記探触子からの゛上気f14−
”’rを噌r4Jする受信部、(6)は上記受信部の出
力を表示するCR’1’ M品等の表示器、(7)はL
記受信部の出力の最大値を検出するピーク値検出回路、
(8)は1−袴14信号と超音波−■〜ココ−号とから
超音波伝播時間を測定する時間測定回路、(9)は上記
時間測定回路の活用をボールドするホールド回路、(1
0)は上記ホールド回路(9)によ−)で得られた超音
波伝播時間と設定器(11)により設定された被検材の
厚ろ05)から披検月のド1律を求める音速測定回路、
t12)は」二記蒔律測定回路tlLl+によって得ら
れた彼検拐(3)の音速値を記憶′する記憶回路、(1
3)は上記記憶回路(I2)に記j、はされた被検(A
の音1i11値と時間測定回路(8)によってf!j 
E) f’した超音波伝播時間とから超音波伝播距離を
求める伝播距囲1測定回路、(14)は−ヒ記云播距離
測定回路(13)によって得られた超音波伝播距離の値
および記憶回路じに記憶された被検材の音速値を表示−
t’る表示器である。被検利の欠陥までの距離を測定し
ようとする際、初めに検査しようとする被検材の音速を
求めるために、あらかじめ別のスケールで測定した被検
Hの厚さを設定器(1旧二設定し、1−記スク゛−ルで
測定した被検材の部分に探触子(4)を当接させ、時間
測定回路(8)で送信信号と超音波エコ〜とから超音波
伝播時間を測定する。−111記時間測?iテ回路(8
)によって得られた超キ波伝播時1i1Jと設定器(1
1)に設定された被検材の厚さから11速測定回路t1
.0+でV=w/l(V :被検材の音速、W:被検材
の厚さ、t:超音波伝播時間)として音速を求める。欠
陥までの厚さを求めるときは、被検材(3)に枠角1!
子(4)を当接させ時間測定回路(8)によって得られ
た超音波伝播時間と記憶回路(121に記憶された被検
材の音速値から伝播距離測定回路(13)でWT=V・
t′(WT−欠陥までの厚さ、■:被検材の音速、t′
:被検利表面から欠陥までの超音波伝播時間)と17て
超音波伝播距離を求める。
First, one conventional device of this type will be explained with reference to Fig. 3-1. In the figure, (1) is a synchronization section that generates the same M signal necessary for each circuit, (2) is a transmission section that generates a transmission signal based on the output signal from the synchronization section, and (3) is a transmission section that generates a transmission signal based on the output signal from the synchronization section. (4) converts the transmitted signal generated from the transmitting section into an induced sound signal and injects the ultrasonic wave into the specimen material, and the reflected wave from the specimen material described in (4) is (5) is the upper air f14- from the J1 probe.
``Receiving section that outputs ``'r4J'', (6) is a display such as CR'1'' M product that displays the output of the above-mentioned receiving section, (7) is L
a peak value detection circuit that detects the maximum value of the output of the recording/receiving section;
(8) is a time measurement circuit that measures the ultrasonic propagation time from the 1-Hakama 14 signal and the ultrasonic waves -■~Coco-No.; (9) is a hold circuit that boldly utilizes the above time measurement circuit; (1)
0) is the sound velocity that determines the Do 1 rule for the test month from the ultrasonic propagation time obtained by the hold circuit (9) above and the thickness of the material to be tested set by the setting device (11) 05). measurement circuit,
t12) is a storage circuit that stores the sound velocity value of the test (3) obtained by the second measurement circuit tlLl+, (1
3) is the test object (A) recorded in the memory circuit (I2).
f! by the sound 1i11 value and the time measurement circuit (8). j
E) A propagation distance 1 measurement circuit that calculates the ultrasonic propagation distance from the ultrasonic propagation time f', (14) is the value of the ultrasonic propagation distance obtained by the ultrasonic propagation distance measurement circuit (13) and Displays the sound velocity value of the test material stored in the memory circuit.
It is a display device. When trying to measure the distance to the defect on the test piece H, first, in order to find the sound velocity of the test piece 2 setting, the probe (4) is brought into contact with the part of the specimen measured by the scroll described in 1-, and the time measurement circuit (8) calculates the ultrasonic propagation time from the transmitted signal and the ultrasonic echo. Measure - 111 time measurement circuit (8
) and the setting device (1
1) From the thickness of the test material set in 1), the 11-speed measurement circuit t1
.. At 0+, the sound speed is determined as V=w/l (V: sound speed of the test material, W: thickness of the test material, t: ultrasonic propagation time). When determining the thickness up to the defect, set the frame angle 1! to the material to be inspected (3).
WT=V・
t' (WT-thickness to defect, ■: sound velocity of test material, t'
: ultrasonic propagation time from the surface to be inspected to the defect) and 17 to determine the ultrasonic propagation distance.

