JPS5932714B2 - high temperature piping - Google Patents
high temperature pipingInfo
- Publication number
- JPS5932714B2 JPS5932714B2 JP14839776A JP14839776A JPS5932714B2 JP S5932714 B2 JPS5932714 B2 JP S5932714B2 JP 14839776 A JP14839776 A JP 14839776A JP 14839776 A JP14839776 A JP 14839776A JP S5932714 B2 JPS5932714 B2 JP S5932714B2
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- temperature
- wall
- wall pipe
- seal plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Thermal Insulation (AREA)
Description
【発明の詳細な説明】
本発明は、高温高圧流体を流通させる高温配管の改良に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in high-temperature piping through which high-temperature, high-pressure fluid flows.
本発明の目的は、断熱材中へ侵入した流体のショートバ
スを防ぐシールプレートの熱応力を低減する構造を提供
することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a structure that reduces thermal stress in a seal plate that prevents short baths of fluid penetrating into the insulation.
温度並びに圧力が1000℃、40に’/CTit程度
の超高温高圧流体を流通させる管として、いわゆる高温
配管の有用性が注目されている。The usefulness of so-called high-temperature piping is attracting attention as a pipe through which extremely high-temperature, high-pressure fluid with a temperature and pressure of about 1000° C. and 40° C./CTit flows through.
高温配管は、耐熱バウンダリとしての内壁管と、その外
周に被覆された断熱材、及びシステムの圧力を保持する
耐圧バウンダリとして最外周に位置する圧力管(外管)
とより成る。現在までに高温配管に関する種々の発明・
考案がなされている。High-temperature piping consists of an inner wall pipe as a heat-resistant boundary, a heat insulating material coated on its outer periphery, and a pressure pipe (outer pipe) located at the outermost periphery as a pressure-resistant boundary that maintains the system pressure.
It consists of To date, various inventions and inventions related to high temperature piping have been made.
An idea has been made.
しかし、今検射に付されている最も大きな問題は、ショ
ートバスの防止に関する技術である。高温配管の構造形
式は、中心部を高温流体が流れる単流配管と、中心部と
同時にその外径部にも隔絶された関係で2執の高温流体
が流れる二重配管とに大別される。However, the biggest problem currently facing detection is the technology for preventing short buses. The structural types of high-temperature piping are broadly divided into single-flow piping, in which high-temperature fluid flows through the center, and double-flow piping, in which two high-temperature fluids flow through the center and at the same time in an isolated manner on the outer diameter. .
例えば、二重配管は、中心部の内壁管内を高温流体(例
えば1000℃、40Kf/dgのHeガス)が流れ、
外管と中間管の間の環状流路を低温流体(例えば400
℃、4lKf7/(V7f9のHeガス)が流れる。For example, in double piping, a high-temperature fluid (for example, 1000°C, 40 Kf/dg He gas) flows inside the inner wall pipe in the center,
The annular flow path between the outer tube and the middle tube is filled with a cryogenic fluid (e.g. 400
℃, 4lKf7/(He gas of V7f9) flows.
この二流体を隔絶する障壁が、内壁管と断熱材並びに中
間管で構成されている。従つて、外管(圧力管)と中間
管は、低温流体で強制衿却され、熱膨脹による伸び差は
生じない。しかし、中間管と内壁管との間には、大きな
相対伸び差を生ずる。前記相対伸び差の問題は、単流配
管の場合にも、外管(圧力管)と内壁管との間で同様に
生ずる。The barrier separating these two fluids is composed of an inner wall tube, a heat insulating material, and an intermediate tube. Therefore, the outer tube (pressure tube) and the intermediate tube are forcibly collared with low-temperature fluid, and no difference in elongation occurs due to thermal expansion. However, a large relative elongation difference occurs between the intermediate tube and the inner wall tube. The above-described problem of relative elongation difference also occurs between the outer pipe (pressure pipe) and the inner wall pipe in the case of single-flow piping.
このため、高温配管における内壁管同志の接合部には、
熱膨脹を吸収するスライドジョイントが採用されている
。ところが、内壁管内を流通する高温流体は、スライド
ジョイントから次のスライドジョイントに至るまでの道
程で大なり小なりの圧力損失を生じ、これがシヨートパ
スを誘起する原因になつている。上記のシヨートパスを
生ずると、断熱材の効果が著るしく減殺され、中間管(
二重配管の場合)又は圧力管(単流管の場合)にホツト
スポツトを生じ、その強度が極度に低落して破損の原因
となる。Therefore, at the joints of inner wall pipes in high-temperature piping,
A slide joint is used to absorb thermal expansion. However, the high-temperature fluid flowing through the inner wall tube causes a pressure loss of a greater or lesser extent on its way from one slide joint to the next, and this causes a short pass. If the above-mentioned short pass occurs, the effectiveness of the insulation material will be significantly reduced, and the intermediate pipe (
Hot spots are formed in the pressure pipe (in the case of double piping) or pressure pipe (in the case of single flow pipe), and the strength of the pipe is extremely reduced, causing breakage.
と同時に、流体の熱損失も大きくなる等の種種の問題が
惹起される。高温配管における前記の如きシヨートパス
を防ぐには、結局、内壁管と中間管又は圧力管の間を半
径方向に完全に仕切るシールプレートを設置する他ない
。At the same time, various problems such as increased heat loss of the fluid occur. In order to prevent such short passes in high-temperature piping, the only way is to install a seal plate that completely partitions the inner wall pipe and the intermediate pipe or pressure pipe in the radial direction.
しかし、シールプレートを設置するときは、熱応力の問
題を無視できない。内壁管内を流れる流体の温度が1,
000′Cであるとき、内壁管自身の温度は約1,00
0℃に熱せられる。However, when installing seal plates, the issue of thermal stress cannot be ignored. The temperature of the fluid flowing inside the inner wall tube is 1,
000'C, the temperature of the inner wall tube itself is about 1,00'C.
It is heated to 0℃.
これに対し、中間管又は圧力管は、使用上の安全性を確
保するため、その温度を400′Cに保持するべく設計
ざれ、その温度障壁を形成するために断熱材が使用され
る。仮に、1,000℃の内壁管と400℃の圧力管と
を単純に半径方向のシールプレートで一体的に接合する
場合、シールプレートには600℃という大変な温度落
差を生ずる。On the other hand, the intermediate or pressure pipe is designed to maintain its temperature at 400'C to ensure safety in use, and a heat insulating material is used to form the temperature barrier. If a 1,000° C. inner wall tube and a 400° C. pressure tube are simply joined together by a radial seal plate, a large temperature drop of 600° C. will occur in the seal plate.
このため、シールプレートは、円周方向のせん断応力(
熱応力)でたちまち破壊される。シールプレートの前記
熱応力を緩和するには、高温部(内壁管)と低温部(中
間管又は圧力管)との距離を長くして熱勾配をゆるやか
なものとし、熱応力の障害を回避することが考えられる
。For this reason, the seal plate is subject to circumferential shear stress (
It is immediately destroyed by thermal stress). In order to alleviate the thermal stress of the seal plate, the distance between the high temperature part (inner wall pipe) and the low temperature part (intermediate pipe or pressure pipe) is increased to make the thermal gradient gentler, thereby avoiding failure due to thermal stress. It is possible that
七かし、この方法を実施しようとすると、約60『Cの
温度落差を緩和するために必要なシールプレートの長ざ
は莫大となる。このため、シー7”/プレートは、狭い
内壁管と中間管又は圧力管との間で、管軸に対し4壁と
か5間といつたようなほとんど水平に近い微小角度で設
置せざるを得ない。そうなると管の製作技術上の困難が
著るしくなり、断熱材の充填がむずかしい。本発明は、
最近の熱応力緩和方法に関する種々な研究の結果、シー
ルプレートにおける高温部に近い部分(熱の流れとして
高温部金属からシールプレートへ熱が流れこむ最初の部
分、以下これを遷移部という)の熱応力による被害が極
大であり、当該遷移部の熱応力を緩和することにより、
シールプレートの使用上の安全を確保でき、破壊に至ら
ないという研究成果に着目したものである。However, if this method were to be implemented, the length of the seal plate required to alleviate the temperature drop of approximately 60°C would be enormous. For this reason, the sea 7"/plate has to be installed at a very close to horizontal angle, such as 4 walls or 5 walls, with respect to the pipe axis between the narrow inner wall pipe and the intermediate pipe or pressure pipe. No. In that case, the technical difficulty in manufacturing the pipe becomes significant, and filling with insulation material becomes difficult.The present invention
As a result of various recent studies on thermal stress relaxation methods, it has been found that the heat in the part of the seal plate near the high temperature part (the first part where heat flows from the high temperature part metal to the seal plate as a heat flow, hereinafter referred to as the transition part) The damage caused by stress is the greatest, and by alleviating the thermal stress in the transition area,
This research focuses on the research results that show that the seal plate can be used safely and does not lead to destruction.