さて・牙1図に示したような装置では、欠陥までの距離
(厚さ)を測定する為には音速を事前に測定するか、も
しくは文献等から索・引しなければならない、また音速
を測定するため・に・は事前に被検材の厚さを測定し、
かつ設定器に設定しなければならない、検査した後の記
録も人の手作業により厚さが一定でない被検査物を超音
波を用い検査する場合多くの時間を要し、かつ文献等か
ら引用した音速データでは温度による変化が読みとれな
い事が多いため欠陥までの距離のデータに信頼性がなく
記録性に乏しい等の欠点がある。
Now, with the device shown in Figure 1, in order to measure the distance (thickness) to the defect, the speed of sound must be measured in advance, or it must be indexed from literature, etc. In order to measure, measure the thickness of the material to be tested in advance,
In addition, the settings must be set on a setting device, and the records after inspection are manually performed by humans. When inspecting objects with uneven thickness using ultrasonic waves, it takes a lot of time, and it is difficult to record the records after inspection. Because it is often impossible to read changes due to temperature in sound velocity data, there are drawbacks such as unreliability of data on distance to defects and poor recording performance.

この発明はこれらの欠点を解消するためになされたもの
で、従来の送信器及び探触子の他に被検材の透過波を検
出する探触子と、探触子間の距離を検出する距離検出器
を複数個構成させ、各々の信号を処理し、記録する記録
器を設け、測定箇所に探触子を当接した時点で被検材の
厚さ及び音速を測定し、欠陥が存在した場合は欠陥まで
の距離及び撮中等のデータを記録するよう構成した超音
波検査装置を提供するものである。
This invention was made in order to eliminate these drawbacks, and in addition to the conventional transmitter and probe, it also includes a probe that detects waves transmitted through the test material and a probe that detects the distance between the probes. It consists of multiple distance detectors and is equipped with a recorder to process and record each signal, and when the probe touches the measurement point, the thickness and sound speed of the material to be inspected are measured, and defects are detected. In such a case, the present invention provides an ultrasonic inspection device configured to record the distance to the defect and data such as imaging.

以□下どの発明の実施例を牙′2図を用いて説明・する
。矛2図において(11は□同期信号を□発生する同期
部、(16)は上記同期部(1)からめ、同期信号を所
定数カウントするカランダニ、(1ηは上記カウンター
(16)の出力信号□をもとに送信信号を発生する送信
器1 (1)のタイミングを発生するシフトレジスタ1
、囮・は上記シフトレジスタの出力信号をもとに送信信
号を発生する送信器2Q1)のノイミングを発生するシ
フトV、)スフ2、(l!l)は0二l)番目のシフト
レジスタの出力信号をもとに送信□信号を発生する送信
器ル(2湯のタイミングを発生するシフトレジスTh、
Eは上記送信器V@が生じる送信信号を超音波信号に変
換して被検材(3)は超音波を入射させるとともに、上
記被検材(3)からの反射波を電気信号に変換する送受
信用(以下T/Rという。)探触子! 、 [24+は
上記T/R探触子1(二より発生し被検材(3)を透過
した超音波を電気信号に変換する受信用(以下Rという
。)探frji子1、(ガは上記ル・R探触子1 、(
23)と上記R探触子1 (241の距離に比例した電
気信号を検出する距離検出器1 、 (mlは上記送信
器2 (21)がら生じる送信信号を超音波信号に変換
して被検材(3)に超音波を入射させるとともに上記被
検材(3)からの反射波を電気信号に変換するT/R探
触子2 、 (271は上記T/R探触子2 IAlに
より発生し被検材(3)を透過した超音波を電気信号に
変換するIく探触子2、I28)は上記’J’/R探触
子2 f261と上記R探触子(27)の距離に比例し
た電気信号を検出する距離検出器2、鴎は上記送信器n
G!渇から生じる送信信号を超音波信号に変換して被検
材(3)に超音波を入射させるととも(二上記被検1オ
(3:からの反射波を電気信号に変換する′陳探触子1
′Ls f30)は上記T//R探触子探触イルにより
発生し被検材を透過した超音波な′電気信号に変換する
1く探/9JI子か、印)は上記1ンIく探触子n、囚
と上記1(探触子n [30)の距離に比例した電気信
号を検出する距離検出器ル、国は上記距離検出器1(2
51から上記距離検出4g ” fal)の出力信号の
■電らV、のうち上記送信器l■から送信器n(221
に対応した信号を選択しパルス信号へ変換する電圧/周
波数(以下V/Fという。)変換器C141へ出力する
ための切換器(33)を制御するとともにゲート信号と
ゲート内・の振r17設定ンベルを設定するゲート発生
器(至)の制御と、記憶回路02)及び記憶回路の出力
をアナログに・変換する1楕変換器(43)を制御する
制御器、(35)は上記i<4梁触子1(241から上
記■(探触子rb (301にて変換された電気信号P
+からP□のうち上記制御滞電にて制御される切換器(
溺の出力1’o (41i1を増lJする透過波受信器
、0力は」−記T7R探触子2内から」二記T/R探触
子ル(至)にて変換された電気信号R,から賄のうち上
記11JIJ御器(32)にて制御される(υ換器(3
3)の出力RO(471を増11〕する反射波受信器、
” (361は透過波受信器(35)の出力□信号を上
記ゲート発生器Chillの出力信号□によって比較す
る比較器、(39)は上記透過数受信器(35)の出力
信号をもとじして被検材(3)を透過する超音波透過波
め伝播時間を計測す名時間言1測□部’PsI例はヒ記
V//変換器(34)より発生される上記切換器C(3
) M出力V。(4唱=比例した周波数をもつパル諌信
号と上記時間a1測部tP(3(ト)よ・り計測された
透過波時間よ□り音速を求める演算器Ver、、(4t
11は上記比較器(36)の出力信号仁より」1記反射
波受信器(371の出力信号を開閉する開閉器、(41
)□は上記開閉器(40)によりfltlJ御された」
二記反射波受信器Cmの出力信を十をもとじ被検1’+
31の表面から被検4jt+31の欠陥または底面から
の反則波までの時間を81則する時間計測部t R、(
4j口よ−1−記時間R(測部t R(4111により
81則された被検材(3)の表面から被検材(3)の欠
陥または底面からの反則波までの超音波伝播時間と一七
記演尊、器VeJ、(4111(二よりR1測された被
検材(3)の音速より被検材(3)の表面から被検材(
3)の欠陥または底面までの厚さを求める厚さ演算器、
(42)は上記開閉器(401により制御された反射波
受信器+37)の出力信号をデジタルに変換するA/D
変換器、(43)は上記記憶回路02)に記憶されたデ
ータを上hC制御器り)2)の制御信号によってアナロ
グに変換するD/A変換器、(44)は」上記1)/A
変換器(32)の出力信号を記録するレコーダまたプリ
ンター等の記録器、である上記T/R探触子1区3)に
より発生した超音波は1−記R探触子1 f241との
間に被検材が介在しない場合は、的j妾上記R探触子1
(241で受信され出力信号P重となり、上記切換器(
33)へ入力される。上記切換器(33)は、上記シフ
トレジスタ1と同Jυ1し、上記送信器1 a)の動作
トリガと、上記透過波受信器(35)の入力P。と」上
記1(探触−f’−1(241の出力信号P、及び−L
上記射波受信器(37)の人力R6と一11記’(’/
R探触子叫)の出カイ11号R1及び上記電比を周波数
に変811−+る■/f変換器(34)の入力V(1と
上記距1椎検出’i4w ’ t25)の出力■1の信
号が接続されるよう制御する制(lit器(:3渇の制
御信号により選択されることにより、n閂の’II/R
探触子に対応した出力信号R6と、nff61のR探触
子に対応した■゛oとn蘭の距離検出器に夕・1応【7
た出力信号■。がぞれ2ぞれ同1υjして選択され出力
される。
□Examples of the invention will be described below with reference to Fig. 2. In Figure 2, (11 is a synchronizing section that generates a synchronizing signal, (16) is connected to the synchronizing section (1) and counts a predetermined number of synchronizing signals, and (1η is the output signal of the counter (16)). Transmitter 1 that generates a transmission signal based on (1) Shift register 1 that generates the timing of (1)
, Decoy is the shift V which generates the noise of the transmitter 2Q1) which generates the transmission signal based on the output signal of the shift register,) Suff2, (l!l) is the 02th shift register's Transmitter Le that generates a transmission □ signal based on the output signal (shift register Th that generates the timing of 2 hot water,
E converts the transmitted signal generated by the transmitter V@ into an ultrasonic signal, and the specimen material (3) receives the ultrasound, and converts the reflected wave from the specimen material (3) into an electrical signal. Transmitting/receiving (hereinafter referred to as T/R) probe! , [24+ is the T/R probe 1 (for receiving (hereinafter referred to as R) that converts the ultrasonic waves generated from 2 and transmitted through the test material (3) into electrical signals) probe 1, (the moth is The above Le-R probe 1, (
23) and the R probe 1 (241), a distance detector 1 detects an electrical signal proportional to the distance between the transmitter 2 (21), and converts the transmitted signal generated from the transmitter 2 (21) into an ultrasonic signal to be detected. T/R probe 2 which injects ultrasonic waves into the material (3) and converts the reflected waves from the material (3) into electrical signals (271 is generated by the T/R probe 2 IAl). The I probe 2, I28) that converts the ultrasonic waves transmitted through the test material (3) into electrical signals is located at the distance between the above 'J'/R probe 2 f261 and the above R probe (27). A distance detector 2 detects an electrical signal proportional to , and a seagull is the transmitter n
G! Converting the transmitted signal generated from the dryness into an ultrasonic signal and injecting the ultrasonic wave into the test material (3) (2) Converting the reflected wave from the test material (3) into an electrical signal Tentacle 1
'Ls f30) is generated by the above T//R probe probe wave and is converted into an ultrasonic electrical signal transmitted through the test material. Probe n is a distance detector that detects an electrical signal proportional to the distance between the prisoner and the above 1 (probe n [30)], and the country is the above distance detector 1 (2).
51 to the above-mentioned distance detection 4g" fal) of the output signal from the transmitter l to the transmitter n (221
Selects a signal corresponding to the voltage/frequency (hereinafter referred to as V/F) that converts into a pulse signal, and controls the switch (33) for outputting it to the converter C141, as well as setting the gate signal and the amplitude within the gate r17. (35) is a controller that controls the gate generator (to) that sets the value of Beam probe 1 (241 to the above ■) (probe rb (electrical signal P converted at 301)
From + to P□, the switching device (
Drowning output 1'o (transmitted wave receiver that increases lJ, 0 power is the electric signal converted from inside the T7R probe 2 to the T/R probe 2) Of the power from R, it is controlled by the above 11JIJ controller (32) (υ changer (3
3) a reflected wave receiver with an output RO (471 multiplied by 11);
(361 is a comparator that compares the output □ signal of the transmitted wave receiver (35) with the output signal □ of the gate generator Chill, and (39) is a comparator that compares the output signal □ of the transmitted wave receiver (35). An example of the time measurement section □ PsI is to measure the propagation time of the ultrasonic wave transmitted through the test material (3). 3
) M output V. (4 chants = Pulse signal with proportional frequency and the above time a1 measuring unit tP (3 (g)) Calculator Ver.
11 is a switch that opens and closes the output signal of the reflected wave receiver (371) from the output signal of the comparator (36), (41
) □ was controlled by the switch (40) above.
The output signal of the second reflected wave receiver Cm is calculated from 1'+
A time measurement unit tR, which calculates the time from the surface of 31 to the defect or foul wave from the bottom of test 4jt+31 by the 81 rule,
4j - 1 - time R (measurement part t R (ultrasonic propagation time from the surface of the material to be inspected (3) determined by 4111 to the defective wave from the bottom surface of the material to be inspected (3)) (4111) From the surface of the test material (3) to the sound velocity of the test material (3) measured by R1 from 2,
3) a thickness calculator for determining the thickness to the defect or bottom surface;
(42) is an A/D that converts the output signal of the switch (reflected wave receiver +37 controlled by 401) into digital.
Converter, (43) is a D/A converter that converts the data stored in the memory circuit 02) into analog data according to the control signal of the hC controller 2), and (44) is the 1)/A
The ultrasonic waves generated by the T/R probe 1 section 3), which is a recorder such as a recorder or a printer that records the output signal of the converter (32), are transmitted between 1-R probe 1 f241. If there is no material to be tested, the above R probe 1
(It is received at 241 and output signal P overlaps, and the above-mentioned switch (
33). The switch (33) is the same Jυ1 as the shift register 1, and serves as an operation trigger for the transmitter 1a) and an input P for the transmitted wave receiver (35). 1 (probe-f'-1 (output signal P of 241, and -L
The human power R6 of the above-mentioned radiation receiver (37) and 111 '('/
R probe) output No. 11 R1 and the output of the input V (1 and the distance 1 vertebra detection 'i4w' t25) of the /f converter (34) which converts the electric ratio into a frequency 811-+ ■ A control that controls the connection of the 1st signal (lit device): By being selected by the 3rd control signal, the n-bar 'II/R
The output signal R6 corresponding to the probe and the range detectors of ■゛o and nran corresponding to the R probe of nff61 are
■ Output signal. are selected and output with the same number of 1υj.