即ち、本発明は、シールプレートにおける内壁管との接
合部近辺、いわゆる遷移部を、内壁管に近接してある適
当の長さだけ平行する平行部とじて形成し、当該平行部
はその長手方向並びに肉厚方向共に内壁管とほぼ同等の
温度に保つようにしたことが特色である。つまり、当該
平行部では、その長手方向並びに肉厚方向のいずれにも
温度勾配はほとんど生じないがら、熱応力も微弱に抑制
又は緩和されるというわけである。シールプレートにお
いて、前記の平行部を過ぎた部位からは、漸進的に熱勾
配を生じさせて高温部と低温部の熱落差を形成する。That is, in the present invention, the so-called transition part, which is the vicinity of the joint between the seal plate and the inner wall pipe, is formed as a parallel part that is parallel to the inner wall pipe by an appropriate length, and the parallel part is parallel to the inner wall pipe in the longitudinal direction. Another feature is that the temperature in both the wall thickness direction is maintained at approximately the same temperature as the inner wall tube. In other words, in the parallel portion, almost no temperature gradient occurs in either the longitudinal direction or the thickness direction, and thermal stress is also slightly suppressed or relaxed. In the seal plate, a thermal gradient is gradually generated from a portion past the parallel portion to form a thermal drop difference between a high temperature portion and a low temperature portion.
しかし、前記平行部以外に生ずる熱勾配はほとんどシー
ルプレートの長手方定に一律な一次元的なものとみなす
ことができ、もはや熱応力の被害はさほど大きくはなく
、使用上の安全は阻害されないことが実験的に確認され
ている。次に、本発明を図示の実施例により説明する。However, the thermal gradient that occurs in areas other than the parallel portion can be considered to be almost one-dimensional and uniform in the longitudinal direction of the seal plate, and the damage caused by thermal stress is no longer so large that it does not impede safety in use. This has been experimentally confirmed. Next, the present invention will be explained with reference to illustrated embodiments.
第1図は、本発明を実施した二重配管を示す。図におい
て1は内壁管、2は断熱材、3は中間管、4は内壁管1
のスライドジョイント部を指している。又、図中5はシ
ールプレートである。さらに、図中6は、中間管3の外
側に流路7を形成する外管(圧力管)である。高温高圧
流体は、内壁管1内を矢印Aのように流れる。FIG. 1 shows a double piping system embodying the invention. In the figure, 1 is an inner wall pipe, 2 is a heat insulator, 3 is an intermediate pipe, and 4 is an inner wall pipe 1
It refers to the slide joint part of. Further, numeral 5 in the figure is a seal plate. Furthermore, 6 in the figure is an outer tube (pressure tube) that forms a flow path 7 on the outside of the intermediate tube 3. The high-temperature, high-pressure fluid flows in the inner wall tube 1 as shown by arrow A.
そして、第1図の右方にあつて図示を省略した熱交換部
により400℃程度にまで温度降下した戻りの流体が、
流路7を矢印Bのように流れるのである。第2図で明ら
かなように、シールプレート5は、内壁管1の延長とし
て一体の関係にあり、その先端部は中間管3と突合せら
れ、番号8の位置を水密的に溶接されている。Then, the returning fluid whose temperature has been lowered to about 400°C by the heat exchanger section (not shown) on the right side of FIG.
It flows through the flow path 7 as shown by arrow B. As is clear from FIG. 2, the seal plate 5 is an integral extension of the inner wall tube 1, and its tip abuts against the intermediate tube 3, and is welded watertightly at the position 8.
内壁管1において、スライドジョイント4を形成する一
つの端部Yに対し、シールプレート5は、前記の端部1
″の外径面に近似した内径でそれへ近接する平行部5a
を有し、当該平行部5aの範囲でスライドジョイント4
が形成されている。In the inner wall tube 1, the seal plate 5 is attached to one end Y forming the slide joint 4.
A parallel portion 5a having an inner diameter close to the outer diameter surface of ``
and the slide joint 4 within the range of the parallel portion 5a.
is formed.
端部vは、平行部5aへ内接する部分に、高温凝着を防
ぐセラミツク9を有する(第4図)。シールプレート5
は、第2図で明らかなように、内壁管1との接合部10
に続いて、平行部5aに至る過程としての傾斜部5bを
有する。The end portion v has a ceramic 9 in a portion inscribed in the parallel portion 5a to prevent high-temperature adhesion (FIG. 4). Seal plate 5
As is clear from FIG. 2, the joint 10 with the inner wall tube 1
Following this, there is an inclined part 5b as a process leading to the parallel part 5a.