被検材が上記1ンR探触子ど−1−記I(探触子との間
に介7■−シない場合θ片I記V−/f変換器ぐ刊)の
出力と、上記時間R1測部tE’(39)の出力を基檗
とし゛C1−1−記′隆探触子と一1二記R探触子との
間に被検4」が介在し、上記R探触子に」、すiAi 
il=“4波が受信された場合は、被検イ4内に欠陥の
存在が考えられないため上記v4変換器(34)の出力
と、−1L記時間di側部tP f39+の出力をもと
にして被検4]の音速を−(上記演算器VeI・(48
)で演昨する。また−1−記ryR櫟触子と上記R探触
子の間に被検材が介在し、欠陥が存在する場合は、被検
材内に入射された超n波は欠陥で反射され−1!4[:
 ′床枠触子で受信され上記R探触子で受信される透過
波レベルが低下もしくは受信されない。このためL紀透
過波受信器(35)の出力をJlnLゲート発生器(3
8)に゛C発生する透過波監視用のゲートと量定レベル
により比較し、透過波が低下もしくは存在しない場合は
開閉器(40)を閉路し、上記反射波受信器(38)の
出力を上記時間計測部tR(411へ出力する。上記時
間a1測部tR(411は、被検材の表面から欠陥まで
の超音波伝播時間を言1測し上記厚さ演算器+49)へ
出力される。上記厚さ演−算器(49)において、被検
4Nの音速を演q[する演算器VeL(481の出力の
音律と、上へ己時間d]測部tR(411の出力の超音
伝播時間とから被検Hの表面から欠陥までの距離を演算
し上記記憶回路(12)へ記憶される。また上記開閉器
(40)の閉路による上記反射波受信器の出力はA/D
変換器(42)によりデジタル値に変換され上記記憶回
路(12)へ記憶される。
The material to be tested is the output of the above 1-R probe I (if there is no intermediary between the probe and the θ piece I V-/f converter) and the above Based on the output of the time R1 measuring section tE' (39), the test object 4 is interposed between the C1-1-log probe and the R probe 112, and the R probe To the child”, SuiAi
il = "If 4 waves are received, it is unlikely that there is a defect in the test object I4, so the output of the v4 converter (34) and the output of the -1L time di side tP f39+ are also The sound velocity of test subject 4 is −(the above computing unit VeI・(48
). In addition, if the material to be tested is interposed between the R probe and the R probe described in -1- and there is a defect, the ultra-n waves incident on the material to be tested will be reflected by the defect. !4[:
'The transmitted wave level received by the floor frame probe and received by the R probe decreases or is not received. Therefore, the output of the L period transmitted wave receiver (35) is converted to the JlnL gate generator (3
8) Compare the quantification level with the gate for monitoring the transmitted wave generated by C, and if the transmitted wave decreases or does not exist, close the switch (40) and output the reflected wave receiver (38). The time measurement unit tR (411) measures the ultrasonic propagation time from the surface of the material to be inspected to the defect and outputs it to the thickness calculator +49. .In the thickness calculator (49), the sound velocity of the test object 4N is calculated by the calculator VeL (481's output tone scale and the upward self-time d) measuring section tR (411's output ultrasonic The distance from the surface of the test object H to the defect is calculated from the propagation time and stored in the storage circuit (12).The output of the reflected wave receiver when the switch (40) is closed is output from the A/D
It is converted into a digital value by a converter (42) and stored in the storage circuit (12).

上記記憶回路(12)に記憶された上記厚さ演算器(4
9)の厚さの出力と上記A/D変換器(4乃のエコー高
さ等の出力は上記制御器(321の制副信号により上記
D/A変換’r!’; f43)によりアナログ値に変
換され上記記録器(441に記録されるとともに上d1
:表示器(14)−\ノモ示される。
The thickness calculator (4) stored in the storage circuit (12)
The output of the thickness of 9) and the output of the echo height etc. of the A/D converter (4) are converted into analog values by the controller (the D/A converter 'r!'; f43) according to the control sub-signal of 321. is converted into the above recorder (441) and is recorded on the upper d1
:Display (14)-\nomo is displayed.

なおこの発明は超音波応用として非破壊検査のみならず
、医療分野にも適用可能である。即ち、以上の実施例で
は超音波検査装((イ1“につい℃述べたが、同様の機
能をイIする歯科用超音波診断装置および超音波厚さR
1について応用できることは拝謁に類推できる。
Note that this invention is applicable not only to non-destructive testing as an ultrasonic application but also to the medical field. That is, in the above embodiments, the ultrasonic examination device ((A1) was described, but a dental ultrasonic diagnostic device and ultrasonic thickness R having similar functions are used.
What can be applied to 1 can be analogized to an audience.

以上説明したようにこの発明によれば被検材の厚さもし
、くは音速を事前に81則することなく12Y速もしく
は17iさを求められる他欠陥のイ]無および欠陥まで
M(−哨(を記録紙や表示器に表示できX線透1ハ写A
に学する超音波透過記録の1幾rif、’を有するため
X線透過検1望なうわまわる検査および記録ができる利
点がある。
As explained above, according to the present invention, the thickness of the material to be inspected or the speed of 12Y or 17i can be determined without determining the speed of sound in advance. (Can be displayed on recording paper or display
It has the advantage of being able to carry out detailed inspections and recordings that are desirable in X-ray radiography, since it has several RIF's for ultrasonic transmission recording.