平行部5aに続いては、断熱材の充填に支障なく角度の
傾斜部5cを有し、次に熱勾配の緩和に必要な距離をか
せぐための平行部5dを有する。そして、中間管3と接
合ざれる部位に至ると、断熱材の充填に支障ない角度の
況斜部5eを有し、その先端が中間管3と溶接されてい
る。この二重配管に使用される断熱材2は、カオウール
(商品名)の如き耐火熱繊維である。Following the parallel portion 5a, there is an inclined portion 5c having an angle that does not hinder the filling of the heat insulating material, and then there is a parallel portion 5d for providing a distance necessary for alleviating the thermal gradient. When reaching the part to be joined to the intermediate pipe 3, it has a sloped part 5e with an angle that does not hinder the filling of the heat insulating material, and the tip thereof is welded to the intermediate pipe 3. The heat insulating material 2 used in this double piping is a refractory heat-resistant fiber such as Kao Wool (trade name).
ただし、繊維質断熱材は流体の流れに左右されやすいの
で、スライドジョイント4に近い流体流動部には、金属
箔積層断熱材2′が使用されている。又、耐火断熱繊維
の流失を防ぐフエースメタル11が中間管3へ内接する
部分は、滑動自在とされている。第5図には、単流配管
の実施例を示す。これは前記二重配管の構成から外管6
を除去し、中間管3を圧力管3″としたもので、他の構
成に変りはないO上記の各実施例の場合は、シールプレ
ート5において、傾斜部5bから平行部5aにかけては
、内壁管1内を流れる流体と直接・間接に接する状態と
なる。However, since the fibrous heat insulating material is easily influenced by the flow of fluid, a metal foil laminated heat insulating material 2' is used in the fluid flow portion near the slide joint 4. Further, the portion where the face metal 11, which prevents the fireproof insulation fibers from being washed away, is inscribed in the intermediate tube 3 is slidable. FIG. 5 shows an embodiment of single-flow piping. This is due to the structure of the double piping described above.
is removed, and the intermediate pipe 3 is replaced with a pressure pipe 3'', but the other configurations remain the same. It comes into direct or indirect contact with the fluid flowing inside the pipe 1.
このため、内壁管1から平行部5aにかけては、流体と
ほぼ同温度に熱せられることとなり、これらの部分には
熱応力はほとんど生じない。従つて、これらの部分にお
ける熱応力の危険は回避され、本発明の目的は良く達成
されるである。平行部5aに続く傾斜部5C1平行部5
d,傾斜部5eにはかなりの熱勾配を生ずるが、それは
管軸方向に一次元的であり、伸びが許容される(内壁管
の一端はスライドジョイントとして非拘束)ため、応力
的にたいした危険はないのである。Therefore, the portions from the inner wall tube 1 to the parallel portion 5a are heated to approximately the same temperature as the fluid, and almost no thermal stress is generated in these portions. The risk of thermal stress in these parts is therefore avoided and the object of the invention is well achieved. Inclined portion 5C1 following parallel portion 5a Parallel portion 5
d. Although a considerable thermal gradient occurs in the inclined portion 5e, it is one-dimensional in the tube axis direction and elongation is allowed (one end of the inner wall tube is not restrained as a slide joint), so there is no stress risk. There is no such thing.
以上の通りであつて、本発明によれば、シールプレート
に平行部5aを設けるだけの極めて簡単な改良であるが
、それによりシールプレート自身並びに中間管又は圧力
管の熱応力の危険は解消され、安全性の高い高温配管を
提供できる。と同時にシールプレートの軸方向長さを縮
小でき、その配設角度も大きくできるので、高温配管の
構築が容易であり、断熱材の充填にも無理を生じない等
製作上の利点も得られ、ひいては高温配管の価格低減に
も寄与するものである。As described above, according to the present invention, although the improvement is extremely simple by simply providing the parallel portion 5a on the seal plate, the risk of thermal stress on the seal plate itself and the intermediate pipe or pressure pipe is eliminated. , we can provide highly safe high-temperature piping. At the same time, the axial length of the seal plate can be reduced and its installation angle can be increased, making it easy to construct high-temperature piping and providing advantages in manufacturing, such as making it easier to fill with insulation material. This also contributes to reducing the cost of high-temperature piping.
第1図は本発明を実施した二重配管の断面図、第2図〜
第4図は第1図の部、部、部の拡大詳細断面図である。
又第5図は本発明を実施した単流配管の断面図である。
1・・・・・・内壁管、2,2′・・・・・・断熱材、
3・・・・・・中間管、3′・・・・・・圧力管、4・
・・・・・スライドジョイント、5・・・・・・シール
プレート、5a・・・・・・平行部、6・・・・・・外
管、7・・・・・・流路。Figure 1 is a sectional view of a double piping embodying the present invention, Figures 2-
FIG. 4 is an enlarged detailed sectional view of the section of FIG. 1. Further, FIG. 5 is a sectional view of a single flow pipe in which the present invention is implemented.