【図面の簡単な説明】[Brief explanation of drawings]

牙1図は従来の超音波検査装置の構成図、百・2図はこ
の発明の−・実%!i 1+Jを示す超に波検査装uj
霞り構成図である。 図中(1)は同期部、(2)は送信部、(3)は被検4
A、(4)は探触子、(5)は受信部、(6)は表示器
、(7)は検出回路、(8)は時間測定回路、(9)は
ホールド回路、(Iαは音速測定回路、(Illは設定
器、(1りは記憶回路、(13)は距離測定回路、(]
41は表示器、(15)は被検材の厚さ、(16+ ハ
カウンター、0ηはシフトレジスタ1 、(18+はシ
フ)レジスタ2 、<19+はシフトレジスタル、(2
)))は送信器1 、+211は送信器2、(2沿ま送
信器ル、圀)はT/1(探触子1 、1241はR探触
子1 、 (2,5+は距離検出器l、(2))はT/
R操触子2 、 (77)はR探触子2.128+は距
離検出器2 、 (2mはT/R探触子n、(30)は
R探触子ル、(31)は距離検出器ル、ci2+は制御
器、 +33)は切換器、(34)はV/f変換器、(
弾は透過波受信器、(31iiは比較器、C(7)は反
射波受信器、(38)はゲート発生器、(39は時間言
1測部tP、(4(pは開閉器、(41)は時間計測部
tR、[42)はM〕変換器、(43)はI)/A変換
器、(44)は記録器、 1B)は演算器VeL、(4
9)は厚さ演W:器である。 なお、図中同一または相当部分にt大同−符号を付して
示しである。 代理人 葛 野 信 − 第1図
Figure 1 is a configuration diagram of a conventional ultrasonic inspection device, and figure 10.2 is the actual percentage of this invention! Ultra wave inspection device uj showing i 1+J
It is a haze configuration diagram. In the figure, (1) is the synchronization part, (2) is the transmission part, and (3) is the test subject 4.
A, (4) is the probe, (5) is the receiver, (6) is the display, (7) is the detection circuit, (8) is the time measurement circuit, (9) is the hold circuit, (Iα is the speed of sound Measuring circuit, (Ill is a setting device, (1 is a memory circuit, (13) is a distance measuring circuit, ()
41 is the display, (15) is the thickness of the material to be inspected, (16+ ha counter, 0η is shift register 1, (18+ is shift) register 2, <19+ is shift register, (2
))) is transmitter 1, +211 is transmitter 2, (2 along transmitter, field) is T/1 (probe 1, 1241 is R probe 1, (2,5+ is distance detector l, (2)) is T/
R probe 2, (77) is R probe 2, 128+ is distance detector 2, (2m is T/R probe n, (30) is R probe 1, (31) is distance detection ci2+ is the controller, +33) is the switch, (34) is the V/f converter, (
The bullet is a transmitted wave receiver, (31ii is a comparator, C (7) is a reflected wave receiver, (38) is a gate generator, (39 is a time measurement unit tP, (4 (p is a switch, ( 41) is the time measurement unit tR, [42] is the M] converter, (43) is the I)/A converter, (44) is the recorder, 1B) is the arithmetic unit VeL, (4
9) is thickness performance W: vessel. In addition, the same or equivalent parts in the drawings are indicated by the same reference numeral t. Agent Shin Kuzuno - Figure 1

Claims (1)

【特許請求の範囲】 (11同期信号を発生する同期部と、上記同期部からの
信号を所定数カウントするカウンターと、上記カウンタ
ーの出力信号をもとじして上記同期部の同期信号を順次
シフトする複数段のシフトレジスタと、上記複数段のシ
フトレジスタの出力信号をもとにして送信信号を発生す
る複数1同の送信器と、上記複数間の送信器から生ず、
る送信信号を超音波信号に変換して被検材に超音波を入
射させるとともに、上記被検材からの反射波を電気信号
に変換する・複数個の送受信用探触子と、上記送受信用
探触子から上記被検材に入射された超音波の透過波を・
電気信号に変、換する複数個の受信用探触子と、上記送
受信用□探・触子と、上記受信用探触子間の距離、に比
例した電気信号を検出する複数間の距離検出器と、上記
受信用探触子によって得られる上記被検材からの透過波
の′電気信号と、上記送受信用探触子によって得られる
上記被検材からの反射波の電ネ信号と、上記距離検出器
の出力信号とを上記同期部からの同期信号をもとじ制御
信号を発生する制御器の小力信号によって契換える切換
器と、上8C距離検出器や電圧出力信夛を上記切換器を
介してパルそ波形に変換する電圧/周波数変換器と、上
記受信用探触子で得られた透過波出力信うを上記切換器
を介して(曽巾する堺過波受信器と、上≧送受イリ]探
触子で見られた反射波出力信号を上ド己切像器を介して
増巾−炙る反射波受信器へ、上記制御器からの制御出力
信号をもとじして1 ゲート信号及びゲート内9呼定レベルを出力するゲート
発生量と、上記ゲート発生器の出力信号と上記、透過液
受、信器の出力信号を比較する些較、5器と上記透過波
受信器の出力信竺を、もとにして透過波の伝、播時間を
計6111する時間計測部と、上記時間旧聞計囮硬、;
I#7信号と上、起電圧/周波数変換器の出力信!件に
、より上記被検ザの音速を、準算する演算器と、上記比
慾器の出力により上目戸反射波受信器の信号を開閉する
開閉器と、上記開閉器の出力信号をもとじして反射波の
伝播時間を計測する時間計測部と、1−記演n器VeL
の音速出力信号と上記時間R1測部tRの出力信号をも
とにして上記被検材から反射された反射波までの厚さを
演算する厚さ演算器と、上記開閉器の出力信号をデジタ
ルに変換するA/′])変換器と、上記厚さ演算器の出
カ信けと上記A/D変換器の出力信号を上記匍廁1)器
の制御信号により記憶する記憶回路と、−1−記記憶回
路のデータを−1−記制御器の制御信号によりアナログ
に変換“[るD/A変換器と、上記1)/A変換器の出
力信号を表示する表示器と、」1記IJ/に変換器の出
力信号を記録する記録器(プリンター、レコーダ等)と
を備え、上記透過波受信器の出力と上記距離検出器の出
力によって音速を演算−スるよう構成した、−とを特徴
と゛する超音波透過像h:。 (2)  上記複数回の送受信用探触子を上記複数回の
シフトレジスタと−に記複数閘の送信器により順次、駆
動させ上記被検材に超音波を入射させるとともに、−1
−記j「1億回路の出力を−」l記複数凹の送受信用探
触子もしくは受信用探触子に対応させて上記記録器へ出
力し超音波透過像及び欠陥からの反射波の距離及び欠陥
からの反射波の高さを記録するにう構成したことを特徴
とする特許請求の範四半1項記載の超音波検査装置。 +3+  −J: =12時間計測部の出力と、−ト記
演W器の出力によっ−C反射波までの距離を演算すると
ともに[−記記録器及び上記表示器に距離の記録及び距
離の表示を行うよう構成したことを特徴とする特許請求
の範囲牙1項記載の超音波検査装置、。
[Claims] (11) A synchronizing section that generates a synchronizing signal, a counter that counts a predetermined number of signals from the synchronizing section, and sequentially shifting the synchronizing signal of the synchronizing section based on the output signal of the counter. a plurality of transmitters that generate transmission signals based on output signals of the plurality of shift registers, and transmitters between the plurality of transmitters,
Converts the transmitted signal into an ultrasonic signal and injects the ultrasonic wave into the test material, and converts the reflected wave from the test material into an electrical signal. ・Multiple transmitting/receiving probes and the above transmitting/receiving probe. The transmitted ultrasonic waves incident on the above-mentioned material from the probe are
Distance detection between multiple receiving probes that convert into electrical signals, detecting electrical signals proportional to the distance between the transmitting/receiving probe/probe, and the receiving probe. an electrical signal of a transmitted wave from the test material obtained by the receiving probe; an electrical signal of a reflected wave from the test material obtained by the transmitting/receiving probe; A switch that switches the output signal of the distance detector using a small power signal from a controller that generates a control signal based on the synchronization signal from the synchronization section, and a switch that switches the output signal of the upper 8C distance detector and voltage output signal. A voltage/frequency converter converts the transmitted wave output obtained by the receiving probe into a pulse waveform through the switching device ( ≧Transmission/reception] The reflected wave output signal seen by the probe is transmitted through the upper self-section device to the reflected wave receiver that amplifies and burns the reflected wave output signal, and the control output signal from the controller is sent to the 1 gate. A comparison is made to compare the gate generation amount that outputs the signal and the gate internal 9 call level, the output signal of the gate generator and the output signal of the transmitter, the transmitter, and the transmitter. a time measurement unit that totals 6111 the propagation time of the transmitted wave based on the output signal; and the time measurement decoy;
I#7 signal and above, output signal of electromotive force/frequency converter! According to the above, there is also an arithmetic unit that quasi-calculates the sound velocity of the object to be tested, a switch that opens and closes the signal of the upper eyelet reflected wave receiver based on the output of the estimator, and an output signal of the switch. a time measurement unit that measures the propagation time of the reflected wave;
a thickness calculator that calculates the thickness from the test material to the reflected wave based on the sound velocity output signal and the output signal of the time R1 measurement section tR; A/']) converter; a storage circuit that stores the output signal of the thickness calculator and the output signal of the A/D converter according to the control signal of the converter; 1-A D/A converter that converts the data in the memory circuit into analog data using a control signal from the controller; and a display that displays the output signal of the 1)/A converter; A recording device (printer, recorder, etc.) for recording the output signal of the converter is provided in the IJ/, and the speed of sound is calculated based on the output of the transmitted wave receiver and the output of the distance detector. Ultrasonic transmission image h characterized by:. (2) The plurality of transmission/reception probes are sequentially driven by the plurality of shift registers and the transmitters of the plurality of locks recorded in - to inject ultrasonic waves into the specimen material, and -1
- J "Output of 100 million circuits -" L - Output to the above recorder in correspondence with the multi-concave transmitting/receiving probe or receiving probe and record the ultrasonic transmission image and the distance of the reflected wave from the defect. The ultrasonic inspection apparatus according to claim 1, wherein the ultrasonic inspection apparatus is configured to record the height of the reflected wave from the defect. +3+ -J: =12 Calculate the distance to the -C reflected wave using the output of the time measuring unit and the output of the -T display unit, and record the distance and record the distance on the -recorder and the above display. The ultrasonic inspection apparatus according to claim 1, characterized in that it is configured to perform display.
JP57142951A 1982-08-18 1982-08-18 Ultrasonic wave inspector Pending JPS5932865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142951A JPS5932865A (en) 1982-08-18 1982-08-18 Ultrasonic wave inspector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142951A JPS5932865A (en) 1982-08-18 1982-08-18 Ultrasonic wave inspector