1...Inner wall pipe, 2, 2'...Insulating material,
3...Intermediate pipe, 3'...Pressure pipe, 4.
...Slide joint, 5 ... Seal plate, 5a ... Parallel part, 6 ... Outer tube, 7 ... Channel.
Claims (1)
覆した断熱材と、断熱材の外周に位置する圧力管とより
成る高温配管において、内壁管と圧力管の間を半径方向
に仕切るシールプレートにおける内壁管との接合部近辺
を、内壁管に近接してそれと平行する平行部に形成して
成ることを特徴とする高温配管。 2 高温流体を流通させる内壁管と、内壁管の外周へ被
覆した断熱材と、断熱材の外周に位置する中間管と、及
び中間管の外周に流路を形成すべく相応の間隙をあけて
配置された最外周の圧力管とより成る高温配管において
、内壁管と中間管の間を仕切るシールプレートにおける
内壁管との接合部近辺を、内壁管に近接してそれと平行
する平行部に形成して成ることを特徴とする高温配管。[Scope of Claims] 1. In high-temperature piping consisting of an inner wall pipe through which high-temperature fluid flows, a heat insulating material coated on the outer periphery of the inner wall pipe, and a pressure pipe located on the outer periphery of the heat insulating material, there is a gap between the inner wall pipe and the pressure pipe. 1. A high-temperature piping characterized in that a part of a seal plate that partitions the pipe in the radial direction near the joint with the inner wall pipe is formed into a parallel part that is close to and parallel to the inner wall pipe. 2. An inner wall pipe through which high-temperature fluid flows, a heat insulating material covering the outer periphery of the inner wall pipe, an intermediate pipe located on the outer periphery of the heat insulating material, and an appropriate gap provided between the outer periphery of the intermediate pipe to form a flow path. In high-temperature piping consisting of the outermost pressure pipe arranged, the vicinity of the joint with the inner wall pipe in the seal plate that partitions between the inner wall pipe and the intermediate pipe is formed into a parallel part close to and parallel to the inner wall pipe. High-temperature piping characterized by consisting of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14839776A JPS5932714B2 (en) | 1976-12-10 | 1976-12-10 | high temperature piping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14839776A JPS5932714B2 (en) | 1976-12-10 | 1976-12-10 | high temperature piping |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5372259A JPS5372259A (en) | 1978-06-27 |
JPS5932714B2 true JPS5932714B2 (en) | 1984-08-10 |
Family
ID=15451857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14839776A Expired JPS5932714B2 (en) | 1976-12-10 | 1976-12-10 | high temperature piping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5932714B2 (en) |
-
1976
- 1976-12-10 JP JP14839776A patent/JPS5932714B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5372259A (en) | 1978-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI72590C (en) | High temperature insulating jacket. | |
US4259993A (en) | Ceramic-insulated pipe for the transport of hot fluids | |
US3469862A (en) | Expansion joints with frozen seals | |
US3941160A (en) | Interlocking ceramic tile for covering an insulated water cooled pipe structure | |
JP5478867B2 (en) | Fire wall device and heat exchanger | |
US3592261A (en) | Heat exchanger | |
US2878040A (en) | Safe-weld pipe joint | |
US4997211A (en) | Connection of an uncooled pipe with a cooled pipe | |
US2759491A (en) | Coaxial conduit construction | |
US3984131A (en) | Packing gland for TiCl4 inlet to oxidizer reactor | |
US4453500A (en) | Cooled tube wall for metallurgical furnace | |
CN1051616A (en) | Insulated pipe construction | |
JPS5932714B2 (en) | high temperature piping | |
US2497780A (en) | Reducing thermal shock high-temperature valve | |
RU2222685C2 (en) | Heat-insulated oil well tubing | |
US2243402A (en) | Tubular furnace structure and method of forming same | |
US2417348A (en) | Process of lining catalyst chambers | |
JPS5926839B2 (en) | Joint structure for piping for high temperature and high pressure fluids | |
US3822636A (en) | Insulated smokestack conduits | |
GB555176A (en) | Improvements in or relating to piping for use with fluids at high temperatures | |
JPS5932713B2 (en) | double piping | |
JPS6039915B2 (en) | Meandering piping structure with double pipes | |
JPS6345000B2 (en) | ||
JPS5841611A (en) | Manufacture of double-pipe | |
CN210800400U (en) | Fireproof expansion joint |