Publications (1)

Publication Number Publication Date
JPS5932865A true JPS5932865A (en) 1984-02-22

Family

ID=15327439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142951A Pending JPS5932865A (en) 1982-08-18 1982-08-18 Ultrasonic wave inspector

Country Status (1)

Country Link
JP (1) JPS5932865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502646A (en) * 1984-07-04 1986-11-13 ソシエテ・レ・ピル・ウオンデ−ル Improvement of nickel hydroxide positive electrode for alkaline storage batteries
CN112484836A (en) * 2020-11-20 2021-03-12 西安热工研究院有限公司 Ultrasonic probe device and workpiece sound velocity measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502646A (en) * 1984-07-04 1986-11-13 ソシエテ・レ・ピル・ウオンデ−ル Improvement of nickel hydroxide positive electrode for alkaline storage batteries
CN112484836A (en) * 2020-11-20 2021-03-12 西安热工研究院有限公司 Ultrasonic probe device and workpiece sound velocity measurement method
CN112484836B (en) * 2020-11-20 2023-04-07 西安热工研究院有限公司 Ultrasonic probe device and workpiece sound velocity measurement method

Similar Documents

Publication Publication Date Title
US4056970A (en) Ultrasonic velocity and thickness gage
US4008603A (en) Ultrasonic method and apparatus for measuring wall thickness of tubular members
JPS599555A (en) Ultrasonic flaw detector
Benmeddour et al. Experimental study of the A0 and S0 Lamb waves interaction with symmetrical notches
JP2007500340A (en) Method and circuit apparatus for ultrasonic nondestructive testing of an object
CN105486924B (en) Contactless conductor conductivity measuring method based on magnetosonic electrical effect
CN110849962A (en) Device and method for evaluating trend and depth of metal crack by utilizing electromagnetic ultrasonic principle
JPS5892859A (en) Method of detecting defect of metallic material such as steel by using ultrasonic wave and ultrasonic flaw detector executing said method
JPS5932865A (en) Ultrasonic wave inspector
JPS6321135B2 (en)
JPS61215908A (en) Piping inspecting instrument
JP2761928B2 (en) Non-destructive inspection method and device
JPS61138160A (en) Ultrasonic flaw detector
JP2824488B2 (en) Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method
JPS62263462A (en) Ultrasonic measuring apparatus
JPH03137504A (en) Ultrasonic system for measuring film thickness
JPS61114160A (en) Ultrasonic measuring instrument
JPS6083645A (en) Ultrasonic tomographic measuring method and apparatus
JPH0587784A (en) Method and apparatus for estimation for quantification of defect
JPH0933494A (en) Ultrasonic flaw detector
JP2739972B2 (en) Ultrasonic flaw detector
JPH0249103B2 (en)
JPS6159460B2 (en)
JPH03275046A (en) Ultrasonic diagnostic apparatus
SU922506A1 (en) Ultrasonic thickness meter